Search results for: science materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9302

Search results for: science materials

8492 Exploring Mechanical Properties of Additive Manufacturing Ceramic Components Across Techniques and Materials

Authors: Venkatesan Sundaramoorthy

Abstract:

The field of ceramics has undergone a remarkable transformation with the advent of additive manufacturing technologies. This comprehensive review explores the mechanical properties of additively manufactured ceramic components, focusing on key materials such as Alumina, Zirconia, and Silicon Carbide. The study delves into various authors' review technology into the various additive manufacturing techniques, including Stereolithography, Powder Bed Fusion, and Binder Jetting, highlighting their advantages and challenges. It provides a detailed analysis of the mechanical properties of these ceramics, offering insights into their hardness, strength, fracture toughness, and thermal conductivity. Factors affecting mechanical properties, such as microstructure and post-processing, are thoroughly examined. Recent advancements and future directions in 3D-printed ceramics are discussed, showcasing the potential for further optimization and innovation. This review underscores the profound implications of additive manufacturing for ceramics in industries such as aerospace, healthcare, and electronics, ushering in a new era of engineering and design possibilities for ceramic components.

Keywords: mechanical properties, additive manufacturing, ceramic materials, PBF

Procedia PDF Downloads 66
8491 Potential Use of Leaching Gravel as a Raw Material in the Preparation of Geo Polymeric Material as an Alternative to Conventional Cement Materials

Authors: Arturo Reyes Roman, Daniza Castillo Godoy, Francisca Balarezo Olivares, Francisco Arriagada Castro, Miguel Maulen Tapia

Abstract:

Mining waste–based geopolymers are a sustainable alternative to conventional cement materials due to their contribution to the valorization of mining wastes as well as to the new construction materials with reduced fingerprints. The objective of this study was to determine the potential of leaching gravel (LG) from hydrometallurgical copper processing to be used as a raw material in the manufacture of geopolymer. NaOH, Na2SiO3 (modulus 1.5), and LG were mixed and then wetted with an appropriate amount of tap water, then stirred until a homogenous paste was obtained. A liquid/solid ratio of 0.3 was used for preparing mixtures. The paste was then cast in cubic moulds of 50 mm for the determination of compressive strengths. The samples were left to dry for 24h at room temperature, then unmoulded before analysis after 28 days of curing time. The compressive test was conducted in a compression machine (15/300 kN). According to the laser diffraction spectroscopy (LDS) analysis, 90% of LG particles were below 500 μm. The X-ray diffraction (XRD) analysis identified crystalline phases of albite (30 %), Quartz (16%), Anorthite (16 %), and Phillipsite (14%). The X-ray fluorescence (XRF) determinations showed mainly 55% of SiO2, 13 % of Al2O3, and 9% of CaO. ICP (OES) concentrations of Fe, Ca, Cu, Al, As, V, Zn, Mo, and Ni were 49.545; 24.735; 6.172; 14.152, 239,5; 129,6; 41,1;15,1, and 13,1 mg kg-1, respectively. The geopolymer samples showed resistance ranging between 2 and 10 MPa. In comparison with the raw material composition, the amorphous percentage of materials in the geopolymer was 35 %, whereas the crystalline percentage of main mineral phases decreased. Further studies are needed to find the optimal combinations of materials to produce a more resistant and environmentally safe geopolymer. Particularly are necessary compressive resistance higher than 15 MPa are necessary to be used as construction unit such as bricks.

Keywords: mining waste, geopolymer, construction material, alkaline activation

Procedia PDF Downloads 96
8490 Experimental Investigation on Strengthening of Timber Beam Using Glass Fibers and Steel Plates

Authors: Sisaynew Tesfaw Admassu

Abstract:

The strengthening of timber beams can be necessary for several reasons including the increase of live loads (possible in a historical building for a change of destination of use or upgrading to meet new requirements), the reduction of the resistant cross-sections following deterioration (attacks of biological agents such as fungi, and insects) or traumatic events (fires) and the excess of deflection in the members. The main purpose of strengthening an element is not merely to repair it, but also to prevent and minimize the appearance of future problems. This study did an experimental investigation on the behavior of reference and strengthened solid timber beams. The strengthening materials used in this study were CSM-450 glass fiber and steel materials for both flexural and shear strengthening techniques. Twenty-two solid timber beams of Juniperus procera (TID) species with the dimensions of 60 x 90 x 780 mm were used in the present study. The binding material to bond the strengthening materials with timber was general-purpose resin with Luperox® K10 MEKP catalyst. Three beams were used as control beams (unstrengthen beams) while the remaining nineteen beams were strengthened using the strengthening materials for flexure and shear. All the beams were tested for three points loading to failure by using a Universal Testing Machine, UTM-600kN machine. The experimental results showed that the strengthened beams performed better than the unstrengthen beams. The experimental result of flexural strengthened beams showed that the load-bearing capacity of strengthened beams increased between 16.34 – 42.55%. Four layers of Glass Fiber Reinforced polymer on the tension side of the beams was shown to be the most effective way to enhance load-bearing capacity. The strengthened beams also have an enhancement in their flexural stiffness. The stiffness of flexural strengthened beams was increased between 1.18 – 65.53% as compared to the control beams. The highest increment in stiffness has occurred on beams strengthened using 2x60 mm steel plates. The shear-strengthened beams showed a relatively small amount of performance as compared to flexural-strengthened beams; the reason is that the beams are sufficient for shear. The polyester resin used in the experimental work showed good performance in bonding agents between materials. The resin showed more effectiveness in GFRP materials than steel materials.

