Search results for: oxygen concentration
5317 Structural and Morphological Study of Europium Doped ZnO
Authors: Abdelhak Nouri
Abstract:
Europium doped zinc oxide nanocolumns (ZnO:Eu) were deposited on indium tin oxide (ITO) substrate from an aqueous solution of 10⁻³M Zn(NO₃)₂ and 0.5M KNO₃ with different concentration of europium ions. The deposition was performed in a classical three-electrode electrochemical cell. The structural, morphology and optical properties have been characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM). The XRD results show high quality of crystallite with preferential orientation along c-axis. SEM images speculate ZnO: Eu has nanocolumnar form with hexagonal shape. The diameter of nanocolumns is around 230 nm. Furthermore, it was found that tail of crystallite, roughness, and band gap energy is highly influenced with increasing Eu ions concentration. The average grain size is about 102 nm to 125 nm.Keywords: deterioration lattice, doping, nanostructures, Eu:ZnO
Procedia PDF Downloads 1765316 ORR Electrocatalyst for Batteries and Fuel Cells Development with SiO2/Carbon Black Based Composite Nanomaterials
Authors: Maryam Kiani
Abstract:
This study focuses on the development of composite nanomaterials based on SiO2 and carbon black for oxygen reduction reaction (ORR) electrocatalysts in batteries and fuel cells. The aim was to explore the potential of these composite materials as efficient catalysts for ORR, which is a critical process in energy conversion devices. The SiO2/carbon black composite nanomaterials were synthesized using a facile and scalable method. The morphology, structure, and electrochemical properties of the materials were characterized using various techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical measurements. The results demonstrated that the incorporation of SiO2 into the carbon black matrix enhanced the ORR performance of the composite material. The composite nanomaterials exhibited improved electrocatalytic activity, enhanced stability, and increased durability compared to pure carbon black. The presence of SiO2 facilitated the formation of active sites, improved electron transfer, and increased the surface area available for ORR. This study contributes to the advancement of battery and fuel cell technology by offering a promising approach for the development of high-performance ORR electrocatalysts. The SiO2/carbon black composite nanomaterials show great potential for improving the efficiency and durability of energy conversion devices, leading to more sustainable and efficient energy solutions.Keywords: oxygen reduction reaction, batteries, fuel cells, electrrocatalyst
Procedia PDF Downloads 1145315 Extracellular Protein Secreted by Bacillus subtilis ATCC21332 in the Presence of Streptomycin Sulfate
Authors: M. N. Hanina, M. Hairul Shahril, I. Ismatul Nurul Asyikin, A. K. Abdul Jalil, M. R. Salina, M. R. Maryam, M. Rosfarizan
Abstract:
The extracellular proteins secreted by bacteria may be increased in stressful surroundings, such as in the presence of antibiotics. It appears that many antibiotics, when used at low concentrations, have in common the ability to activate or repress gene transcription, which is distinct from their inhibitory effect. There have been comparatively few studies on the potential of antibiotics as a specific chemical signal that can trigger a variety of biological functions. Therefore, this study was carried out to determine the effect of Streptomycin Sulfate in regulating extracellular proteins secreted by Bacillus subtilis ATCC21332. Results of Microdilution assay showed that the Minimum Inhibition Concentration (MIC) of Streptomycin Sulfate on B. subtilis ATCC21332 was 2.5 mg/ml. The bacteria cells were then exposed to Streptomycin Sulfate at concentration of 0.01 MIC before being further incubated for 48h to 72 h. The extracellular proteins secreted were then isolated and analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Proteins profile revealed that three additional bands with approximate sizes of 30 kDa, 22 kDa and 23 kDa were appeared for the treated bacteria with Streptomycin Sulfate. Thus, B. subtilis ATCC21332 in stressful condition with the presence of Streptomycin Sulfate at low concentration could induce the extracellular proteins secretion.Keywords: Bacillus subtilis ATCC21332, streptomycin sulfate, extracellular proteins, antibiotics
Procedia PDF Downloads 2815314 Long Short-Term Memory Based Model for Modeling Nicotine Consumption Using an Electronic Cigarette and Internet of Things Devices
Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi
Abstract:
In this paper, we want to determine whether the accurate prediction of nicotine concentration can be obtained by using a network of smart objects and an e-cigarette. The approach consists of, first, the recognition of factors influencing smoking cessation such as physical activity recognition and participant’s behaviors (using both smartphone and smartwatch), then the prediction of the configuration of the e-cigarette (in terms of nicotine concentration, power, and resistance of e-cigarette). The study uses a network of commonly connected objects; a smartwatch, a smartphone, and an e-cigarette transported by the participants during an uncontrolled experiment. The data obtained from sensors carried in the three devices were trained by a Long short-term memory algorithm (LSTM). Results show that our LSTM-based model allows predicting the configuration of the e-cigarette in terms of nicotine concentration, power, and resistance with a root mean square error percentage of 12.9%, 9.15%, and 11.84%, respectively. This study can help to better control consumption of nicotine and offer an intelligent configuration of the e-cigarette to users.Keywords: Iot, activity recognition, automatic classification, unconstrained environment
Procedia PDF Downloads 2235313 Controlling the Oxygen Vacancies in the Structure of Anode Materials for Improved Electrochemical Performance in Lithium-Ion Batteries
Authors: Moustafa M. S. Sanad
Abstract:
The worsening of energy supply crisis and the exacerbation of climate change by environmental pollution problems have become the greatest threat to human life. One of the ways to confront these problems is to rely on renewable energy and its storage systems. Nowadays, huge attention has been directed to the development of lithium-ion batteries (LIBs) as efficient tools for storing the clean energy produced by green sources like solar and wind energies. Accordingly, the demand for powerful electrode materials with excellent electrochemical characteristics has been progressively increased to meet fast and continuous growth in the market of energy storage systems. Therefore, the electronic and electrical properties of conversion anode materials for rechargeable lithium-ion batteries (LIBs) can be enhanced by introducing lattice defects and oxygen vacancies in the crystal structure. In this regard, the intended presentation will demonstrate new insights and effective ways for enhancing the electrical conductivity and improving the electrochemical performance of different anode materials such as MgFe₂O₄, CdFe₂O₄, Fe₃O₄, LiNbO₃ and Nb₂O₅. The changes in the physicochemical and morphological properties have been deeply investigated via structural and spectroscopic analyses (e.g., XRD, FESEM, HRTEM, and XPS). Moreover, the enhancement in the electrochemical properties of these anode materials will be discussed through Galvanostatic Cycling (GC), Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) techniques.Keywords: structure modification, cationic substitution, non-stoichiometric synthesis, plasma treatment, lithium-ion batteries
Procedia PDF Downloads 575312 A Combined Activated Sludge-Filtration-Ozonation Process for Abattoir Wastewater Treatment
Authors: Pello Alfonso-Muniozguren, Madeleine Bussemaker, Ralph Chadeesingh, Caryn Jones, David Oakley, Judy Lee, Devendra Saroj
Abstract:
Current industrialized livestock agriculture is growing every year leading to an increase in the generation of wastewater that varies considerably in terms of organic content and microbial population. Therefore, suitable wastewater treatment methods are required to ensure the wastewater quality meet regulations before discharge. In the present study, a combined lab scale activated sludge-filtration-ozonation system was used to treat a pre-treated abattoir wastewater. A hydraulic retention time of 24 hours and a solid retention time of 13 days were used for the activated sludge process, followed by a filtration step (4-7 µm) and using ozone as tertiary treatment. An average reduction of 93% and 98% was achieved for Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD), respectively, obtaining final values of 128 mg/L COD and 12 mg/L BOD. For the Total Suspended Solids (TSS), the average reduction increased to 99% in the same system, reducing the final value down to 3 mg/L. Additionally, 98% reduction in Phosphorus (P) and a complete inactivation of Total Coliforms (TC) was obtained after 17 min ozonation time. For Total Viable Counts (TVC), a drastic reduction was observed with 30 min ozonation time (6 log inactivation) at an ozone dose of 71 mg O3/L. Overall, the combined process was sufficient to meet discharge requirements without further treatment for the measured parameters (COD, BOD, TSS, P, TC, and TVC).Keywords: abattoir waste water, activated sludge, ozone, waste water treatment
Procedia PDF Downloads 2775311 Railway Transport as a Potential Source of Polychlorinated Biphenyls in Soil
Authors: Nataša Stojić, Mira Pucarević, Nebojša Ralević, Vojislava Bursić, Gordan Stojić
Abstract:
Surface soil (0 – 10 cm) samples from 52 sampling sites along the length of railway tracks on the territory of Srem (the western part of the Autonomous Province of Vojvodina, itself part of Serbia) were collected and analyzed for 7 polychlorinated biphenyls (PCBs) in order to see how the distance from the railroad on the one hand and dump on the other hand, affect the concentration of PCBs (CPCBs) in the soil. Samples were taken at a distance of 0.03 to 4.19 km from the railway and 0.43 to 3.35 km from the landfills. For the soil extraction the Soxhlet extraction (USEPA 3540S) was used. The extracts were purified on a silica-gel column (USEPA 3630C). The analysis of the extracts was performed by gas chromatography with tandem mass spectrometry. PCBs were not detected only at two locations. Mean total concentration of PCBs for all other sampling locations was 0,0043 ppm dry weight (dw) with a range of 0,0005 to 0,0227 ppm dw. On the part of the data that were interesting for this research with statistical methods (PCA) were isolated factors that affect the concentration of PCBs. Data were also analyzed using the Pearson's chi-squared test which showed that the hypothesis of independence of CPCBs and distance from the railway can be rejected. Hypothesis of independence between CPCB and the percentage of humus in the soil can also be rejected, in contrast to dependence of CPCB and the distance from the landfill where the hypothesis of independence cannot be rejected. Based on these results can be said that railway transport is a potential source of PCBs. The next step in this research is to establish the position of transformers which are located near sampling sites as another important factor that affects the concentration of PCBs in the soil.Keywords: GC/MS, landfill, PCB, railway, soil
Procedia PDF Downloads 3335310 Chemical Reaction, Heat and Mass Transfer on Unsteady MHD Flow along a Vertical Stretching Sheet with Heat Generation/Absorption and Variable Viscosity
Authors: Jatindra Lahkar
Abstract:
The effect of chemical reaction on laminar mixed convection flow and heat and mass transfer along a vertical unsteady stretching sheet is investigated, in the presence of heat generation/absorption with variable viscosity and viscous dissipation. The governing non-linear partial differential equations are reduced to ordinary differential equations using similarity transformation and solved numerically using the fourth order Runge-Kutta method along with shooting technique. The effects of various flow parameters on the velocity, temperature and concentration distributions are analyzed and presented graphically. Skin-friction coefficient, Nusselt number and Sherwood number are derived at the sheet. It is observed that the influence of chemical reaction, the fluid flow along the sheet accelerate with the increase of chemical reaction parameter, on the other hand, temperature of the fluid increases with increase of chemical reaction parameter but concentration of the fluid reduces with it. The boundary layer decreases on the surface of the sheet for all values of unsteadiness parameter, increasing values of the chemical reaction parameter. The increases in the values of Sc cause the species concentration and its boundary layer thickness to decrease resulting in less induced flow and higher fluid temperatures. This is depicted in the decreases in the velocity and species concentration and increases in the fluid temperature as Sc increases.Keywords: chemical reaction, heat generation/absorption, magnetic number, unsteadiness, variable viscosity
