Search results for: principal parameters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9483

Search results for: principal parameters

8673 Parameter Identification Analysis in the Design of Rock Fill Dams

Authors: G. Shahzadi, A. Soulaimani

Abstract:

This research work aims to identify the physical parameters of the constitutive soil model in the design of a rockfill dam by inverse analysis. The best parameters of the constitutive soil model, are those that minimize the objective function, defined as the difference between the measured and numerical results. The Finite Element code (Plaxis) has been utilized for numerical simulation. Polynomial and neural network-based response surfaces have been generated to analyze the relationship between soil parameters and displacements. The performance of surrogate models has been analyzed and compared by evaluating the root mean square error. A comparative study has been done based on objective functions and optimization techniques. Objective functions are categorized by considering measured data with and without uncertainty in instruments, defined by the least square method, which estimates the norm between the predicted displacements and the measured values. Hydro Quebec provided data sets for the measured values of the Romaine-2 dam. Stochastic optimization, an approach that can overcome local minima, and solve non-convex and non-differentiable problems with ease, is used to obtain an optimum value. Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Differential Evolution (DE) are compared for the minimization problem, although all these techniques take time to converge to an optimum value; however, PSO provided the better convergence and best soil parameters. Overall, parameter identification analysis could be effectively used for the rockfill dam application and has the potential to become a valuable tool for geotechnical engineers for assessing dam performance and dam safety.

Keywords: Rockfill dam, parameter identification, stochastic analysis, regression, PLAXIS

Procedia PDF Downloads 146
8672 Impact of Twin Therapeutic Approaches on Certain Biophysiological Parameters among Breast Cancer Patients after Breast Surgery at Selected Hospital

Authors: Selvia Arokiya Mary

Abstract:

Introduction: Worldwide, breast cancer comprises 10.4% of all cancer incidence among women. In 2004, breast cancer caused 519,000 deaths worldwide (7% of cancer deaths; almost 1% of all deaths). Many women who undergo breast surgery suffer from ill-defined pain syndromes. STATEMENT OF THE PROBLEM: A study to assess the effectiveness of twin therapeutic approaches on certain bio-physiological parameters in breast cancer patients after breast surgery at selected hospital, Chennai. Objectives: This study is to 1. assess the level of certain biophysiological parameters in women after mastectomy. 2. assess the effectiveness of twin therapeutic approaches on certain biophysiological parameters in women after mastectomy. 3. correlate the practice of twin therapeutic approaches with certain biophysiological parameters. 4. associate the selected demographic variables with certain biophysiological parameters in women after mastectomy Research Design and Method: Pre experimental research design was used. Fifty women were selected by using convenient sampling technique at government general hospital, Chennai. Results: The Level of pain shows, in the study group 49(98%) of them had moderate in the pre test and after the intervention all of them had mild pain in the post test. In relation to level of shoulder function before the intervention shows that in the study group 49(98%) of them had movement towards gravity and after intervention 24 (48%) of them had movement against gravity maximum resistance. There was a significant reduction in pain and shoulder stiffness level at a ‘P’ level of < 0.001. There was a negative correlation between the pranayama practice and the level of pain, there was a positive correlation between the arm exercise practice and the level of shoulder function. There was no significant association between demographic and clinical variables with the level of pain and shoulder function in the study. Hypothesis: There is a significant difference in level of pain and shoulder function among women following breast surgery who receive pranayama & arm exercise programme. The pranayama had effect in terms of reduction of pain, arm exercise programme had effect in prevention of arm stiffness among post operative women following breast surgery. Thus the stated hypothesis was accepted. Conclusion: On the basis of the findings of the present study there was Advancing age related to increasing risk of breast cancer, level of pain also the type of surgery was associated with level of pain and shoulder function, There fore it is to be concluded that the study participants may get benefited by practice of pranayama and arm exercise program.

Keywords: biophysiological parameters breast surgery, lumpectomy , mastectomy, radical mastectomy, twin therapeutic approach, pranayama, arm exercise

Procedia PDF Downloads 245
8671 Vibration Analysis and Optimization Design of Ultrasonic Horn

Authors: Kuen Ming Shu, Ren Kai Ho

Abstract:

Ultrasonic horn has the functions of amplifying amplitude and reducing resonant impedance in ultrasonic system. Its primary function is to amplify deformation or velocity during vibration and focus ultrasonic energy on the small area. It is a crucial component in design of ultrasonic vibration system. There are five common design methods for ultrasonic horns: analytical method, equivalent circuit method, equal mechanical impedance, transfer matrix method, finite element method. In addition, the general optimization design process is to change the geometric parameters to improve a single performance. Therefore, in the general optimization design process, we couldn't find the relation of parameter and objective. However, a good optimization design must be able to establish the relationship between input parameters and output parameters so that the designer can choose between parameters according to different performance objectives and obtain the results of the optimization design. In this study, an ultrasonic horn provided by Maxwide Ultrasonic co., Ltd. was used as the contrast of optimized ultrasonic horn. The ANSYS finite element analysis (FEA) software was used to simulate the distribution of the horn amplitudes and the natural frequency value. The results showed that the frequency for the simulation values and actual measurement values were similar, verifying the accuracy of the simulation values. The ANSYS DesignXplorer was used to perform Response Surface optimization, which could shows the relation of parameter and objective. Therefore, this method can be used to substitute the traditional experience method or the trial-and-error method for design to reduce material costs and design cycles.

Keywords: horn, natural frequency, response surface optimization, ultrasonic vibration

Procedia PDF Downloads 116
8670 Exact Vibration Analysis of a Rectangular Nano-Plate Using Nonlocal Modified Sinusoidal Shear Deformation Theory

Authors: Korosh Khorshidi, Mohammad Khodadadi

Abstract:

In this paper, exact close form solution for out of plate free flexural vibration of moderately thick rectangular nanoplates are presented based on nonlocal modified trigonometric shear deformation theory, with assumptions of the Levy's type boundary conditions, for the first time. The aim of this study is to evaluate the effect of small-scale parameters on the frequency parameters of the moderately thick rectangular nano-plates. To describe the effects of small-scale parameters on vibrations of rectangular nanoplates, the Eringen theory is used. The Levy's type boundary conditions are combination of six different boundary conditions; specifically, two opposite edges are simply supported and any of the other two edges can be simply supported, clamped or free. Governing equations of motion and boundary conditions of the plate are derived by using the Hamilton’s principle. The present analytical solution can be obtained with any required accuracy and can be used as benchmark. Numerical results are presented to illustrate the effectiveness of the proposed method compared to other methods reported in the literature. Finally, the effect of boundary conditions, aspect ratios, small scale parameter and thickness ratios on nondimensional natural frequency parameters and frequency ratios are examined and discussed in detail.