Keywords: heritage structures, strengthening, stiffness, adhesive, polyester resin, steel plates

Procedia PDF Downloads 74
8489 Physical Fitness Evaluation of MARA Junior Science Collage Rugby Player

Authors: Mohamad Nizam Asmuni, Ahmad Naszeri Salleh, Yunus Adam, Azhar Yaacob, Mohd Hafiz Rosli, Muhamad Nazrul Hakim Abdullah

Abstract:

Athletes at the school should have good physical fitness to participate in tournament. Currently, there are no standards for the level of physical fitness for MARA Junior Science Collage (MJSC). Therefore, this research is to determine the level of physical fitness of rugby player at MJSC. A total of 62 samples (age 16.4 ± 0.75) among rugby players at MJSC were randomly selected to participate in this study. Height, weight, body fat percentage, body mass index (BMI) and other physical testing are measured and recorded. The results showed that the average of body mass index (BMI) for rugby players is 23.4 ± 4:51. Body mass index (BMI) of rugby players can be categorized as pre-obese based on World Health Organization (WHO) guidelines. BMI for rugby players was categorized as healthy based on body fat ranges for standard adults at NY Obesity Research Center. Bleep test results show that the average Bleep test is level 7 and shuttle 5; average VO2max was 37.94 L/min. Physical fitness and performance of rugby players at MJSC is lower compared to the rugby junior athletes in University Putra Malaysia (UPM). Therefore, physical fitness of rugby players must be improved to ensure the rugby players at MJSC could be performs better in the tournament.

Keywords: physical fitness, MARA junior science collage (MJSC), body mass index (BMI), bleep test

Procedia PDF Downloads 483
8488 Antifungal Potential of Higher Basidiomycetes Mushrooms

Authors: Tamar Khardziani, Violeta Berikashvili, Mariam Rusitashvili, Eva Kachlishvili, Vladimir Elisashvili, Mikheil Asatiani

Abstract:

Last years, the search for natural sources of novel and effective antifungal substances became a scientific and technological challenge. In the present research, thirty basidiomycetes isolated from various ecological niches of Georgia and belonging to different taxonomic groups were screened for their antifungal activities against pathogenic fungi such as Aspergillus, Fusarium, and Guignardia bidwellii. Among mushroom tested, several potential producers of antifungal substances have been revealed, such as Schizophyllum commune, Lentinula edodes, Ganoderma abietinum, Fomes fomentarius, Hericium erinaceus, and Trametes versicolor. For mushroom cultivation and expression of antifungal potential, submerged and solid-state fermentations of different plant raw materials were performed and various approaches and strategies have been exploited. Sch. commune appeared as a most promising producer of antifungal compounds. It was established that among different agro-industrial wastes, the presence of mandarin juice production waste in a nutrient medium, causing the significant increase of antifungal activity Sch. commune (growth inhibition: Aspergillus – 59 %, Fusarium – 55 %, G. bidwellii – 78 %, after 3, 2 and 4 days of cultivation, respectively). Besides this, Sch. commune demonstrate similar antifungal activities in the presence of glucose, glycerol, maltose, mannitol, and xylose, and growth inhibition of Fusarium ranged in 41 % - 49 % during 6 days of cultivation. Inhibition of Aspergillus growth inhibition varied in 27 % - 36 %, and inhibition of G. bidwellii was in the range 49 % - 61 %, respectively. Sch. commune under solid-state fermentation of mandarin peels at 13 days of cultivation demonstrates powerful growth inhibition of pathogenic fungi (growth inhibition: Aspergillus – 50 %, Fusarium – 61 %, G. bidwellii – 68 %, after 3, 4, and 4 days of cultivation, respectively) as well as at 20 days old mushroom (growth inhibition: Aspergillus – 41 %, Fusarium – 54 %, G. bidwellii – 66 %, after 3 days of cultivation). It was established that Sch. commune was effective as a producer of antifungal compounds in submerged as well as in solid-state fermentation. Finally, performed study confirms that the higher basidiomycetes possess antifungal potential, which strongly depends on the physiological factors of growth. Acknowledgments: The work was implemented with the financial support of fundamental science project FR-19-3719 by the Shota Rustaveli National Science Foundation of Georgia.

Keywords: antifungal potential, higher basidiomycetes, pathogenic fungi, submerged and solid-state fermentation

Procedia PDF Downloads 145
8487 Piping Fragility Composed of Different Materials by Using OpenSees Software

Authors: Woo Young Jung, Min Ho Kwon, Bu Seog Ju

Abstract:

A failure of the non-structural component can cause significant damages in critical facilities such as nuclear power plants and hospitals. Historically, it was reported that the damage from the leakage of sprinkler systems, resulted in the shutdown of hospitals for several weeks by the 1971 San Fernando and 1994 North Ridge earthquakes. In most cases, water leakages were observed at the cross joints, sprinkler heads, and T-joint connections in piping systems during and after the seismic events. Hence, the primary objective of this study was to understand the seismic performance of T-joint connections and to develop an analytical Finite Element (FE) model for the T-joint systems of 2-inch fire protection piping system in hospitals subjected to seismic ground motions. In order to evaluate the FE models of the piping systems using OpenSees, two types of materials were used: 1) Steel 02 materials and 2) Pinching 4 materials. Results of the current study revealed that the nonlinear moment-rotation FE models for the threaded T-joint reconciled well with the experimental results in both FE material models. However, the system-level fragility determined from multiple nonlinear time history analyses at the threaded T-joint was slightly different. The system-level fragility at the T-joint, determined by Pinching 4 material was more conservative than that of using Steel 02 material in the piping system.

Keywords: fragility, t-joint, piping, leakage, sprinkler

Procedia PDF Downloads 305
8486 Utilization of Composite Components for Land Vehicle Systems: A Review

Authors: Kivilcim Ersoy, Cansu Yazganarikan

Abstract:

In recent years, composite materials are more frequently utilized not only in aviation but also in automotive industry due to its high strength to weight ratio, fatigue and corrosion resistances as well as better performances in specific environments. The market demand also favors lightweight design for wheeled and tracked armored vehicles due to the increased demand for land and amphibious mobility features. This study represents the current application areas and trends in automotive, bus and armored land vehicles industries. In addition, potential utilization areas of fiber composite and hybrid material concepts are being addressed. This work starts with a survey of current applications and patent trends of composite materials in automotive and land vehicle industries. An intensive investigation is conducted to determine the potential of these materials for application in land vehicle industry, where small series production dominates and challenging requirements are concerned. In the end, potential utilization areas for combat land vehicle systems are offered. By implementing these light weight solutions with alternative materials and design concepts, it is possible to achieve drastic weight reduction, which will enable both land and amphibious mobility without unyielding stiffness and survivability capabilities.