Procedia PDF Downloads 3065309 Effects of Punicalagin on Some Productive and Reproductive Traits in Virgin Rabbit Does
Authors: Nada A. El-Shahaw, Anas A.Salem, M. Kobeisy, Hoda M. Shabaan
Abstract:
Reactive oxygen species (ROS) is collective term both oxygen radical, such superoxide (O₂•), hydroxyl(OH•), peroxyl (RO₂), and hydroperoxyl (HO₂•), and certain non-radical oxidizing agents, such as hydrogen peroxide (H₂O₂), hypochlorous acid (HOCL), and ozone (O₃), that can be convert easily to radical. The importance of antioxidants is shown here punicalagin. Punicalagin is preventing the harmful effect of (ROS) in all cells, specially gonadal cells. So, the aim of study was to investigate effects of punicalagin (PL) on maternal live body weight (MLBW), number of services/conception (NS), conception rate (CR), gestation length (GL), kindling rate (KR), total litter size (TLS), live litter size (LLS), kit weight (KW), progesterone (P4) and estradiol-17 (E2) concentrations at 1st and 2nd pregnancy of young does. A total of 28 healthy virgin does (6 months old) were divided into 2 equal groups. Group I, each doe, was injected IM with 100 ug PL twice/week pre-mating and one time 3 days post-mating. Group II, each doe was injected IM with sterilized water (control). Blood samples were taken at pre-mating, mating, post-mating, throughout pregnancy, and immediately post-kindling for assaying P4 and E2. All does were naturally mated with fertile bucks. Results revealed that PL displayed their significant impacts on MLBW, NS/conception, CR, GL, KR, TLS, LLS, KWs (birth and weaning), P4 and E2 concentrations either at 1ˢᵗ/2ⁿᵈ pregnancy or both of them. Conclusively, PL improved pregnancy outcomes of young do particularly at 2ⁿᵈ pregnancy and could be recommended in rabbit's farms.Keywords: punicalagin, pregnancy, estradiol-17β, progesterone, does
Procedia PDF Downloads 1145308 Using HABIT to Estimate the Concentration of CO2 and H2SO4 for Kuosheng Nuclear Power Plant
Authors: Y. Chiang, W. Y. Li, J. R. Wang, S. W. Chen, W. S. Hsu, J. H. Yang, Y. S. Tseng, C. Shih
Abstract:
In this research, the HABIT code was used to estimate the concentration under the CO2 and H2SO4 storage burst conditions for Kuosheng nuclear power plant (NPP). The Final Safety Analysis Report (FSAR) and reports were used in this research. In addition, to evaluate the control room habitability for these cases, the HABIT analysis results were compared with the R.G. 1.78 failure criteria. The comparison results show that the HABIT results are below the criteria. Additionally, some sensitivity studies (stability classification, wind speed and control room intake rate) were performed in this study.Keywords: BWR, HABIT, habitability, Kuosheng
Procedia PDF Downloads 4885307 Investigating Concentration of Multi-Walled Carbon Nanotubes on Electrochemical Sensors
Authors: Mohsen Adabi, Mahdi Adabi, Reza Saber
Abstract:
The recent advancements in nanomaterials have provided a platform to develop efficient transduction matrices for sensors. Modified electrodes allow to electrochemists to enhance the property of electrode surface and provide desired properties such as improved sensing capabilities, higher electron transfer rate and prevention of undesirable reactions competing kinetically with desired electrode process. Nanostructured electrodes including arrays of carbon nanotubes have demonstrated great potential for the development of electrochemical sensors and biosensors. The aim of this work is to evaluate the concentration of multi-walled carbon nanotubes (MWCNTs) on the conductivity of gold electrode. For this work, raw MWCNTs was functionalized and shortened. Raw and shorten MWCNTs were characterized using transfer electron microscopy (TEM). Next, 0.5, 2 and 3.5 mg of Shortened and functionalized MWCNTs were dispersed in 2 mL Dimethyl formamide (DMF) and cysteamine modified gold electrodes were incubated in the different concentrations of MWCNTs for 8 hours. Then, the immobilization of MWCNTs on cysteamine modified gold electrode was characterized by scanning electron microscopy (SEM) and the effect of MWCNT concentrations on electron transfer of modified electrodes was investigated by cyclic voltammetry (CV). The results demonstrated that CV response of ferricyanide redox at modified gold electrodes increased as concentration of MWCNTs enhanced from 0.5 to 2 mg in 2 mL DMF. This increase can be attributed to the number of MWCNTs which enhance on the surface of cysteamine modified gold electrode as the MWCNTs concentration increased whereas CV response of ferricyanide redox at modified gold electrodes did not changed significantly as the MWCNTs concentration increased from 2 to 3.5 mg in 2 mL DMF. The reason may be that amine groups of cysteamine modified gold electrodes are limited to a given number which can interact with the given number of carboxylic groups of MWCNTs and CV response of ferricyanide redox at modified gold do not enhance after amine groups of cysteamine are saturated with carboxylic groups of MWCNTs.Keywords: carbon nanotube, cysteamine, electrochemical sensor, gold electrode
Procedia PDF Downloads 4665306 Chitosan Hydrogel Containing Nitric Oxide Donors with Potent Antibacterial Effect
Authors: Milena Trevisan Pelegrino, Bruna De Araujo Lima, Mônica H. M. Do Nascimento, Christiane B. Lombello, Marcelo Brocchi, Amedea B. Seabra
Abstract:
Nitric oxide (NO) is a small molecule involved in a wide range of physiological and pathophysiological processes, including vasodilatation, control of inflammatory pain, wound healing, and antibacterial activities. As NO is a free radical, the design of drugs that generates therapeutic amounts of NO in controlled spatial and time manners is still a challenge. In this study, the NO donor S-nitrosoglutathione (GSNO) was incorporated into the thermoresponsive Pluronic F-127 (PL) - chitosan (CS) hydrogel, in an easy and economically feasible methodology. CS is a polysaccharide with known antimicrobial and biocompatibility properties. Scanning electron microscopy, rheology and differential scanning calorimetry techniques were used for hydrogel characterization. The results demonstrated that the hydrogel has a smooth surface, thermoresponsive behavior, and good mechanical stability. The kinetics of NO release and GSNO diffusion from GSNO-containing PL/CS hydrogel demonstrated a sustained NO/GSNO release, in concentrations suitable for biomedical applications, at physiological and skin temperatures. The GSNO-PL/CS hydrogel demonstrated a concentration-dependent toxicity to Vero cells, and antimicrobial activity to Pseudomonas aeruginosa (minimum inhibitory concentration and minimum bactericidal concentration values of 0.5 µg·mL-1 of hydrogel, which correspondents to 1 mmol·L-1 of GSNO). Interesting, the concentration range in which the NO-releasing hydrogel demonstrated antibacterial effect was not found toxic to Vero mammalian cell. Thus, GSNO-PL/CS hydrogel is suitable biomaterial for topical NO delivery applications.Keywords: antimicrobial, chitosan, biocompatibility, S-nitrosothiols
Procedia PDF Downloads 1835305 Synthesis and Pharmacological Activity of Some Oxyindole Derivatives
Authors: Vivek Singh Bhadauria, Abhishek Pandey
Abstract:
Indole-2,3-diones are known for their various biological activities. By suitable control of a substituent, different novel indole-2,3-diones were synthesized. In this present study, various Schiff and Mannich bases were synthesized and characterized, and evaluated their for different pharmacological activities. The compounds were prepared by reacting indole-2,3-dione with benzyl chloride and 4-substituted thiosemicarbazides. All the synthesized compounds were characterized by the TLC, MP, Elemental analysis, FTIR, 1H-NMR and Mass spectroscopy. The compounds have been evaluated for their anticancer, antituberculosis, anticonvulsant, antiinflammatory as well as anti-SARS activity and the results are presented. Some of compounds possessed different pharmacological activity at a concentration of 200 mg/kg body weight and even at lower concentration.Keywords: indoles, isatin, NMR, biological activities
Procedia PDF Downloads 3535304 Assessment of Landfill Pollution Load on Hydroecosystem by Use of Heavy Metal Bioaccumulation Data in Fish
Authors: Gintarė Sauliutė, Gintaras Svecevičius
Abstract:
Landfill leachates contain a number of persistent pollutants, including heavy metals. They have the ability to spread in ecosystems and accumulate in fish which most of them are classified as top-consumers of trophic chains. Fish are freely swimming organisms; but perhaps, due to their species-specific ecological and behavioral properties, they often prefer the most suitable biotopes and therefore, did not avoid harmful substances or environments. That is why it is necessary to evaluate the persistent pollutant dispersion in hydroecosystem using fish tissue metal concentration. In hydroecosystems of hybrid type (e.g. river-pond-river) the distance from the pollution source could be a perfect indicator of such a kind of metal distribution. The studies were carried out in the Kairiai landfill neighboring hybrid-type ecosystem which is located 5 km east of the Šiauliai City. Fish tissue (gills, liver, and muscle) metal concentration measurements were performed on two types of ecologically-different fishes according to their feeding characteristics: benthophagous (Gibel carp, roach) and predatory (Northern pike, perch). A number of mathematical models (linear, non-linear, using log and other transformations) have been applied in order to identify the most satisfactorily description of the interdependence between fish tissue metal concentration and the distance from the pollution source. However, the only one log-multiple regression model revealed the pattern that the distance from the pollution source is closely and positively correlated with metal concentration in all predatory fish tissues studied (gills, liver, and muscle).Keywords: bioaccumulation in fish, heavy metals, hydroecosystem, landfill leachate, mathematical model
Procedia PDF Downloads 2855303 Role of Moderate Intensity Exercises in the Amelioration of Oxidant-Antioxidant Status and the Levels of Inflammatory Cytokines in Rheumatoid Arthritis Patients
Authors: Somaiya Mateen, Shagufta Moin, Abdul Qayyum, Atif Zafar
Abstract:
Cytokines and reactive species play an important role in the pathophysiology of rheumatoid arthritis (RA). This study was done to determine the levels of reactive oxygen and nitrogen species (ROS and RNS), inflammatory cytokines and the markers of protein, DNA and lipid oxidation in the blood of RA patients, with the aim to study the antioxidant and anti-inflammatory role of moderate intensity exercises in the management of RA. RA patients were subdivided into two groups- first group (n=30) received treatment with conventional RA drugs while the second group (n=30) received moderate exercise therapy along with the conventional drugs for a period of 12 weeks. The levels of ROS, RNS, inflammatory cytokines and markers of biomolecule oxidation were monitored before and after 12 weeks of treatment. RA patients showed a marked increase in the levels of ROS, RNS, inflammatory cytokines, lipid, protein and DNA oxidation as compared to the healthy controls. These parameters were ameliorated after treatment with drugs alone and exercise combined with drugs, with the amelioration being more significant in patients given drugs along with the moderate intensity exercise treatment. In conclusion, the role of ROS, RNS and inflammatory cytokines in the pathogenesis of RA has been confirmed by this study. These may also serve as potential biomarker for assessing the disease severity. Finally, the addition of moderate intensity exercises in the management of RA may be of great value.Keywords: rheumatoid arthritis, reactive oxygen species, inflammatory cytokines, moderate intensity exercises
Procedia PDF Downloads 3315302 Some Trace and Toxic Metal Content of Crude Ethanol Leaf Extract of Globimetula Oreophila (Hook. F) Danser Azadirachta Indica Using Atomic Absorption Spectroscopy
Authors: Dauda G., Bila Ha Sani Y. M., Magaji M. G., Musa A. M., Hassan H. S.