Keywords: exact solution, nonlocal modified sinusoidal shear deformation theory, out of plane vibration, moderately thick rectangular plate

Procedia PDF Downloads 387
8669 Structural, Elastic, Vibrational and Thermal Properties of Perovskites AHfO3 (a=Ba,Sr,Eu)

Authors: H. Krarcha

Abstract:

The structural, elastic, vibrational and thermal properties of AHfO3 compounds with the cubic perovskites structure have been investigated, by employing a first principles method, using the plane wave pseudo potential calculations (PP-PW), based on the density functional theory (DFT), within the local density approximation (LDA). The optimized lattice parameters, independent elastic constants (C11, C12 and C44), bulk modulus (B), compressibility (b), shear modulus (G), Young’s modulus (Y ), Poisson’s ratio (n), Lame´’s coefficients (m, l), as well as band structure, density of states and electron density distributions are obtained and analyzed in comparison with the available theoretical and experimental data. For the first time the numerical estimates of elastic parameters of the polycrystalline AHfO3 ceramics (in framework of the VoigteReusseHill approximation) are performed. The quasi-harmonic Debye model, by means of total energy versus volume calculations obtained with the FP-LAPW method, is applied to study the thermal and vibrational effects. Predicted temperature and pressure effects on the structural parameters, thermal expansions, heat capacities, and Debye temperatures are determined from the non-equilibrium Gibbs functions.

Keywords: Hafnium, elastic propreties, first principles calculation, perovskite

Procedia PDF Downloads 381
8668 Rationalized Haar Transforms Approach to Design of Observer for Control Systems with Unknown Inputs

Authors: Joon-Hoon Park

Abstract:

The fundamental concept of observability is important in both theoretical and practical points of modern control systems. In modern control theory, a control system has criteria for determining the design solution exists for the system parameters and design objectives. The idea of observability relates to the condition of observing or estimating the state variables from the output variables that is generally measurable. To design closed-loop control system, the practical problems of implementing the feedback of the state variables must be considered and implementing state feedback control problem has been existed in this case. All the state variables are not available, so it is requisite to design and implement an observer that will estimate the state variables form the output parameters. However sometimes unknown inputs are presented in control systems as practical cases. This paper presents a design method and algorithm for observer of control system with unknown input parameters based on Rationalized Haar transform. The proposed method is more advantageous than the other numerical method.

Keywords: orthogonal functions, rationalized Haar transforms, control system observer, algebraic method

Procedia PDF Downloads 370
8667 Efficient Modeling Technique for Microstrip Discontinuities

Authors: Nassim Ourabia, Malika Ourabia

Abstract:

A new and efficient method is presented for the analysis of arbitrarily shaped discontinuities. The technique obtains closed form expressions for the equivalent circuits which are used to model these discontinuities. Then it would be easy to handle and to characterize complicated structures like T and Y junctions, truncated junctions, arbitrarily shaped junctions, cascading junctions, and more generally planar multiport junctions. Another advantage of this method is that the edge line concept for arbitrary shape junctions operates with real parameters circuits. The validity of the method was further confirmed by comparing our results for various discontinuities (bend, filters) with those from HFSS as well as from other published sources.

Keywords: CAD analysis, contour integral approach, microwave circuits, s-parameters

Procedia PDF Downloads 516
8666 Bayesian Using Markov Chain Monte Carlo and Lindley's Approximation Based on Type-I Censored Data

Authors: Al Omari Moahmmed Ahmed

Abstract:

These papers describe the Bayesian Estimator using Markov Chain Monte Carlo and Lindley’s approximation and the maximum likelihood estimation of the Weibull distribution with Type-I censored data. The maximum likelihood method can’t estimate the shape parameter in closed forms, although it can be solved by numerical methods. Moreover, the Bayesian estimates of the parameters, the survival and hazard functions cannot be solved analytically. Hence Markov Chain Monte Carlo method and Lindley’s approximation are used, where the full conditional distribution for the parameters of Weibull distribution are obtained via Gibbs sampling and Metropolis-Hastings algorithm (HM) followed by estimate the survival and hazard functions. The methods are compared to Maximum Likelihood counterparts and the comparisons are made with respect to the Mean Square Error (MSE) and absolute bias to determine the better method in scale and shape parameters, the survival and hazard functions.

Keywords: weibull distribution, bayesian method, markov chain mote carlo, survival and hazard functions

Procedia PDF Downloads 479
8665 Effect of Rolling Parameters on Thin Strip Profile in Cold Rolling

Authors: H. B. Tibar, Z. Y. Jiang

Abstract:

In this study, the influence of rolling process parameters such as the work roll cross angle and work roll shifting value on the strip shape and profile of aluminum have been investigated under dry conditions at a speed ratio of 1.3 using Hille 100 experimental mill. The strip profile was found to improve significantly with increase in work roll cross angle from 0o to 1o, with an associated decrease in rolling force. The effect of roll shifting (from 0 to 8mm) was not as significant as the roll cross angle. However, an increase in work roll shifting value achieved a similar decrease in rolling force as that of work roll cross angle. The effect of work roll shifting was also found to be maximum at an optimum roll speed of 0.0986 m/s for the desired thickness. Of all these parameters, the most significant effect of the strip shape profile was observed with variation of work roll cross angle. However, the rolling force can be a significantly reduced by either increasing the the work roll cross angle or work roll shifting.