Keywords: land vehicle, composite, light-weight design, armored vehicle

Procedia PDF Downloads 464
8485 The Development of Open Access in Latin America and Caribbean: Mapping National and International Policies and Scientific Publications of the Region

Authors: Simone Belli, Sergio Minniti, Valeria Santoro

Abstract:

ICTs and technology transfer can benefit and move a country forward in economic and social development. However, ICT and access to the Internet have been inequitably distributed in most developing countries. In terms of science production and dissemination, this divide articulates itself also through the inequitable distribution of access to scientific knowledge and networks, which results in the exclusion of developing countries from the center of science. Developing countries are on the fringe of Science and Technology (S&T) production due not only to low investment in research but also to the difficulties to access international scholarly literature. In this respect, Open access (OA) initiatives and knowledge infrastructure represent key elements for both producing significant changes in scholarly communication and reducing the problems of developing countries. The spreading of the OA movement in the region, exemplified by the growth of regional and national initiatives, such as the creation of OA institutional repositories (e.g. SciELO and Redalyc) and the establishing of supportive governmental policies, provides evidence of the significant role that OA is playing in reducing the scientific gap between Latin American countries and improving their participation in the so-called ‘global knowledge commons’. In this paper, we map OA publications in Latin America and observe how Latin American countries are moving forward and becoming a leading force in widening access to knowledge. Our analysis, developed as part of the H2020 EULAC Focus research project, is based on mixed methods and consists mainly of a bibliometric analysis of OA publications indexed in the most important scientific databases (Web of Science and Scopus) and OA regional repositories, as well as the qualitative analysis of documents related to the main OA initiatives in Latin America. Through our analysis, we aim at reflecting critically on what policies, international standards, and best practices might be adapted to incorporate OA worldwide and improve the infrastructure of the global knowledge commons.

Keywords: open access, LAC countries, scientific publications, bibliometric analysis

Procedia PDF Downloads 215
8484 Engineering of Stable and Improved Electrochemical Activities of Redox Dominating Charge Storage Electrode Materials

Authors: Girish Sambhaji Gund

Abstract:

The controlled nanostructure growth and its strong coupling with the current collector are key factors to achieve good electrochemical performance of faradaic-dominant electroactive materials. We employed binder-less and additive-free hydrothermal and physical vapor doping methods for the synthesis of nickel (Ni) and cobalt (Co) based compounds nanostructures (NiO, NiCo2O4, NiCo2S4) deposited on different conductive substrates such as carbon nanotube (CNT) on stainless steel, and reduced graphene oxide (rGO) and N-doped rGO on nickel foam (NF). The size and density of Ni- and Co-based compound nanostructures are controlled through the strong coupling with carbon allotropes on stainless steel and NF substrates. This controlled nanostructure of Ni- and Co-based compounds with carbon allotropes leads to stable faradaic electrochemical reactions at the material/current collector interface and within the electrode, which is consequence of strong coupling of nanostructure with functionalized carbon surface as a buffer layer. Thus, it is believed that the results provide the synergistic approaches to stabilize electrode materials physically and chemically, and hence overall electrochemical activity of faradaic dominating battery-type electrode materials through buffer layer engineering.

Keywords: metal compounds, carbon allotropes, doping, electrochemicstry, hybrid supercapacitor

Procedia PDF Downloads 80
8483 Zinc Borate Synthesis Using Hydrozincite and Boric Acid with Ultrasonic Method

Authors: D. S. Vardar, A. S. Kipcak, F. T. Senberber, E. M. Derun, S. Piskin, N. Tugrul

Abstract:

Zinc borate is an important inorganic hydrate borate material, which can be use as a flame retardant agent and corrosion resistance material. This compound can loss its structural water content at higher than 290°C. Due to thermal stability; Zinc Borate can be used as flame reterdant at high temperature process of plastic and gum. In this study, the ultrasonic reaction of zinc borates were studied using hydrozincite (Zn5(CO3)2•(OH)6) and boric acid (H3BO3) raw materials. Before the synthesis raw materials were characterized by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). Ultrasonic method is a new application on the zinc borate synthesis. The synthesis parameters were set to 90°C reaction temperature and 55 minutes of reaction time, with 1:1, 1:2, 1:3, 1:4 and 1:5 molar ratio of starting materials (Zn5(CO3)2•(OH)6 : H3BO3). After the zinc borate synthesis, the products analyzed by XRD and FT-IR. As a result, optimum molar ratio of 1:5 (Zn5(CO3)2•(OH)6:H3BO3) is determined for the synthesis of zinc borates with ultrasonic method.

Keywords: borate, ultrasonic method, zinc borate, zinc borate synthesis

Procedia PDF Downloads 408
8482 Characteristics and Feature Analysis of PCF Labeling among Construction Materials

Authors: Sung-mo Seo, Chang-u Chae

Abstract:

The Product Carbon Footprint Labeling has been run for more than four years by the Ministry of Environment and there are number of products labeled by KEITI, as for declaring products with their carbon emission during life cycle stages. There are several categories for certifying products by the characteristics of usage. Building products which are applied to a building as combined components. In this paper, current status of PCF labeling has been compared with LCI DB for data composition. By this comparative analysis, we suggest carbon labeling development.