Abstract:
Introduction: Globimetula oreophila is a parasitic plant with a known therapeutic value that is widely used in the treatment of various ailments, including malaria, hypertension, cancer, diabetes, epilepsy and as a diuretic agent. Objectives: The present study is aimed at analyzing and documenting the level of trace and toxic metals in the crude ethanol leaf extract of G. oreophila. Methods: After collection and authentication, the leaves were air-dried, mashed into powder, weighed and extracted using aqueous ethanol (70%). The crude extract (0.5g) was digested with HNO₃: HCl (3:1); then heated to 2000C and analyzed for its metal content by atomic absorption spectroscopy (AAS). Results: Fe had the highest concentration (32.73mg/kg), while Pb was not detected. The concentrations of Co, Cu, Ni, Zn and Cd detected were 5.97, 10.8, 8.01 and 0.9mg/kg, respectively. The concentration of Cd, Fe and Ni were above the permissible limit of FAO/WHO. Conclusion: The results also show that the analyzed plant is a beneficial source of appropriate and essential trace metals. However, the leaf of G. oreophila in the present study was probably unsafe for long-term use because of the level of Fe, Ni, and Cd concentration.Keywords: Globimetula oreophila, minerals, trace element, crude extract
Procedia PDF Downloads 1515301 Modeling Solute Transport through Porous Media with Scale Dependent Dispersion
Authors: Teodrose Atnafu Abegaze, P. K. Sharma
Abstract:
In this study, an attempt has been made to study the behavior of breakthrough curves in both layered and mixed heterogeneous soil by conducting experiments in long soil columns. Sodium chloride has been used as a conservative tracer in the experiment. Advective dispersive transport equations, including equilibrium sorption and first-order degradation coefficients, are used for solute transport through mobile-immobile porous media. In order to do the governing equation for solute transport, there are explicit and implicit schemes for our condition; we use an implicit scheme to numerically model the solute concentration. Results of experimental breakthrough curves indicate that the behavior of observed breakthrough curves is approximately similar in both cases of layered and mixed soil, while earlier arrival of solute concentration is obtained in the case of mixed soil. It means that the types of heterogeneity of the soil media affect the behavior of solute concentration. Finally, it is also shown that the asymptotic dispersion model simulates the experimental data better than the constant and linear distance-dependent dispersion models.Keywords: numerical method, distance dependant dispersion, reactive transport, experiment
Procedia PDF Downloads 615300 Encapsulation of Probiotic Bacteria in Complex Coacervates
Authors: L. A. Bosnea, T. Moschakis, C. Biliaderis
Abstract:
Two probiotic strains of Lactobacillus paracasei subsp. paracasei (E6) and Lactobacillus paraplantarum (B1), isolated from traditional Greek dairy products, were microencapsulated by complex coacervation using whey protein isolate (WPI, 3% w/v) and gum arabic (GA, 3% w/v) solutions mixed at different polymer ratio (1:1, 2:1 and 4:1). The effect of total biopolymer concentration on cell viability was assessed using WPI and GA solutions of 1, 3 and 6% w/v at a constant ratio of 2:1. Also, several parameters were examined for optimization of the microcapsule formation, such as inoculum concentration and the effect of ionic strength. The viability of the bacterial cells during heat treatment and under simulated gut conditions was also evaluated. Among the different WPI/GA weight ratios tested (1:1, 2:1, and 4:1), the highest survival rate was observed for the coacervate structures made with the ratio of 2:1. The protection efficiency at low pH values is influenced by both concentration and the ratio of the added biopolymers. Moreover, the inoculum concentration seems to affect the efficiency of microcapsules to entrap the bacterial cells since an optimum level was noted at less than 8 log cfu/ml. Generally, entrapment of lactobacilli in the complex coacervate structure enhanced the viability of the microorganisms when exposed to a low pH environment (pH 2.0). Both encapsulated strains retained high viability in simulated gastric juice (>73%), especially in comparison with non-encapsulated (free) cells (<19%). The encapsulated lactobacilli also exhibited enhanced viability after 10–30 min of heat treatment (65oC) as well as at different NaCl concentrations (pH 4.0). Overall, the results of this study suggest that complex coacervation with WPI/GA has a potential to deliver live probiotics in low pH food systems and fermented dairy products; the complexes can dissolve at pH 7.0 (gut environment), releasing the microbial cells.Keywords: probiotic, complex coacervation, whey, encapsulation
Procedia PDF Downloads 2965299 Oxidation of Amitriptyline by Bromamine-T in Acidic Buffer Medium: A Kinetic and Mechanistic Approach
Authors: Chandrashekar, R. T. Radhika, B. M. Venkatesha, S. Ananda, Shivalingegowda, T. S. Shashikumar, H. Ramachandra
Abstract:
The kinetics of the oxidation of amitriptyline (AT) by sodium N-bromotoluene sulphonamide (C6H5SO2NBrNa) has been studied in an acidic buffer medium of pH 1.2 at 303 K. The oxidation reaction of AT was followed spectrophotometrically at maximum wavelength, 410 nm. The reaction rate shows a first order dependence each on concentration of AT and concentration of sodium N-bromotoluene sulphonamide. The reaction also shows an inverse fractional order dependence at low or high concentration of HCl. The dielectric constant of the solvent shows negative effect on the rate of reaction. The addition of halide ions and the reduction product of BAT have no significant effect on the rate. The rate is unchanged with the variation in the ionic strength (NaClO4) of the medium. Addition of reaction mixtures to be aqueous acrylamide solution did not initiate polymerization, indicating the absence of free radical species. The stoichiometry of the reaction was found to be 1:1 and oxidation product of AT is identified. The Michaelis-Menton type of kinetics has been proposed. The CH3C6H5SO2NHBr has been assumed to be the reactive oxidizing species. Thermodynamical parameters were computed by studying the reactions at different temperatures. A mechanism consistent with observed kinetics is presented.Keywords: amitriptyline, bromamine-T, kinetics, oxidation
Procedia PDF Downloads 3385298 Effectiveness of the Flavonoids Isolated from Thymus inodorus by Different Solvents against Some Pathogenis Microorganisms
Authors: N. Behidj, K. Benyounes, T. Dahmane, A. Allem