Keywords: rolling speed ratio, strip shape, work roll cross angle, work roll shifting

Procedia PDF Downloads 409
8664 Customer Satisfaction and Effective HRM Policies: Customer and Employee Satisfaction

Authors: S. Anastasiou, C. Nathanailides

Abstract:

The purpose of this study is to examine the possible link between employee and customer satisfaction. The service provided by employees, help to build a good relationship with customers and can help at increasing their loyalty. Published data for job satisfaction and indicators of customer services were gathered from relevant published works which included data from five different countries. The reviewed data indicate a significant correlation between indicators of customer and employee satisfaction in the Banking sector. There was a significant correlation between the two parameters (Pearson correlation R2=0.52 P<0.05) The reviewed data provide evidence that there is some practical evidence which links these two parameters.

Keywords: job satisfaction, job performance, customer’ service, banks, human resources management

Procedia PDF Downloads 321
8663 Influence of Sulphur and Boron on Growth, Quality Parameters and Productivity of Soybean (Glycine Max (L.) Merrill)

Authors: Shital Bangar, G. B. Khandagale

Abstract:

The experimentation was carried out to study the influence of sulphur and boron on growth parameters and productivity of soybean in kharif season of 2009-2010 at Experimental Farm, Department of Agricultural Botany, Marathwada Agricultural University, Parbhani (M.S.). The object was to evaluate the impact of sulphur and boron on growth, development, grain yield and physiological aspects of soybean variety MAUS-81. Nine treatments consisted of three levels of sulphur i.e. 20, 30 and 40 Kg/ha as well as three levels boron i.e.10, 15 and 20 kg boron/ha and the combinations of these two mineral elements i.e. Sulphur @30 kg/ha + Borax @15 kg/ha and Sulphur @40 kg/ha + Borax @ 20 kg/ha with one control treatment in Randomized Block Design (RBD) with three replications. The effect of sulphur and boron on various growth parameters of soybean like relative growth rate (RGR) and net assimilation rate (NAR) were remained statistically on par with each other. However, the application of higher dose of Sulphur @40 kg/ha + Borax @ 20 kg/ha enhanced significantly all the growth parameters. Application of the nutrients increased the dry matter accumulation of the crop plant and hence, other growth indices like RGR and NAR also increased significantly. RGR and NAR values were recorded highest at the initial crop growth stages and decline thereafter. The application of sulphur @40 kg/ha + Borax @ 20 kg/ha recorded significantly higher content of chlorophyll ‘a’ than rest of the treatments and chlorophyll ‘b’ observed higher in boron @15 kg/ha as well as boron@20 kg/ha, whereas total chlorophyll content was maximum in sulphur @40 kg/ha. Oil content was not influenced significantly due to above fertilization. The highest seed yield and total biological yield were obtained with combination of Sulphur @40 kg/ha + Borax @ 20 kg/ha, single sulphur and boron application also showed a significant effect on seed and biological yield.

Keywords: boron, growth, productivity, quality, soybean and sulphur

Procedia PDF Downloads 405
8662 Predicting Radioactive Waste Glass Viscosity, Density and Dissolution with Machine Learning

Authors: Joseph Lillington, Tom Gout, Mike Harrison, Ian Farnan

Abstract:

The vitrification of high-level nuclear waste within borosilicate glass and its incorporation within a multi-barrier repository deep underground is widely accepted as the preferred disposal method. However, for this to happen, any safety case will require validation that the initially localized radionuclides will not be considerably released into the near/far-field. Therefore, accurate mechanistic models are necessary to predict glass dissolution, and these should be robust to a variety of incorporated waste species and leaching test conditions, particularly given substantial variations across international waste-streams. Here, machine learning is used to predict glass material properties (viscosity, density) and glass leaching model parameters from large-scale industrial data. A variety of different machine learning algorithms have been compared to assess performance. Density was predicted solely from composition, whereas viscosity additionally considered temperature. To predict suitable glass leaching model parameters, a large simulated dataset was created by coupling MATLAB and the chemical reactive-transport code HYTEC, considering the state-of-the-art GRAAL model (glass reactivity in allowance of the alteration layer). The trained models were then subsequently applied to the large-scale industrial, experimental data to identify potentially appropriate model parameters. Results indicate that ensemble methods can accurately predict viscosity as a function of temperature and composition across all three industrial datasets. Glass density prediction shows reliable learning performance with predictions primarily being within the experimental uncertainty of the test data. Furthermore, machine learning can predict glass dissolution model parameters behavior, demonstrating potential value in GRAAL model development and in assessing suitable model parameters for large-scale industrial glass dissolution data.

Keywords: machine learning, predictive modelling, pattern recognition, radioactive waste glass

Procedia PDF Downloads 115
8661 Programmed Cell Death in Datura and Defensive Plant Response toward Tomato Mosaic Virus

Authors: Asma Alhuqail, Nagwa Aref

Abstract:

Programmed cell death resembles a real nature active defense in Datura metel against TMV after three days of virus infection. Physiological plant response was assessed for asymptomatic healthy and symptomatic infected detached leaves. The results indicated H2O2 and Chlorophyll-a as the most potential parameters. Chlorophyll-a was considered the only significant predictor variant for the H2O2 dependent variant with a P value of 0.001 and R-square of 0.900. The plant immune response was measured within three days of virus infection using the cutoff value of H2O2 (61.095 lmol/100 mg) and (63.201 units) for the tail moment in the Comet Assay. Their percentage changes were 255.12% and 522.40% respectively which reflects the stress of virus infection in the plant. Moreover, H2O2 showed 100% specificity and sensitivity in the symptomatic infected group using the receiver-operating characteristic (ROC). All tested parameters in the symptomatic infected group had significant correlations with twenty-five positive and thirty-one negative correlations where the P value was <0.05 and 0.01. Chlorophyll-a parameter had a crucial role of highly significant correlation between total protein and salicylic acid. Contrarily, this correlation with tail moment unit was (r = _0.930, P <0.01) where the P value was < 0.01. The strongest significant negative correlation was between Chlorophyll-a and H2O2 at P < 0.01, while moderate negative significant correlation was seen for Chlorophyll-b where the P value < 0.05. The present study discloses the secret of the three days of rapid transient production of activated oxygen species (AOS) that was enough for having potential quantitative physiological parameters for defensive plant response toward the virus.