Keywords: carbon labeling, LCI DB, building materials, life cycle assessment

Procedia PDF Downloads 421
8481 Developing Indicators in System Mapping Process Through Science-Based Visual Tools

Authors: Cristian Matti, Valerie Fowles, Eva Enyedi, Piotr Pogorzelski

Abstract:

The system mapping process can be defined as a knowledge service where a team of facilitators, experts and practitioners facilitate a guided conversation, enable the exchange of information and support an iterative curation process. System mapping processes rely on science-based tools to introduce and simplify a variety of components and concepts of socio-technical systems through metaphors while facilitating an interactive dialogue process to enable the design of co-created maps. System maps work then as “artifacts” to provide information and focus the conversation into specific areas around the defined challenge and related decision-making process. Knowledge management facilitates the curation of that data gathered during the system mapping sessions through practices of documentation and subsequent knowledge co-production for which common practices from data science are applied to identify new patterns, hidden insights, recurrent loops and unexpected elements. This study presents empirical evidence on the application of these techniques to explore mechanisms by which visual tools provide guiding principles to portray system components, key variables and types of data through the lens of climate change. In addition, data science facilitates the structuring of elements that allow the analysis of layers of information through affinity and clustering analysis and, therefore, develop simple indicators for supporting the decision-making process. This paper addresses methodological and empirical elements on the horizontal learning process that integrate system mapping through visual tools, interpretation, cognitive transformation and analysis. The process is designed to introduce practitioners to simple iterative and inclusive processes that create actionable knowledge and enable a shared understanding of the system in which they are embedded.

Keywords: indicators, knowledge management, system mapping, visual tools

Procedia PDF Downloads 195
8480 Navigating Government Finance Statistics: Effortless Retrieval and Comparative Analysis through Data Science and Machine Learning

Authors: Kwaku Damoah

Abstract:

This paper presents a methodology and software application (App) designed to empower users in accessing, retrieving, and comparatively exploring data within the hierarchical network framework of the Government Finance Statistics (GFS) system. It explores the ease of navigating the GFS system and identifies the gaps filled by the new methodology and App. The GFS, embodies a complex Hierarchical Network Classification (HNC) structure, encapsulating institutional units, revenues, expenses, assets, liabilities, and economic activities. Navigating this structure demands specialized knowledge, experience, and skill, posing a significant challenge for effective analytics and fiscal policy decision-making. Many professionals encounter difficulties deciphering these classifications, hindering confident utilization of the system. This accessibility barrier obstructs a vast number of professionals, students, policymakers, and the public from leveraging the abundant data and information within the GFS. Leveraging R programming language, Data Science Analytics and Machine Learning, an efficient methodology enabling users to access, navigate, and conduct exploratory comparisons was developed. The machine learning Fiscal Analytics App (FLOWZZ) democratizes access to advanced analytics through its user-friendly interface, breaking down expertise barriers.

Keywords: data science, data wrangling, drilldown analytics, government finance statistics, hierarchical network classification, machine learning, web application.

Procedia PDF Downloads 71
8479 Surface Modification of Poly High Internal Phase Emulsion by Solution Plasma Process for CO2 Adsorption

Authors: Mookyada Mankrut, Manit Nithitanakul

Abstract:

An increase in the amount of atmospheric carbon dioxide (CO2) resulting from anthropogenic CO2 emission has been a concerned problem so far. Adsorption using porous materials is feasible way to reduce the content of CO2 emission into the atmosphere due to several advantages: low energy consumption in regeneration process, low-cost raw materials and, high CO2 adsorption capacity. In this work, the porous poly(divinylbenzene) (poly(DVB)) support was synthesized under high internal phase emulsion (HIPE) polymerization then modified with polyethyleneimine (PEI) by using solution plasma process. These porous polymers were then used as adsorbents for CO2 adsorption study. All samples were characterized by some techniques: Fourier transform infrared spectroscopy (FT-IR), scanning electron spectroscopy (SEM), water contact angle measurement and, surface area analyzer. The results of FT-IR and a decrease in contact angle, pore volume and, surface area of PEI-loaded materials demonstrated that surface of poly(DVB) support was modified. In other words, amine groups were introduced to poly(DVB) surface. In addition, not only the outer surface of poly(DVB) adsorbent was modified, but also the inner structure as shown by FT-IR study. As a result, PEI-loaded materials exhibited higher adsorption capacity, comparing with those of the unmodified poly(DVB) support.

Keywords: polyHIPEs, CO2 adsorption, solution plasma process, high internal phase emulsion

Procedia PDF Downloads 273
8478 Corrosion Behavior of Fe-Ni-Cr and Zr Alloys in Supercritical Water Reactors

Authors: Igor Svishchev, Kashif Choudhry

Abstract:

Progress in advanced energy technologies is not feasible without understanding how engineering materials perform under extreme environmental conditions. The corrosion behaviour of Fe-Ni-Cr and Zr alloys has been systematically examined under high-temperature and supercritical water flow conditions. The changes in elemental release rate and dissolved gas concentration provide valuable insights into the mechanism of passivation by forming oxide films. A non-intrusive method for monitoring the extent of surface oxidation based on hydrogen release rate has been developed. This approach can be used for the on-line monitoring corrosion behavior of reactor materials without the need to interrupt the flow and remove corrosion coupons. Surface catalysed thermochemical reactions may generate sufficient hydrogen to have an effect on the accumulation of oxidizing species generated by radiolytic processes in the heat transport systems of the supercritical water cooled nuclear reactor.

Keywords: high-temperature corrosion, non-intrusive monitoring, reactor materials, supercritical water

Procedia PDF Downloads 137
8477 Girls' Underperformance in Science: From Biological Determinism and Feminist Perspectives

Authors: Raza Ullah, Hazir Ullah

Abstract:

There is ample evidence that reveals the outstanding performance of girls in a different range of subjects. However, it is pertinent to mention here that boys have historically dominated girls, particularly in math, physics, and technological subjects across the globe with the exception of few developed countries. This article examines the reasons why girls are underdog in STEM subjects. The article critically analyzes two main approaches towards gender and education: biological determinist and feminist. This article highlights that social factors influencing girls performance in STEM subjects have not analyzed critically, and girls underachieving in science has linked with biological and sex differences. The article concludes that the underperformance of girls in a STEM subject is the direct response of socio-cultural factors. Thus, socio-cultural factors are responsible for the dearth of girls in STEM subjects.