Abstract:
The aim of this study was to investigate the antimicrobial activity of flavonoids isolated from the aerial part of a medicinal plant which is Thymus inodorusby the middle agar diffusion method on following microorganisms. We have Staphylococcus aureus, Escherichia coli, Pseudomonas fluorescens, AspergillusNiger, Aspergillus fumigatus and Candida albicans. During this study, flavonoids extracted by stripping with steam are performed. The yields of flavonoids is 7.242% for the aqueous extract and 28.86% for butanol extract, 29.875% for the extract of ethyl acetate and 22.9% for the extract of di - ethyl. The evaluation of the antibacterial effect shows that the diameter of the zone of inhibition varies from one microorganism to another. The operation values obtained show that the bacterial strain P fluoresces, and 3 yeasts and molds; A. Niger, A. fumigatus and C. albicansare the most resistant. But it is noted that, S. aureus is shown more sensitive to crude extracts, the stock solution and the various dilutions. Finally for the minimum inhibitory concentration is estimated only with the crude extract of Thymus inodorus flavonoid.Indeed, these extracts inhibit the growth of Gram + bacteria at a concentration varying between 0.5% and 1%. While for bacteria to Gram -, it is limited to a concentration of 0.5%.Keywords: antimicrobial activity, organic extracts, aqueous extracts, Thymus numidicus
Procedia PDF Downloads 1845297 Impact of Edible Coatings Made of Chitosan and Spray Dried Propolis in the Shell Life of White Cachama (Piaractus brachypomus)
Authors: David Guillermo Piedrahita Marquez, Hector Suarez Mahecha, Jairo Humberto Lopez
Abstract:
There is a need to preserve aquaculture matrices due to their high nutritional value, and its broad consumption, one of those species is the white cachama (Piaractus brachypomus), this fish is located in the rivers of eastern Colombia, and the previously mentioned species needs more study. Therefore, in a paper the effects of an alternative method of preservation of shell life were investigated, the method used is the application of an edible coating made from chitosan and ethanolic extract of propolis (EEP) encapsulated in maltodextrin. The coating was applied by immersion, and after that, we investigated the post mortem quality changes of the fish performing physicochemical and microbiological analysis. pH, volatile bases, test thiobarbituric acid and peroxide value were tested; finally, we studied the effect of the coating on mesophilic strains, coliforms and other microorganisms such as Staphylococcus, and Salmonella. Finally, we concluded that the coating prolongs the shelf life because it acts as a barrier to oxygen and moisture, the bioactive compounds trap free radicals and the coatings changes the metabolism and cause the cell lysis of the microorganisms. It was determined that the concentration of malonaldehyde, the volatile basic nitrogen content and pH are the variables that distinguish more clearly between the samples with the treatment and the control samples.Keywords: antimicrobial activity, lipid oxidation, texture profile analysis (TPA), sensorial analysis, peroxide value, thiobarbituric acid assay (TBA), total volatile basic nitrogen (TVB-N)
Procedia PDF Downloads 2885296 Effect of Xenobiotic Bioactive Compounds from Grape Waste on Inflammation and Oxidative Stress in Pigs
Authors: Ionelia Taranu, Gina Cecilia Pistol, Mihai Alexandru Gras, Mihai Laurentiu Palade, Mariana Stancu, Veronica Sanda Chedea
Abstract:
In the last decade bioactive compounds from grape waste are investigated as new therapeutic agents for the inhibition of carcinogenesis and other diseases. The objective of this study was to characterize several bioactive compounds (polyphenols and polyunsaturated fatty acids) of a dried grape pomace (GP) derived from a Romanian winery and further to evaluate their effect on inflammation and oxidative markers in liver of pig used as animal model. The total polyphenol concentration of pomace was 36.2g gallic acid equiv /100g. The pomace was rich in polyphenols from the flavonoids group, the main class being flavanols (epicatechins, catechin, epigallocatechin, procyanidins) and antocyanins (Malvidin 3-O-glucoside). The highest concentration was recorded for epicatechin (51.96g/100g) and procyanidin dimer (22.79g/100g). A high concentration of total polyunsaturated fatty acids (PUFA) especially ω-6 fatty acids (59.82 g/100g fat) was found in grape pomace. 20 crossbred TOPIG hybrid fattening pigs were randomly assigned (n = 10) to two experimental treatments: a normal diet (control group) and a diet included 5% grape pomace (GP group) for 24 days. The GP diet lowered the gene expression and protein concentration of IL-1β, IL-8, TNF-α and IFN-γ cytokines in liver suggesting an anti-inflammatory effect of GP diet. Concentration of hepatic TBARS also decreased, but the total antioxidant capacity (liver TEAC) and activity and gene expression of antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) did not differ between the GP and control diet. The results showed that GP diet exerted an anti-inflammatory effect, but the 5% dietary inclusion modulated only partially the oxidative stress.Keywords: animal model, inflammation, grape waste, immune organs
Procedia PDF Downloads 3385295 The Impact of Ozone on the Sensory Perception of Pumpkin Seeds and its Toxicity against Plodia interpunctella (Lepidoptera: Pyralidae)
Authors: Saba Goudarzi Dehrizifar, Aysan Afradi
Abstract:
The utilization of ozone treatment as a potential technique for storage pest control has gained significant attention. This approach presents an alternative to traditional chemical methods. In the current study, the mortality rates of Plodia interpunctella as a primary pest found in stored products particularly nuts, were examined after being exposed to different O3 concentration (minimum, half, and maximum) in three replicates and within 24 hours. As the concentration of O3 increased, the mortality rates of P. interpunctella also experienced a dramatic growth. A 20-member panel (men and women in different ages), formed from the society community, was selected for sensory evaluation. The pumpkin seeds samples were coded and presented randomly in identical containers. The panelists were asked to evaluate their degree of liking or disliking on a seven-point hedonic scale using descriptive categories, ranging 1-7 (1: extremely dislike, 2: very dislike, 3: dislike, 4: no difference, 5: like, 6: very like, and 7: extremely like). The results obtained from experiments on the qualitative characteristics of the studied dates through the sensory test revealed that O3 concentration did not affect their color, crispness, firmness, and overall acceptance and the half concentration of ozone on pumpkin seed had the highest consumption interest. Moreover, minimal alterations were observed in the aroma of the pumpkin seeds, which could be resolved with a short period of air exposure. Therefore, it could be concluded that the atmospheric O3 gas provided a cost-effective and environmentally friendly way for controlling the insect pests in pumpkin seeds, besides preserving their sensory and quality properties.Keywords: zone, control, pumpkin seeds, qualitative characteristics