Keywords: programmed cell death, plant–adaptive immune response, hydrogen peroxide (H2O2), physiological parameters

Procedia PDF Downloads 247
8660 Multimodal Integration of EEG, fMRI and Positron Emission Tomography Data Using Principal Component Analysis for Prognosis in Coma Patients

Authors: Denis Jordan, Daniel Golkowski, Mathias Lukas, Katharina Merz, Caroline Mlynarcik, Max Maurer, Valentin Riedl, Stefan Foerster, Eberhard F. Kochs, Andreas Bender, Ruediger Ilg

Abstract:

Introduction: So far, clinical assessments that rely on behavioral responses to differentiate coma states or even predict outcome in coma patients are unreliable, e.g. because of some patients’ motor disabilities. The present study was aimed to provide prognosis in coma patients using markers from electroencephalogram (EEG), blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) and [18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET). Unsuperwised principal component analysis (PCA) was used for multimodal integration of markers. Methods: Approved by the local ethics committee of the Technical University of Munich (Germany) 20 patients (aged 18-89) with severe brain damage were acquired through intensive care units at the Klinikum rechts der Isar in Munich and at the Therapiezentrum Burgau (Germany). At the day of EEG/fMRI/PET measurement (date I) patients (<3.5 month in coma) were grouped in the minimal conscious state (MCS) or vegetative state (VS) on the basis of their clinical presentation (coma recovery scale-revised, CRS-R). Follow-up assessment (date II) was also based on CRS-R in a period of 8 to 24 month after date I. At date I, 63 channel EEG (Brain Products, Gilching, Germany) was recorded outside the scanner, and subsequently simultaneous FDG-PET/fMRI was acquired on an integrated Siemens Biograph mMR 3T scanner (Siemens Healthineers, Erlangen Germany). Power spectral densities, permutation entropy (PE) and symbolic transfer entropy (STE) were calculated in/between frontal, temporal, parietal and occipital EEG channels. PE and STE are based on symbolic time series analysis and were already introduced as robust markers separating wakefulness from unconsciousness in EEG during general anesthesia. While PE quantifies the regularity structure of the neighboring order of signal values (a surrogate of cortical information processing), STE reflects information transfer between two signals (a surrogate of directed connectivity in cortical networks). fMRI was carried out using SPM12 (Wellcome Trust Center for Neuroimaging, University of London, UK). Functional images were realigned, segmented, normalized and smoothed. PET was acquired for 45 minutes in list-mode. For absolute quantification of brain’s glucose consumption rate in FDG-PET, kinetic modelling was performed with Patlak’s plot method. BOLD signal intensity in fMRI and glucose uptake in PET was calculated in 8 distinct cortical areas. PCA was performed over all markers from EEG/fMRI/PET. Prognosis (persistent VS and deceased patients vs. recovery to MCS/awake from date I to date II) was evaluated using the area under the curve (AUC) including bootstrap confidence intervals (CI, *: p<0.05). Results: Prognosis was reliably indicated by the first component of PCA (AUC=0.99*, CI=0.92-1.00) showing a higher AUC when compared to the best single markers (EEG: AUC<0.96*, fMRI: AUC<0.86*, PET: AUC<0.60). CRS-R did not show prediction (AUC=0.51, CI=0.29-0.78). Conclusion: In a multimodal analysis of EEG/fMRI/PET in coma patients, PCA lead to a reliable prognosis. The impact of this result is evident, as clinical estimates of prognosis are inapt at time and could be supported by quantitative biomarkers from EEG, fMRI and PET. Due to the small sample size, further investigations are required, in particular allowing superwised learning instead of the basic approach of unsuperwised PCA.

Keywords: coma states and prognosis, electroencephalogram, entropy, functional magnetic resonance imaging, machine learning, positron emission tomography, principal component analysis

Procedia PDF Downloads 339
8659 Bioremediation Potentials of Some Indigenous Microorganisms Isolated from Auto Mechanic Workshops on Irrigation Water Used in Lokoja Kogi State of Nigeria

Authors: Emmanuel Ekpa, Adaji Andrew, Queen Opaluwa, Isreal Daraobong

Abstract:

Three (3) indigenous bacteria species (Bacillus spp, Acinectobacter spp and Moraxella spp) previously isolated from contaminated soil of some auto mechanic workshops were used for bioremediation studies on some irrigation water used at Sarkin-noma Fadama farms located in Lokoja Kogi State, Nigeria. This was done in order to investigate their bioremediation potentials using a simple pour plate method. The physicochemical parameters and heavy metal analysis (using AAS iCE 3000) of the irrigation water were performed before and after inoculation of the isolated organisms. Nitrate and phosphate concentration were found to be 10.56mg/L and 12.63mg/L prior to inoculation while iron and zinc were 0.9569mg/L and 0.2245mg/L respectively. Other physicochemical parameters were also observed to be high prior to inoculation. After the bioremediation test (inoculation with the isolated organisms), a nitrate and phosphate content of 2.53mg/L and 2.61mg/L were recorded respectively, iron and zinc gave 0.1694mg/L and 0.0174mg/L concentrations while other physicochemical parameters measured were also found to be lower in their respective values. The implication of this present study is that a number of carefully isolated indigenous bacteria species are capable of reducing the amount of heavy metal concentrations in water. Also, non-metallic contaminants like nitrate and phosphate are susceptible to bioremediation in the presence of such efficient system.