Keywords: gender, underperformance, STEM, education, sex

Procedia PDF Downloads 162
8476 Development of Mesoporous Gel Based Nonwoven Structure for Thermal Barrier Application

Authors: R. P. Naik, A. K. Rakshit

Abstract:

In recent years, with the rapid development in science and technology, people have increasing requirements on uses of clothing for new functions, which contributes to opportunities for further development and incorporation of new technologies along with novel materials. In this context, textiles are of fast decalescence or fast heat radiation media as per as comfort accountability of textile articles are concern. The microstructure and texture of textiles play a vital role in determining the heat-moisture comfort level of the human body because clothing serves as a barrier to the outside environment and a transporter of heat and moisture from the body to the surrounding environment to keep thermal balance between body heat produced and body heat loss. The main bottleneck which is associated with textile materials to be successful as thermal insulation materials can be enumerated as; firstly, high loft or bulkiness of material so as to provide predetermined amount of insulation by ensuring sufficient trapping of air. Secondly, the insulation depends on forced convection; such convective heat loss cannot be prevented by textile material. Third is that the textile alone cannot reach the level of thermal conductivity lower than 0.025 W/ m.k of air. Perhaps, nano-fibers can do so, but still, mass production and cost-effectiveness is a problem. Finally, such high loft materials for thermal insulation becomes heavier and uneasy to manage especially when required to carry over a body. The proposed works aim at developing lightweight effective thermal insulation textiles in combination with nanoporous silica-gel which provides the fundamental basis for the optimization of material properties to achieve good performance of the clothing system. This flexible nonwoven silica-gel composites fabric in intact monolith was successfully developed by reinforcing SiO2-gel in thermal bonded nonwoven fabric via sol-gel processing. Ambient Pressure Drying method is opted for silica gel preparation for cost-effective manufacturing. The formed structure of the nonwoven / SiO₂ -gel composites were analyzed, and the transfer properties were measured. The effects of structure and fibre on the thermal properties of the SiO₂-gel composites were evaluated. Samples are then tested against untreated samples of same GSM in order to study the effect of SiO₂-gel application on various properties of nonwoven fabric. The nonwoven fabric composites reinforced with aerogel showed intact monolith structure were also analyzed for their surface structure, functional group present, microscopic images. Developed product reveals a significant reduction in pores' size and air permeability than the conventional nonwoven fabric. Composite made from polyester fibre with lower GSM shows lowest thermal conductivity. Results obtained were statistically analyzed by using STATISTICA-6 software for their level of significance. Univariate tests of significance for various parameters are practiced which gives the P value for analyzing significance level along with that regression summary for dependent variable are also studied to obtain correlation coefficient.

Keywords: silica-gel, heat insulation, nonwoven fabric, thermal barrier clothing

Procedia PDF Downloads 112
8475 Exploring the Biocompatibility and Performance of Metals and Ceramics as Biomaterials, A Comprehensive Study for Advanced Medical Applications

Authors: Ala Abobakr Abdulhafidh Al-Dubai

Abstract:

Biomaterials, specifically metals and ceramics, are indispensable components in the realm of medical science, shaping the landscape of implantology and prosthetics. This study delves into the intricate interplay between these materials and biological systems, aiming to scrutinize their suitability, performance, and biocompatibility. Employing a multi-faceted approach, a range of methodologies were meticulously employed to comprehensively characterize these biomaterials. Advanced material characterization techniques were paramount in this research, with scanning electron microscopy providing intricate insights into surface morphology, and X-ray diffraction unraveling the crystalline structures. These analyses were complemented by in vitro assessments, which gauged the biological response of cells to metals and ceramics, shedding light on their potential applications within the human body. A key facet of our investigation involved a comparative study, evaluating the corrosion resistance and osseointegration potential of both metals and ceramics. Through a series of experiments, we sought to understand how these biomaterials interacted with physiological environments, paving the way for informed decisions in medical applications

Keywords: metals, ceramics, biomaterials, biocompatibility, osseointegration

Procedia PDF Downloads 69
8474 Study of Energy Dissipation in Shape Memory Alloys: A Comparison between Austenite and Martensite Phase of SMAs

Authors: Amirmozafar Benshams, Khatere Kashmari, Farzad Hatami, Mesbah Saybani

Abstract:

Shape memory alloys with high capability of energy dissipation and large deformation bearing with return ability to their original shape without too much hysteresis strain have opened their place among the other damping systems as smart materials. Ninitol which is the most well-known and most used alloy material from the shape memory alloys family, has high resistance and fatigue and is coverage for large deformations. Shape memory effect and super-elasticity by shape alloys like Nitinol, are the reasons of the high power of these materials in energy depreciation. Thus, these materials are suitable for use in reciprocating dynamic loading conditions. The experiments results showed that Nitinol wires with small diameter have greater energy dissipation capability and by increase of diameter and thickness the damping capability and energy dissipation increase.