Procedia PDF Downloads 535294 Identification and Quantification of Acid Sites of M(X)X Zeolites (M= Cu2+ and/or Zn2+,X = Level of Exchange): An In situ FTIR Study Using Pyridine Adsorption/Desorption
Authors: H. Hammoudi, S. Bendenia, I. Batonneau-Gener, J. Comparot, K. Marouf-Khelifa, A. Khelifa
Abstract:
X zeolites were prepared by ion-exchange with Cu2+ and/or Zn2+ cations, at different concentrations of the exchange solution, and characterised by thermal analysis and nitrogen adsorption. The acidity of the samples was investigated by pyridine adsorption–desorption followed by in situ Fourier transform infrared (FTIR) spectroscopy. Desorption was carried out at 150, 250 and 350 °C. The objective is to estimate the nature and concentration of acid sites. A comparison between the binary (Cu(x)X, Zn(x)X) and ternary (CuZn(x)X) exchanges was also established (x = level of exchange) through the Cu(43)X, Zn(48)X and CuZn(50)X samples. Lewis acidity decreases overall with desorption temperature and the level of exchange. As the latter increases, there is a conversion of some Lewis sites into those of Brønsted during thermal treatment. In return, the concentration of Brønsted sites increases with the degree of exchange. The Brønsted acidity of CuZn(50)X at 350 °C is more important than the sum of those of Cu(43)X and Zn(48)X. The found values were 73, 32 and 15 μmol g-1, respectively. Besides, the concentration of Brønsted sites for CuZn(50)X increases with desorption temperature. These features indicate the presence of a synergistic effect amplifying the strength of these sites when Cu2+ and Zn2+ cations compete for the occupancy of sites distributed inside zeolitic cavities.Keywords: acidity, adsorption, pyridine, zeolites
Procedia PDF Downloads 2265293 Feasibility of Iron Scrap Recycling with Considering Demand-Supply Balance
Authors: Reina Kawase, Yuzuru Matsuoka
Abstract:
To mitigate climate change, to reduce CO2 emission from steel sector, energy intensive sector, is essential. One of the effective countermeasure is recycling of iron scrap and shifting to electric arc furnace. This research analyzes the feasibility of iron scrap recycling with considering demand-supply balance and quantifies the effective by CO2 emission reduction. Generally, the quality of steel made from iron scrap is lower than the quality of steel made from basic oxygen furnace. So, the constraint of demand side is goods-wise steel demand and that of supply side is generation of iron scap. Material Stock and Flow Model (MSFM_demand) was developed to estimate goods-wise steel demand and generation of iron scrap and was applied to 35 regions which aggregated countries in the world for 2005-2050. The crude steel production was estimated under two case; BaU case (No countermeasures) and CM case (With countermeasures). For all the estimation periods, crude steel production is greater than generation of iron scrap. This makes it impossible to substitute electric arc furnaces for all the basic oxygen furnaces. Even though 100% recycling rate of iron scrap, under BaU case, CO2 emission in 2050 increases by 12% compared to that in 2005. With same condition, 32% of CO2 emission reduction is achieved in CM case. With a constraint from demand side, the reduction potential is 6% (CM case).Keywords: iron scrap recycling, CO2 emission reduction, steel demand, MSFM demand
Procedia PDF Downloads 5505292 Novel Low-cost Bubble CPAP as an Alternative Non-invasive Oxygen Therapy for Newborn Infants with Respiratory Distress Syndrome in a Tertiary Level Neonatal Intensive Care Unit in the Philippines: A Single Blind Randomized Controlled Trial
Authors: Navid P Roodaki, Rochelle Abila, Daisy Evangeline Garcia
Abstract:
Background and Objective: Respiratory Distress Syndrome (RDS) among premature infants is a major causes of neonatal death. The use of Continuous Positive Airway Pressure (CPAP) has become a standard of care for preterm newborns with RDS hence cost-effective innovations are needed. This study compared a novel low-cost Bubble CPAP (bCPAP) device to ventilator driven CPAP in the treatment of RDS. Methods: This is a single-blind, randomized controlled trial done on May 2022 to October 2022 in a Level III Neonatal Intensive Care Unit in the Philippines. Preterm newborns (<36 weeks) with RDS were randomized to receive Vayu bCPAP device or Ventilator-derived CPAP. Arterial Blood Gases, Oxygen Saturation, administration of surfactant, and CPAP failure rates were measured. Results: Seventy preterm newborns were included. No differences were observed between the Ventilator driven CPAP and Vayu bCPAP on the PaO2 (97.51mmHg vs 97.37mmHg), So2 (97.08% vs 95.60%) levels, amount of surfactant administered between groups. There were no observed differences in CPAP failure rates between Vayu bPCAP (x̄ 3.23 days) and ventilator-driven CPAP (x̄ 2.98 days). However, a significant difference was noted on the CO2 level (40.32mmHg vs 50.70mmHg), which was higher among those hooked to Ventilator-driven CPAP (p 0.004). Conclusion: This study has shown that the novel low-cost bubble CPAP (Vayu bCPAP) can be used as an efficacious alternate non invasive oxygen therapy among preterm neonates with RDS, although the CO2 levels were higher among those hooked to ventilator driven CPAP, other outcome parameters measured showed that both devices are comparable. Recommendation: A multi-center or national study to account for geographic region, which may alter the outcomes of patients connected to different ventilatory support. Cost comparison between devices is also suggested. A mixed-method research assessing the experiences of health care professionals in assembling and utilizing the gadget is a second consideration.Keywords: bubble CPAP, ventilator-derived CPAP; infant, premature, respiratory distress syndrome
Procedia PDF Downloads 825291 Monitoring Memories by Using Brain Imaging
Authors: Deniz Erçelen, Özlem Selcuk Bozkurt
Abstract:
The course of daily human life calls for the need for memories and remembering the time and place for certain events. Recalling memories takes up a substantial amount of time for an individual. Unfortunately, scientists lack the proper technology to fully understand and observe different brain regions that interact to form or retrieve memories. The hippocampus, a complex brain structure located in the temporal lobe, plays a crucial role in memory. The hippocampus forms memories as well as allows the brain to retrieve them by ensuring that neurons fire together. This process is called “neural synchronization.” Sadly, the hippocampus is known to deteriorate often with age. Proteins and hormones, which repair and protect cells in the brain, typically decline as the age of an individual increase. With the deterioration of the hippocampus, an individual becomes more prone to memory loss. Many memory loss starts off as mild but may evolve into serious medical conditions such as dementia and Alzheimer’s disease. In their quest to fully comprehend how memories work, scientists have created many different kinds of technology that are used to examine the brain and neural pathways. For instance, Magnetic Resonance Imaging - or MRI- is used to collect detailed images of an individual's brain anatomy. In order to monitor and analyze brain functions, a different version of this machine called Functional Magnetic Resonance Imaging - or fMRI- is used. The fMRI is a neuroimaging procedure that is conducted when the target brain regions are active. It measures brain activity by detecting changes in blood flow associated with neural activity. Neurons need more oxygen when they are active. The fMRI measures the change in magnetization between blood which is oxygen-rich and oxygen-poor. This way, there is a detectable difference across brain regions, and scientists can monitor them. Electroencephalography - or EEG - is also a significant way to monitor the human brain. The EEG is more versatile and cost-efficient than an fMRI. An EEG measures electrical activity which has been generated by the numerous cortical layers of the brain. EEG allows scientists to be able to record brain processes that occur after external stimuli. EEGs have a very high temporal resolution. This quality makes it possible to measure synchronized neural activity and almost precisely track the contents of short-term memory. Science has come a long way in monitoring memories using these kinds of devices, which have resulted in the inspections of neurons and neural pathways becoming more intense and detailed.Keywords: brain, EEG, fMRI, hippocampus, memories, neural pathways, neurons
Procedia PDF Downloads 845290 Antimicrobial Activity of Different Essential Oils in Synergy with Amoxicillin against Clinical Isolates of Methicillin-Resistant Staphylococcus aureus
Authors: Naheed Niaz, Nimra Naeem, Bushra Uzair, Riffat Tahira
Abstract:
Antibacterial activity of different traditional plants essential oils against clinical isolates of Methicillin-resistant Staphylococcus aureus (MRSA) through disk diffusion method was evaluated. All the tested essential oils, in different concentrations, inhibited growth of S. aureus to varying degrees. Cinnamon and Thyme essential oils were observed to be the “best” against test pathogen. Even at lowest concentration of these essential oils i.e. 25 µl/ml, clear zone of inhibition was recorded 9+0.085mm and 8+0.051mm respectively, and at higher concentrations there was a total reduction in growth of MRSA. The study also focused on analyzing the synergistic effects of essential oils in combination with amoxicillin. Results showed that oregano and pennyroyal mint essential oils which were not very effective alone turned out to be strong synergistic enhancers. The activity increased with increase in concentration of the essential oils. It may be concluded from present results that cinnamon and thyme essential oils could be used as potential antimicrobial source for the treatment of infections caused by Methicillin-resistant Staphylococcus aureus (MRSA).Keywords: Staphylococcus aureus, essential oils, antibiotics, combination therapy, minimum inhibitory concentration
Procedia PDF Downloads 4455289 The Determination of Co, Cd and Pb in Seafoods of Thewet Market, Bangkok to Develop Quality of Life of Consumer
Authors: Chinnawat Satsananan
Abstract:
The amount of heavy metals in our environment has been of great concern because of their toxicity when their concentration is more than the permissible level. These metals enter the environment by different ways such as industrial activities, soil pollution. We have used flame atomic absorption spectrometry technique for determination of the concentration of Co, Cd and Pb in different tissues of five samples of seafoods (mackerel, squid, mussels, scallops and shrimp). The concentrations of Co, Cd and Pb in all examined seafoods were less than the reported literature values (WHO). The results mentioned that the seafoods obtained from Thewet Market were safety to consumption and make the quality of life of people in the community look better.Keywords: heavy metals, seafood, atomic absorption spectrometry, Bangkok
Procedia PDF Downloads 3335288 Ultrasound Assisted Cooling Crystallization of Lactose Monohydrate
Authors: Sanjaykumar R. Patel, Parth R. Kayastha
Abstract:
α-lactose monohydrate is widely used in the pharmaceutical industries as an inactive substance that acts as a vehicle or a medium for a drug or other active substance. It is a byproduct of dairy industries, and the recovery of lactose from whey not only boosts the improvement of the economics of whey utilization but also causes a reduction in pollution as lactose recovery can reduce the BOD of whey by more than 80%. In the present study, levels of process parameters were kept as initial lactose concentration (30-50% w/w), sonication amplitude (20-40%), sonication time (2-6 hours), and crystallization temperature (10-20 oC) for the recovery of lactose in ultrasound assisted cooling crystallization. In comparison with cooling crystallization, the use of ultrasound enhanced the lactose recovery by 39.17% (w/w). The parameters were optimized for the lactose recovery using Taguchi Method. The optimum conditions found were initial lactose concentration at level 3 (50% w/w), amplitude of sonication at level 2 (40%), the sonication time at level 3 (6 hours), and crystallization temperature at level 1 (10 °C). The maximum recovery was found to be 85.85% at the optimum conditions. Sonication time and the initial lactose concentration were found to be significant parameters for the lactose recovery.Keywords: crystallization, lactose, Taguchi method, ultrasound
Procedia PDF Downloads 211