Keywords: bioremediation, heavy metals, physicochemical parameters, Bacillus spp, Acinectobacter spp and Moraxella spp, AAS, spectrometer 3000

Procedia PDF Downloads 336
8658 Mechanical and Hydraulic Behavior of Arid Zone Soils Treated with Lime: Case of Abadla, Bechar Clays, South of Algeria

Authors: Sadek Younes, Fali Leyla, Rikioui Tayeb, Zizouni Khaled

Abstract:

Stabilization of clay with lime as bearing stratum is an alternative to replacement of original soil. By adding lime to clay soil, the soil workability is improved due to the combination of calcium ions to the clay minerals, which means, modified soil properties. The paper investigates the effect of hydrated lime on the behaviour of lime treated, arid zones clay (Abadla Clay). A number of mechanical and hydraulic tests were performed to identify the effect of lime dosage and compaction water content on the compressibility, permeability, and shear strength parameters of the soil. Test results show that the soil parameters can be improved through additives such as lime. Overall, the addition percentages of 6% and 9% lime give the best desired results. Also, results revealed that the compressibility behavior of lime-treated soil strongly affected by lime content. The results are presented in terms of modern interpretation of the behaviour of treated soils, in comparison with the parameters of the untreated soil.

Keywords: arid zones, compressibility, lime, soil behaviour, soil stabilization, unsaturated soil

Procedia PDF Downloads 180
8657 Dimensionality Reduction in Modal Analysis for Structural Health Monitoring

Authors: Elia Favarelli, Enrico Testi, Andrea Giorgetti

Abstract:

Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by density-based time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., mean value, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one class classifier (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, a new anomaly detector strategy is proposed, namely one class classifier neural network two (OCCNN2), which exploit the classification capability of standard classifiers in an anomaly detection problem, finding the standard class (the boundary of the features space in normal operating conditions) through a two-step approach: coarse and fine boundary estimation. The coarse estimation uses classics OCC techniques, while the fine estimation is performed through a feedforward neural network (NN) trained that exploits the boundaries estimated in the coarse step. The detection algorithms vare then compared with known methods based on principal component analysis (PCA), kernel principal component analysis (KPCA), and auto-associative neural network (ANN). In many cases, the proposed solution increases the performance with respect to the standard OCC algorithms in terms of F1 score and accuracy. In particular, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 96% with the proposed method.

Keywords: anomaly detection, frequencies selection, modal analysis, neural network, sensor network, structural health monitoring, vibration measurement

Procedia PDF Downloads 123
8656 The Microwave and Far Infrared Spectra of Acetaldehyde-d1 in vt=2

Authors: A. Larrousi, M. Elkeurti, K. Amara, M. Zemouli, L. H. Coudert, I. R. Medvedev, F. C. De Lucia, Atsuko Maeda, R. W. C. McKellar, D. Appadoo

Abstract:

Experimental and theoretical investigations of the microwave and far infrared spectra of CH3COD are reported. Two hundred twelve lines were identified in the far infrared spectrum recorded using the Canadian synchrotron radiation light source. Two thousand one hundred and sixty-eight lines in vt=0,1 and 216 in vt=2 have been measured in the microwave spectrum obtained using the fast scan submillimeter spectroscopic technique. A global analysis of the new data and of already available microwave lines has been carried out and yielded values for rotation–torsion parameters. The unitless weighted standard deviation of the fit is 1.6. 46 parameters and 216 lines were identified.

Keywords: CH3COD, torsion, the microwave spectra, far infrared spectra high resolution

Procedia PDF Downloads 357
8655 Role of Sodium Concentration, Waiting Time and Constituents’ Temperature on the Rheological Behavior of Alkali Activated Slag Concrete

Authors: Muhammet M. Erdem, Erdoğan Özbay, Ibrahim H. Durmuş, Mustafa Erdemir, Murat Bikçe, Müzeyyen Balçıkanlı

Abstract:

In this paper, rheological behavior of alkali activated slag concretes were investigated depending on the sodium concentration (SC), waiting time (WT) after production, and constituents’ temperature (CT) parameters. For this purpose, an experimental program was conducted with four different SCs of 1.85, 3.0, 4.15, and 5.30%, three different WT of 0 (just after production), 15, and 30 minutes and three different CT of 18, 30, and 40 °C. Solid precursors are activated by water glass and sodium hydroxide solutions with silicate modulus (Ms = SiO2/Na2O) of 1. Slag content and (water + activator solution)/slag ratio were kept constant in all mixtures. Yield stress and plastic viscosity values were defined for each mixture by using the ICAR rheometer. Test results were demonstrated that all of the three studied parameters have tremendous effect on the yield stress and plastic viscosity values of the alkali activated slag concretes. Increasing the SC, WT, and CT drastically augmented the rheological parameters. At the 15 and 30 minutes WT after production, most of the alkali activated slag concretes were set instantaneously, and rheological measurements were not performed.

Keywords: alkali activation, slag, rheology, yield stress, plastic viscosity

Procedia PDF Downloads 289
8654 A Study of Mode Choice Model Improvement Considering Age Grouping

Authors: Young-Hyun Seo, Hyunwoo Park, Dong-Kyu Kim, Seung-Young Kho

Abstract:

The purpose of this study is providing an improved mode choice model considering parameters including age grouping of prime-aged and old age. In this study, 2010 Household Travel Survey data were used and improper samples were removed through the analysis. Chosen alternative, date of birth, mode, origin code, destination code, departure time, and arrival time are considered from Household Travel Survey. By preprocessing data, travel time, travel cost, mode, and ratio of people aged 45 to 55 years, 55 to 65 years and over 65 years were calculated. After the manipulation, the mode choice model was constructed using LIMDEP by maximum likelihood estimation. A significance test was conducted for nine parameters, three age groups for three modes. Then the test was conducted again for the mode choice model with significant parameters, travel cost variable and travel time variable. As a result of the model estimation, as the age increases, the preference for the car decreases and the preference for the bus increases. This study is meaningful in that the individual and households characteristics are applied to the aggregate model.