Keywords: shape memory alloys, shape memory effect, super elastic effect, nitinol, energy dissipation

Procedia PDF Downloads 517
8473 A System Dynamics Approach for Assessing Policy Impacts on Closed-Loop Supply Chain Efficiency: A Case Study on Electric Vehicle Batteries

Authors: Guannan Ren, Thomas Mazzuchi, Shahram Sarkani

Abstract:

Electric vehicle battery recycling has emerged as a critical process in the transition toward sustainable transportation. As the demand for electric vehicles continues to rise, so does the need to address the end-of-life management of their batteries. Electric vehicle battery recycling benefits resource recovery and supply chain stability by reclaiming valuable metals like lithium, cobalt, nickel, and graphite. The reclaimed materials can then be reintroduced into the battery manufacturing process, reducing the reliance on raw material extraction and the environmental impacts of waste. Current battery recycling rates are insufficient to meet the growing demands for raw materials. While significant progress has been made in electric vehicle battery recycling, many areas can still improve. Standardization of battery designs, increased collection and recycling infrastructures, and improved efficiency in recycling processes are essential for scaling up recycling efforts and maximizing material recovery. This work delves into key factors, such as regulatory frameworks, economic incentives, and technological processes, that influence the cost-effectiveness and efficiency of battery recycling systems. A system dynamics model that considers variables such as battery production rates, demand and price fluctuations, recycling infrastructure capacity, and the effectiveness of recycling processes is created to study how these variables are interconnected, forming feedback loops that affect the overall supply chain efficiency. Such a model can also help simulate the effects of stricter regulations on battery disposal, incentives for recycling, or investments in research and development for battery designs and advanced recycling technologies. By using the developed model, policymakers, industry stakeholders, and researchers may gain insights into the effects of applying different policies or process updates on electric vehicle battery recycling rates.

Keywords: environmental engineering, modeling and simulation, circular economy, sustainability, transportation science, policy

Procedia PDF Downloads 93
8472 Cost-Effective Materials for Hydrocarbons Recovery from Produced Water

Authors: Fahd I. Alghunaimi, Hind S. Dossary, Norah W. Aljuryyed, Tawfik A. Saleh

Abstract:

Produced water (PW) is one of the largest by-volume waste streams and one of the most challenging effluents in the oil and gas industry. This is due to the variation of contaminants that make up PW. Severalmaterialshavebeen developed, studied, and implemented to remove hydrocarbonsfrom PW. Adsorption is one of the most effective ways ofremoving oil fromPW. In this work, three new and cost-effective hydrophobic adsorbentmaterials based on 9-octadecenoic acid grafted graphene (POG) were synthesized for oil/water separation. Graphene derived from graphite was modified with 9-octadecenoic acid to yield 9-octadecenoic acid grafted graphene (OG). The newsynthesized materials which called POG25, POG50, and POG75 were characterized by using N₂-physisorption (BET) and Fourier transform infrared (FTIR). The BET surface area of POG75 was the highest with 288 m²/g, whereas POG50 was 225 m²/g and POG25 was lowest 79 m²/g. These three materials were also evaluated for their oil-water separation efficiency using a model mixture, whichdemonstrated that POG-75 has the highest oil removal efficiency and the faster rate of the adsorption (Figure-1). POG75 was regenerated, and its performance was verified again with a little reduced adsorption rate compared to the fresh material. The mixtures that used in the performance test were prepared by mixing nonpolar organic liquids such as heptane, dodecane, or hexadecane into the colored water. In general, the new materials showed fast uptake of the certain quantity of the oildue to the high hydrophobicity nature of the materials, which repel water as confirmed by the contact angle of approximately 150˚. Besides that, novel superhydrophobic material was also synthesized by introducing hydrophobic branches of laurate on the surface of the stainless steel mesh (SSM). This novel mesh could help to hold the novel adsorbent materials in a column to remove oil from PW. Both BOG-75 and the novel mesh have the potential to remove oil contaminants from produced water, which will help to provide an opportunity to recover useful components, in addition, to reduce the environmental impact and reuse produced water in several applications such as fracturing.

Keywords: graphite to graphene, oleophilic, produced water, separation

Procedia PDF Downloads 122
8471 Breaking Stress Criterion that Changes Everything We Know About Materials Failure

Authors: Ali Nour El Hajj

Abstract:

Background: The perennial deficiencies of the failure models in the materials field have profoundly and significantly impacted all associated technical fields that depend on accurate failure predictions. Many preeminent and well-known scientists from an earlier era of groundbreaking discoveries attempted to solve the issue of material failure. However, a thorough understanding of material failure has been frustratingly elusive. Objective: The heart of this study is the presentation of a methodology that identifies a newly derived one-parameter criterion as the only general failure theory for noncompressible, homogeneous, and isotropic materials subjected to multiaxial states of stress and various boundary conditions, providing the solution to this longstanding problem. This theory is the counterpart and companion piece to the theory of elasticity and is in a formalism that is suitable for broad application. Methods: Utilizing advanced finite-element analysis, the maximum internal breaking stress corresponding to the maximum applied external force is identified as a unified and universal material failure criterion for determining the structural capacity of any system, regardless of its geometry or architecture. Results: A comparison between the proposed criterion and methodology against design codes reveals that current provisions may underestimate the structural capacity by 2.17 times or overestimate the capacity by 2.096 times. It also shows that existing standards may underestimate the structural capacity by 1.4 times or overestimate the capacity by 2.49 times. Conclusion: The proposed failure criterion and methodology will pave the way for a new era in designing unconventional structural systems composed of unconventional materials.