Keywords: age grouping, aging, mode choice model, multinomial logit model

Procedia PDF Downloads 322
8653 Structural Design Optimization of Reinforced Thin-Walled Vessels under External Pressure Using Simulation and Machine Learning Classification Algorithm

Authors: Lydia Novozhilova, Vladimir Urazhdin

Abstract:

An optimization problem for reinforced thin-walled vessels under uniform external pressure is considered. The conventional approaches to optimization generally start with pre-defined geometric parameters of the vessels, and then employ analytic or numeric calculations and/or experimental testing to verify functionality, such as stability under the projected conditions. The proposed approach consists of two steps. First, the feasibility domain will be identified in the multidimensional parameter space. Every point in the feasibility domain defines a design satisfying both geometric and functional constraints. Second, an objective function defined in this domain is formulated and optimized. The broader applicability of the suggested methodology is maximized by implementing the Support Vector Machines (SVM) classification algorithm of machine learning for identification of the feasible design region. Training data for SVM classifier is obtained using the Simulation package of SOLIDWORKS®. Based on the data, the SVM algorithm produces a curvilinear boundary separating admissible and not admissible sets of design parameters with maximal margins. Then optimization of the vessel parameters in the feasibility domain is performed using the standard algorithms for the constrained optimization. As an example, optimization of a ring-stiffened closed cylindrical thin-walled vessel with semi-spherical caps under high external pressure is implemented. As a functional constraint, von Mises stress criterion is used but any other stability constraint admitting mathematical formulation can be incorporated into the proposed approach. Suggested methodology has a good potential for reducing design time for finding optimal parameters of thin-walled vessels under uniform external pressure.

Keywords: design parameters, feasibility domain, von Mises stress criterion, Support Vector Machine (SVM) classifier

Procedia PDF Downloads 327
8652 Experimental Analysis of the Plate-on-Tube Evaporator on a Domestic Refrigerator’s Performance

Authors: Mert Tosun, Tuğba Tosun

Abstract:

The evaporator is the utmost important component in the refrigeration system, since it enables the refrigerant to draw heat from the desired environment, i.e. the refrigerated space. Studies are being conducted on this component which generally affects the performance of the system, where energy efficient products are important. This study was designed to enhance the effectiveness of the evaporator in the refrigeration cycle of a domestic refrigerator by adjusting the capillary tube length, refrigerant amount, and the evaporator pipe diameter to reduce energy consumption. The experiments were conducted under identical thermal and ambient conditions. Experiment data were analysed using the Design of Experiment (DOE) technique which is a six-sigma method to determine effects of parameters. As a result, it has been determined that the most important parameters affecting the evaporator performance among the selected parameters are found to be the refrigerant amount and pipe diameter. It has been determined that the minimum energy consumption is 6-mm pipe diameter and 16-g refrigerant. It has also been noted that the overall consumption of the experiment sample decreased by 16.6% with respect to the reference system, which has 7-mm pipe diameter and 18-g refrigerant.

Keywords: heat exchanger, refrigerator, design of experiment, energy consumption

Procedia PDF Downloads 153
8651 Finch-Skea Stellar Structures in F(R, ϕ, X) Theory of Gravity Using Bardeen Geometry

Authors: Aqsa Asharaf

Abstract:

The current study aims to examine the physical characteristics of charge compact spheres employing anisotropic fluid under f(R, ϕ, X) modified gravity approach, exploring how this theoretical context influences their attributes and behavior. To accomplish our goal, we adopt the Spherically Symmetric (SS) space-time and, additionally, employ a specific Adler-based mode for the metric potential (gtt), which yields a broader class of solutions, Then, by making use of the Karmarkar condition, we successfully derive the other metric potential. A primary component of our current analysis is utilizing the Bardeen geometry as extrinsic space-time to determine the constant parameters of intrinsic space-time. Further, to validate the existence of Bardeen stellar spheres, we debate the behavior of physical properties and parameters such as components of pressure, energy density, anisotropy, parameters of EoS, stability and dynamical equilibrium, energy bounds, mass function, adiabatic index, compactness factor, and surface redshift. Conclusively, all the obtained results show that the system under consideration is physically stable, free from singularity, and viable models.

Keywords: cosmology, GR, Bardeen BH, modified gravities

Procedia PDF Downloads 29
8650 Physical and Physiological Characteristics of Young Soccer Players in Republic of Macedonia

Authors: Sanja Manchevska, Vaska Antevska, Lidija Todorovska, Beti Dejanova, Sunchica Petrovska, Ivanka Karagjozova, Elizabeta Sivevska, Jasmina Pluncevic Gligoroska

Abstract:

Introduction: A number of positive effects on the player’s physical status, including the body mass components are attributed to training process. As young soccer players grow up qualitative and quantitative changes appear and contribute to better performance. Player’s anthropometric and physiologic characteristics are recognized as important determinants of performance. Material: A sample of 52 soccer players with an age span from 9 to 14 years were divided in two groups differentiated by age. The younger group consisted of 25 boys under 11 years (mean age 10.2) and second group consisted of 27 boys with mean age 12.64. Method: The set of basic anthropometric parameters was analyzed: height, weight, BMI (Body Mass Index) and body mass components. Maximal oxygen uptake was tested using the treadmill protocol by Brus. Results: The group aged under 11 years showed the following anthropometric and physiological features: average height= 143.39cm, average weight= 44.27 kg; BMI= 18.77; Err = 5.04; Hb= 13.78 g/l; VO2=37.72 mlO2/kg. Average values of analyzed parameters were as follows: height was 163.7 cm; weight= 56.3 kg; BMI = 19.6; VO2= 39.52 ml/kg; Err=5.01; Hb=14.3g/l for the participants aged 12 to14 years. Conclusion: Physiological parameters (maximal oxygen uptake, erythrocytes and Hb) were insignificantly higher in the older group compared to the younger group. There were no statistically significant differences between analyzed anthropometric parameters among the two groups except for the basic measurements (height and weight).