Keywords: failure criteria, strength theory, failure mechanics, materials mechanics, rock mechanics, concrete strength, finite-element analysis, mechanical engineering, aeronautical engineering, civil engineering

Procedia PDF Downloads 81
8470 Innovations and Challenges: Multimodal Learning in Cybersecurity

Authors: Tarek Saadawi, Rosario Gennaro, Jonathan Akeley

Abstract:

There is rapidly growing demand for professionals to fill positions in Cybersecurity. This is recognized as a national priority both by government agencies and the private sector. Cybersecurity is a very wide technical area which encompasses all measures that can be taken in an electronic system to prevent criminal or unauthorized use of data and resources. This requires defending computers, servers, networks, and their users from any kind of malicious attacks. The need to address this challenge has been recognized globally but is particularly acute in the New York metropolitan area, home to some of the largest financial institutions in the world, which are prime targets of cyberattacks. In New York State alone, there are currently around 57,000 jobs in the Cybersecurity industry, with more than 23,000 unfilled positions. The Cybersecurity Program at City College is a collaboration between the Departments of Computer Science and Electrical Engineering. In Fall 2020, The City College of New York matriculated its first students in theCybersecurity Master of Science program. The program was designed to fill gaps in the previous offerings and evolved out ofan established partnership with Facebook on Cybersecurity Education. City College has designed a program where courses, curricula, syllabi, materials, labs, etc., are developed in cooperation and coordination with industry whenever possible, ensuring that students graduating from the program will have the necessary background to seamlessly segue into industry jobs. The Cybersecurity Program has created multiple pathways for prospective students to obtain the necessary prerequisites to apply in order to build a more diverse student population. The program can also be pursued on a part-time basis which makes it available to working professionals. Since City College’s Cybersecurity M.S. program was established to equip students with the advanced technical skills needed to thrive in a high-demand, rapidly-evolving field, it incorporates a range of pedagogical formats. From its outset, the Cybersecurity program has sought to provide both the theoretical foundations necessary for meaningful work in the field along with labs and applied learning projects aligned with skillsets required by industry. The efforts have involved collaboration with outside organizations and with visiting professors designing new courses on topics such as Adversarial AI, Data Privacy, Secure Cloud Computing, and blockchain. Although the program was initially designed with a single asynchronous course in the curriculum with the rest of the classes designed to be offered in-person, the advent of the COVID-19 pandemic necessitated a move to fullyonline learning. The shift to online learning has provided lessons for future development by providing examples of some inherent advantages to the medium in addition to its drawbacks. This talk will address the structure of the newly-implemented Cybersecurity Master’s Program and discuss the innovations, challenges, and possible future directions.

Keywords: cybersecurity, new york, city college, graduate degree, master of science

Procedia PDF Downloads 148
8469 Animations for Teaching Food Chemistry: A Design Approach for Linking Chemistry Theory to Everyday Food

Authors: Paulomi (Polly) Burey, Zoe Lynch

Abstract:

In STEM education, students often have difficulty linking static images and words from textbooks or online resources, to the underlying mechanisms of the topic of study. This can often dissuade some students from pursuing study in the physical and chemical sciences. A growing movement in current day students demonstrates that the YouTube generation feel they learn best from video or dynamic, interactive learning tools, and will seek these out as alternatives to their textbooks and the classroom learning environment. Chemistry, and in particular visualization of molecular structures in everyday materials, can prove difficult to comprehend without significant interaction with the teacher of the content and concepts, beyond the timeframe of a typical class. This can cause a learning hurdle for distance education students, and so it is necessary to provide strong electronic tools and resources to aid their learning. As one of the electronic resources, an animation design approach to link everyday materials to their underlying chemistry would be beneficial for student learning, with the focus here being on food. These animations were designed and storyboarded with a scaling approach and commence with a focus on the food material itself and its component parts. This is followed by animated transitions to its underlying microstructure and identifying features, and finally showing the molecules responsible for these microstructural features. The animation ends with a reverse transition back through the molecular structure, microstructure, all the way back to the original food material, and also animates some reactions that may occur during food processing to demonstrate the purpose of the underlying chemistry and how it affects the food we eat. Using this cyclical approach of linking students’ existing knowledge of food to help guide them to understanding more complex knowledge, and then reinforcing their learning by linking back to their prior knowledge again, enhances student understanding. Food is also an ideal material system for students to interact with, in a hands-on manner to further reinforce their learning. These animations were launched this year in a 2nd year University Food Chemistry course with improved learning outcomes for the cohort.

Keywords: chemistry, food science, future pedagogy, STEM Education

Procedia PDF Downloads 160
8468 Ab Initio Studies of Organic Electrodes for Li and Na Ion Batteries Based on Tetracyanoethylene

Authors: Yingqian Chen, Sergei Manzhos

Abstract:

Organic electrodes are a way to achieve high rate (high power) and environment-friendly batteries. We present a computational density functional theory study of Li and Na storage in tetracyanoethylene based molecular and crystalline materials. Up to five Li and Na atoms can be stored on TCNE chemisorbed on doped graphene (corresponding to ~1000 mAh/gTCNE), with binding energies stronger than cohesive energies of the Li and Na metals by 1-2 eV. TCNE has been experimentally shown to form a crystalline material with Li with stoichiometry Li-TCNE. We confirm this computationally and also predict that a similar crystal based of Na-TCNE is also stable. These crystalline materials have well defined channels for facile Li or Na ion insertion and diffusion. Specifically, Li and Na binding energies in Li-TCNE and Na-TCNE crystals are about 1.5 eV and stronger than the cohesive energy of Li and Na, respectively. TCNE immobilized on conducting graphene-based substrates and Li/Na-TCNE crystals could therefore become efficient anode materials for organic Li and Na ion batteries, with which it should also be possible to avoid reduction of common battery electrolytes.

Keywords: organic ion batteries, tetracyanoethylene, cohesive energies, electrolytes

Procedia PDF Downloads 641
8467 Measuring the Embodied Energy of Construction Materials and Their Associated Cost Through Building Information Modelling

Authors: Ahmad Odeh, Ahmad Jrade

Abstract:

Energy assessment is an evidently significant factor when evaluating the sustainability of structures especially at the early design stage. Today design practices revolve around the selection of material that reduces the operational energy and yet meets their displinary need. Operational energy represents a substantial part of the building lifecycle energy usage but the fact remains that embodied energy is an important aspect unaccounted for in the carbon footprint. At the moment, little or no consideration is given to embodied energy mainly due to the complexity of calculation and the various factors involved. The equipment used, the fuel needed, and electricity required for each material vary with location and thus the embodied energy will differ for each project. Moreover, the method and the technique used in manufacturing, transporting and putting in place will have a significant influence on the materials’ embodied energy. This anomaly has made it difficult to calculate or even bench mark the usage of such energies. This paper presents a model aimed at helping designers select the construction materials based on their embodied energy. Moreover, this paper presents a systematic approach that uses an efficient method of calculation and ultimately provides new insight into construction material selection. The model is developed in a BIM environment targeting the quantification of embodied energy for construction materials through the three main stages of their life: manufacturing, transportation and placement. The model contains three major databases each of which contains a set of the most commonly used construction materials. The first dataset holds information about the energy required to manufacture any type of materials, the second includes information about the energy required for transporting the materials while the third stores information about the energy required by tools and cranes needed to place an item in its intended location. The model provides designers with sets of all available construction materials and their associated embodied energies to use for the selection during the design process. Through geospatial data and dimensional material analysis, the model will also be able to automatically calculate the distance between the factories and the construction site. To remain within the sustainability criteria set by LEED, a final database is created and used to calculate the overall construction cost based on R.M.S. means cost data and then automatically recalculate the costs for any modifications. Design criteria including both operational and embodied energies will cause designers to revaluate the current material selection for cost, energy, and most importantly sustainability.

Keywords: building information modelling, energy, life cycle analysis, sustainablity

Procedia PDF Downloads 270
8466 Study of Management of Waste Construction Materials in Civil Engineering Projects

Authors: Jalindar R. Patil, Harish P. Gayakwad

Abstract:

The increased economic growth across the globe as well as urbanization in developing countries have led into extensive construction activities that generate large amounts of wastes. Material wastage in construction projects resulted into huge financial setbacks to builders and contractors. In addition to this, it may also cause significant effects over aesthetics, health, and the general environment. However in many cities across the globe where construction wastes material management is still a problem. In this paper, the discussion is all about the method for the management of waste construction materials. The objectives of this seminar are to identify the significant source of construction waste globally, to improve the performance of by extracting the major barriers construction waste management and to determine the cost impact on the construction project. These wastes needs to be managed as well as their impacts needs to be ascertained to pave way for their proper management. The seminar includes the details of construction waste management with the reference to construction project. The application of construction waste management in the civil engineering projects is to describe the reduction in the construction wastes.

Keywords: civil engineering, construction materials, waste management, construction activities

Procedia PDF Downloads 534
8465 Sustainable Membranes Based on 2D Materials for H₂ Separation and Purification

Authors: Juan A. G. Carrio, Prasad Talluri, Sergio G. Echeverrigaray, Antonio H. Castro Neto

Abstract:

Hydrogen as a fuel and environmentally pleasant energy carrier is part of this transition towards low-carbon systems. The extensive deployment of hydrogen production, purification and transport infrastructures still represents significant challenges. Independent of the production process, the hydrogen generally is mixed with light hydrocarbons and other undesirable gases that need to be removed to obtain H₂ with the required purity for end applications. In this context, membranes are one of the simplest, most attractive, sustainable, and performant technologies enabling hydrogen separation and purification. They demonstrate high separation efficiencies and low energy consumption levels in operation, which is a significant leap compared to current energy-intensive options technologies. The unique characteristics of 2D laminates have given rise to a diversity of research on their potential applications in separation systems. Specifically, it is already known in the scientific literature that graphene oxide-based membranes present the highest reported selectivity of H₂ over other gases. This work explores the potential of a new type of 2D materials-based membranes in separating H₂ from CO₂ and CH₄. We have developed nanostructured composites based on 2D materials that have been applied in the fabrication of membranes to maximise H₂ selectivity and permeability, for different gas mixtures, by adjusting the membranes' characteristics. Our proprietary technology does not depend on specific porous substrates, which allows its integration in diverse separation modules with different geometries and configurations, looking to address the technical performance required for industrial applications and economic viability. The tuning and precise control of the processing parameters allowed us to control the thicknesses of the membranes below 100 nanometres to provide high permeabilities. Our results for the selectivity of new nanostructured 2D materials-based membranes are in the range of the performance reported in the available literature around 2D materials (such as graphene oxide) applied to hydrogen purification, which validates their use as one of the most promising next-generation hydrogen separation and purification solutions.

Keywords: membranes, 2D materials, hydrogen purification, nanocomposites

Procedia PDF Downloads 134
8464 Model Predictive Control Using Thermal Inputs for Crystal Growth Dynamics

Authors: Takashi Shimizu, Tomoaki Hashimoto

Abstract:

Recently, crystal growth technologies have made progress by the requirement for the high quality of crystal materials. To control the crystal growth dynamics actively by external forces is useuful for reducing composition non-uniformity. In this study, a control method based on model predictive control using thermal inputs is proposed for crystal growth dynamics of semiconductor materials. The control system of crystal growth dynamics considered here is governed by the continuity, momentum, energy, and mass transport equations. To establish the control method for such thermal fluid systems, we adopt model predictive control known as a kind of optimal feedback control in which the control performance over a finite future is optimized with a performance index that has a moving initial time and terminal time. The objective of this study is to establish a model predictive control method for crystal growth dynamics of semiconductor materials.

Keywords: model predictive control, optimal control, process control, crystal growth

Procedia PDF Downloads 359
8463 Project Management Agile Model Based on Project Management Body of Knowledge Guideline

Authors: Mehrzad Abdi Khalife, Iraj Mahdavi

Abstract:

This paper presents the agile model for project management process. For project management process, the Project Management Body of Knowledge (PMBOK) guideline has been selected as platform. Combination of computational science and artificial intelligent methodology has been added to the guideline to transfer the standard to agile project management process. The model is the combination of practical standard, computational science and artificial intelligent. In this model, we present communication model and protocols to keep process agile. Here, we illustrate the collaboration man and machine in project management area with artificial intelligent approach.

Keywords: artificial intelligent, conceptual model, man-machine collaboration, project management, standard

Procedia PDF Downloads 342