Keywords: body composition, young soccer players, BMI, physical status

Procedia PDF Downloads 400
8649 Optimization of Operational Water Quality Parameters in a Drinking Water Distribution System Using Response Surface Methodology

Authors: Sina Moradi, Christopher W. K. Chow, John Van Leeuwen, David Cook, Mary Drikas, Patrick Hayde, Rose Amal

Abstract:

Chloramine is commonly used as a disinfectant in drinking water distribution systems (DWDSs), particularly in Australia and the USA. Maintaining a chloramine residual throughout the DWDS is important in ensuring microbiologically safe water is supplied at the customer’s tap. In order to simulate how chloramine behaves when it moves through the distribution system, a water quality network model (WQNM) can be applied. In this work, the WQNM was based on mono-chloramine decomposition reactions, which enabled prediction of mono-chloramine residual at different locations through a DWDS in Australia, using the Bentley commercial hydraulic package (Water GEMS). The accuracy of WQNM predictions is influenced by a number of water quality parameters. Optimization of these parameters in order to obtain the closest results in comparison with actual measured data in a real DWDS would result in both cost reduction as well as reduction in consumption of valuable resources such as energy and materials. In this work, the optimum operating conditions of water quality parameters (i.e. temperature, pH, and initial mono-chloramine concentration) to maximize the accuracy of mono-chloramine residual predictions for two water supply scenarios in an entire network were determined using response surface methodology (RSM). To obtain feasible and economical water quality parameters for highest model predictability, Design Expert 8.0 software (Stat-Ease, Inc.) was applied to conduct the optimization of three independent water quality parameters. High and low levels of the water quality parameters were considered, inevitably, as explicit constraints, in order to avoid extrapolation. The independent variables were pH, temperature and initial mono-chloramine concentration. The lower and upper limits of each variable for two water supply scenarios were defined and the experimental levels for each variable were selected based on the actual conditions in studied DWDS. It was found that at pH of 7.75, temperature of 34.16 ºC, and initial mono-chloramine concentration of 3.89 (mg/L) during peak water supply patterns, root mean square error (RMSE) of WQNM for the whole network would be minimized to 0.189, and the optimum conditions for averaged water supply occurred at pH of 7.71, temperature of 18.12 ºC, and initial mono-chloramine concentration of 4.60 (mg/L). The proposed methodology to predict mono-chloramine residual can have a great potential for water treatment plant operators in accurately estimating the mono-chloramine residual through a water distribution network. Additional studies from other water distribution systems are warranted to confirm the applicability of the proposed methodology for other water samples.

Keywords: chloramine decay, modelling, response surface methodology, water quality parameters

Procedia PDF Downloads 224
8648 Heavy Metal Removal by Green Microalgae Biofilms from Industrial Wastewater

Authors: B. N. Makhanya, S. F. Ndulini, M. S. Mthembu

Abstract:

Heavy metals are hazardous pollutants present in both industrial and domestic wastewater. They are usually disposed directly into natural streams, and when left untreated, they are a major cause of natural degradation and diseases. This study aimed to determine the ability of microalgae to remove heavy metals from coal mine wastewater. The green algae were grown and used for heavy metal removal in a laboratory bench. The physicochemical parameters and heavy metal removal were determined at 24 hours intervals for 5 days. The highest removal efficiencies were found to be 85%, 95%, and 99%, for Fe, Zn, and Cd, respectively. Copper and aluminium both had 100%. The results also indicated that the correlation between physicochemical parameters and all heavy metals were ranging from (0.50 ≤ r ≤ 0.85) for temperature, which indicated moderate positive to a strong positive correlation, pH had a very weak negative to a very weak positive correlation (-0.27 ≤ r ≤ 0.11), and chemical oxygen demand had a fair positive to a very strong positive correlation (0.69 ≤ r ≤ 0.98). The paired t-test indicated the removal of heavy metals to be statistically significant (0.007 ≥ p ≥ 0.000). Therefore, results showed that the microalgae used in the study were capable of removing heavy metals from industrial wastewater using possible mechanisms such as binding and absorption. Compared to the currently used technology for wastewater treatment, the microalgae may be the alternative to industrial wastewater treatment.

Keywords: heavy metals, industrial wastewater, microalgae, physiochemical parameters

Procedia PDF Downloads 138
8647 A Visualization Classification Method for Identifying the Decayed Citrus Fruit Infected by Fungi Based on Hyperspectral Imaging

Authors: Jiangbo Li, Wenqian Huang

Abstract:

Early detection of fungal infection in citrus fruit is one of the major problems in the postharvest commercialization process. The automatic and nondestructive detection of infected fruits is still a challenge for the citrus industry. At present, the visual inspection of rotten citrus fruits is commonly performed by workers through the ultraviolet induction fluorescence technology or manual sorting in citrus packinghouses to remove fruit subject with fungal infection. However, the former entails a number of problems because exposing people to this kind of lighting is potentially hazardous to human health, and the latter is very inefficient. Orange is used as a research object. This study would focus on this problem and proposed an effective method based on Vis-NIR hyperspectral imaging in the wavelength range of 400-1000 nm with a spectroscopic resolution of 2.8 nm. In this work, three normalization approaches are applied prior to analysis to reduce the effect of sample curvature on spectral profiles, and it is found that mean normalization was the most effective pretreatment for decreasing spectral variability due to curvature. Then, principal component analysis (PCA) was applied to a dataset composing of average spectra from decayed and normal tissue to reduce the dimensionality of data and observe the ability of Vis-NIR hyper-spectra to discriminate data from two classes. In this case, it was observed that normal and decayed spectra were separable along the resultant first principal component (PC1) axis. Subsequently, five wavelengths (band) centered at 577, 702, 751, 808, and 923 nm were selected as the characteristic wavelengths by analyzing the loadings of PC1. A multispectral combination image was generated based on five selected characteristic wavelength images. Based on the obtained multispectral combination image, the intensity slicing pseudocolor image processing method is used to generate a 2-D visual classification image that would enhance the contrast between normal and decayed tissue. Finally, an image segmentation algorithm for detection of decayed fruit was developed based on the pseudocolor image coupled with a simple thresholding method. For the investigated 238 independent set samples including infected fruits infected by Penicillium digitatum and normal fruits, the total success rate is 100% and 97.5%, respectively, and, the proposed algorithm also used to identify the orange infected by penicillium italicum with a 100% identification accuracy, indicating that the proposed multispectral algorithm here is an effective method and it is potential to be applied in citrus industry.

Keywords: citrus fruit, early rotten, fungal infection, hyperspectral imaging

Procedia PDF Downloads 299
8646 Agro-Measures Influence Soil Physical Parameters in Alternative Farming

Authors: Laura Masilionyte, Danute Jablonskyte-Rasce, Kestutis Venslauskas, Zita Kriauciuniene

Abstract:

Alternative farming systems are used to cultivate high-quality food products and sustain the viability and fertility of the soil. Plant nutrition in all ecosystems depends not only on fertilization intensity or soil richness in organic matter but also on soil physical parameters –bulk density, structure, pores with the optimum moisture and air ratio available to plants. The field experiments of alternative (sustainable and organic) farming systems were conducted at Joniskelis Experimental Station of the Lithuanian Research Centre for Agriculture and Forestry in 2006–2016. The soil of the experimental site was Endocalcari-Endohypogleyic Cambisol (CMg-n-w-can). In alternative farming systems, farmyard manure, straw and catch crops for green manure were used for fertilization both in the soil with low and moderate humus contents. It had a more significant effect in the 0–20 cm depth layer on soil moisture than on other physical soil properties. In the agricultural systems, where catch crops were grown, soil physical characteristics did not differ significantly before their biomass incorporation, except for the moisture content, which was lower in rainy periods and higher in drier periods than in the soil of farming systems without catch crops. Soil bulk density and porosity in the topsoil layer were more dependent on soil humus content than on agricultural measures used: in the soil with moderate humus content, compared with the soil with low humus content, bulk density was by 1.4% lower, and porosity by 1.8% higher. The research findings allow to make improvements in alternative farming systems by choosing appropriate combinations of organic fertilizers and catch crops that have a sustainable effect on soil and maintain the sustainability of soil productivity parameters. Rational fertilization systems, securing the stability of soil productivity parameters and crop rotation productivity will promote the development of organic agriculture.

Keywords: agro-measures, soil physical parameters, organic farming, sustainable farming

Procedia PDF Downloads 127
8645 Factors Associated with Commencement of Non-Invasive Ventilation

Authors: Manoj Kumar Reddy Pulim, Lakshmi Muthukrishnan, Geetha Jayapathy, Radhika Raman

Abstract:

Introduction: In the past two decades, noninvasive positive pressure ventilation (NIPPV) emerged as one of the most important advances in the management of both acute and chronic respiratory failure in children. In the acute setting, it is an alternative to intubation with a goal to preserve normal physiologic functions, decrease airway injury, and prevent respiratory tract infections. There is a need to determine the clinical profile and parameters which point towards the need for NIV in the pediatric emergency setting. Objectives: i) To study the clinical profile of children who required non invasive ventilation and invasive ventilation, ii) To study the clinical parameters common to children who required non invasive ventilation. Methods: All children between one month to 18 years, who were intubated in the pediatric emergency department and those for whom decision to commence Non Invasive Ventilation was made in Emergency Room were included in the study. Children were transferred to the Paediatric Intensive Care Unit and started on Non Invasive Ventilation as per our hospital policy and followed up in the Paediatric Intensive Care Unit. Clinical profile of all children which included age, gender, diagnosis and indication for intubation were documented. Clinical parameters such as respiratory rate, heart rate, saturation, grunting were documented. Parameters obtained were subject to statistical analysis. Observations: Airway disease (Bronchiolitis 25%, Viral induced wheeze 22%) was a common diagnosis in 32 children who required Non Invasive Ventilation. Neuromuscular disorder was the common diagnosis in 27 children (78%) who were Intubated. 17 children commenced on Non Invasive Ventilation who later needed invasive ventilation had Neuromuscular disease. High frequency nasal cannula was used in 32, and mask ventilation in 17 children. Clinical parameters common to the Non Invasive Ventilation group were age < 1 year (17), tachycardia n = 7 (22%), tachypnea n = 23 (72%) and severe respiratory distress n = 9 (28%), grunt n = 7 (22%), SPO2 (80% to 90%) n = 16. Children in the Non Invasive Ventilation + INTUBATION group were > 3 years (9), had tachycardia 7 (41%), tachypnea 9(53%) with a male predominance n = 9. In statistical comparison among 3 groups,'p' value was significant for pH, saturation, and use of Ionotrope. Conclusion: Invasive ventilation can be avoided in the paediatric Emergency Department in children with airway disease, by commencing Non Invasive Ventilation early. Intubation in the pediatric emergency department has a higher association with neuromuscular disorders.

Keywords: clinical parameters, indications, non invasive ventilation, paediatric emergency room

Procedia PDF Downloads 336
8644 Estimation of Constant Coefficients of Bourgoyne and Young Drilling Rate Model for Drill Bit Wear Prediction

Authors: Ahmed Z. Mazen, Nejat Rahmanian, Iqbal Mujtaba, Ali Hassanpour

Abstract:

In oil and gas well drilling, the drill bit is an important part of the Bottom Hole Assembly (BHA), which is installed and designed to drill and produce a hole by several mechanisms. The efficiency of the bit depends on many drilling parameters such as weight on bit, rotary speed, and mud properties. When the bit is pulled out of the hole, the evaluation of the bit damage must be recorded very carefully to guide engineers in order to select the bits for further planned wells. Having a worn bit for hole drilling may cause severe damage to bit leading to cutter or cone losses in the bottom of hole, where a fishing job will have to take place, and all of these will increase the operating cost. The main factor to reduce the cost of drilling operation is to maximize the rate of penetration by analyzing real-time data to predict the drill bit wear while drilling. There are numerous models in the literature for prediction of the rate of penetration based on drilling parameters, mostly based on empirical approaches. One of the most commonly used approaches is Bourgoyne and Young model, where the rate of penetration can be estimated by the drilling parameters as well as a wear index using an empirical correlation, provided all the constants and coefficients are accurately determined. This paper introduces a new methodology to estimate the eight coefficients for Bourgoyne and Young model using the gPROMS parameters estimation GPE (Version 4.2.0). Real data collected form similar formations (12 ¼’ sections) in two different fields in Libya are used to estimate the coefficients. The estimated coefficients are then used in the equations and applied to nearby wells in the same field to predict the bit wear.

Keywords: Bourgoyne and Young model, bit wear, gPROMS, rate of penetration

Procedia PDF Downloads 154