Search results for: nonhomogeneous dynamic model
18597 Vibration-Based Structural Health Monitoring of a 21-Story Building with Tuned Mass Damper in Seismic Zone
Authors: David Ugalde, Arturo Castillo, Leopoldo Breschi
Abstract:
The Tuned Mass Dampers (TMDs) are an effective system for mitigating vibrations in building structures. These dampers have traditionally focused on the protection of high-rise buildings against earthquakes and wind loads. The Camara Chilena de la Construction (CChC) building, built in 2018 in Santiago, Chile, is a 21-story RC wall building equipped with a 150-ton TMD and instrumented with six permanent accelerometers, offering an opportunity to monitor the dynamic response of this damped structure. This paper presents the system identification of the CChC building using power spectral density plots of ambient vibration and two seismic events (5.5 Mw and 6.7 Mw). Linear models of the building with and without the TMD are used to compute the theoretical natural periods through modal analysis and simulate the response of the building through response history analysis. Results show that natural periods obtained from both ambient vibrations and earthquake records are quite similar to the theoretical periods given by the modal analysis of the building model. Some of the experimental periods are noticeable by simple inspection of the earthquake records. The accelerometers in the first story better captured the modes related to the building podium while the upper accelerometers clearly captured the modes related to the tower. The earthquake simulation showed smaller accelerations in the model with TMD that are similar to that measured by the accelerometers. It is concluded that the system identification through power spectral density shows consistency with the expected dynamic properties. The structural health monitoring of the CChC building confirms the advantages of seismic protection technologies such as TMDs in seismic prone areas.Keywords: system identification, tuned mass damper, wall buildings, seismic protection
Procedia PDF Downloads 12618596 A Coupled Model for Two-Phase Simulation of a Heavy Water Pressure Vessel Reactor
Authors: D. Ramajo, S. Corzo, M. Nigro
Abstract:
A Multi-dimensional computational fluid dynamics (CFD) two-phase model was developed with the aim to simulate the in-core coolant circuit of a pressurized heavy water reactor (PHWR) of a commercial nuclear power plant (NPP). Due to the fact that this PHWR is a Reactor Pressure Vessel type (RPV), three-dimensional (3D) detailed modelling of the large reservoirs of the RPV (the upper and lower plenums and the downcomer) were coupled with an in-house finite volume one-dimensional (1D) code in order to model the 451 coolant channels housing the nuclear fuel. Regarding the 1D code, suitable empirical correlations for taking into account the in-channel distributed (friction losses) and concentrated (spacer grids, inlet and outlet throttles) pressure losses were used. A local power distribution at each one of the coolant channels was also taken into account. The heat transfer between the coolant and the surrounding moderator was accurately calculated using a two-dimensional theoretical model. The implementation of subcooled boiling and condensation models in the 1D code along with the use of functions for representing the thermal and dynamic properties of the coolant and moderator (heavy water) allow to have estimations of the in-core steam generation under nominal flow conditions for a generic fission power distribution. The in-core mass flow distribution results for steady state nominal conditions are in agreement with the expected from design, thus getting a first assessment of the coupled 1/3D model. Results for nominal condition were compared with those obtained with a previous 1/3D single-phase model getting more realistic temperature patterns, also allowing visualize low values of void fraction inside the upper plenum. It must be mentioned that the current results were obtained by imposing prescribed fission power functions from literature. Therefore, results are showed with the aim of point out the potentiality of the developed model.Keywords: PHWR, CFD, thermo-hydraulic, two-phase flow
Procedia PDF Downloads 46918595 Drug Delivery to Solid Tumor: Effect of Dynamic Capillary Network Induced by Tumor
Authors: Mostafa Sefidgar, Kaamran Raahemifar, Hossein Bazmara, Madjid Soltani
Abstract:
The computational methods provide condition for investigation related to the process of drug delivery, such as convection and diffusion of drug in extracellular matrices, and drug extravasation from microvascular. The information of this process clarifies the mechanisms of drug delivery from the injection site to absorption by a solid tumor. In this study, an advanced numerical method is used to solve fluid flow and solute transport equations simultaneously to show how capillary network structure induced by tumor affects drug delivery. The effect of heterogeneous capillary network induced by tumor on interstitial fluid flow and drug delivery is investigated by this multi scale method. The sprouting angiogenesis model is used for generating capillary network induced by tumor. Fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network and fluid flow in normal and tumor tissues. The Starling’s law is used for closing this system of equations and coupling the intravascular and extravascular flows. Finally, convection-diffusion-reaction equation is used to simulate drug delivery. The dynamic approach which changes the capillary network structure based on signals sent by hemodynamic and metabolic stimuli is used in this study for more realistic assumption. The study indicates that drug delivery to solid tumors depends on the tumor induced capillary network structure. The dynamic approach generates the irregular capillary network around the tumor and predicts a higher interstitial pressure in the tumor region. This elevated interstitial pressure with irregular capillary network leads to a heterogeneous distribution of drug in the tumor region similar to in vivo observations. The investigation indicates that the drug transport properties have a significant role against the physiological barrier of drug delivery to a solid tumor.Keywords: solid tumor, physiological barriers to drug delivery, angiogenesis, microvascular network, solute transport
Procedia PDF Downloads 31418594 Optimization of Air Pollution Control Model for Mining
Authors: Zunaira Asif, Zhi Chen
Abstract:
The sustainable measures on air quality management are recognized as one of the most serious environmental concerns in the mining region. The mining operations emit various types of pollutants which have significant impacts on the environment. This study presents a stochastic control strategy by developing the air pollution control model to achieve a cost-effective solution. The optimization method is formulated to predict the cost of treatment using linear programming with an objective function and multi-constraints. The constraints mainly focus on two factors which are: production of metal should not exceed the available resources, and air quality should meet the standard criteria of the pollutant. The applicability of this model is explored through a case study of an open pit metal mine, Utah, USA. This method simultaneously uses meteorological data as a dispersion transfer function to support the practical local conditions. The probabilistic analysis and the uncertainties in the meteorological conditions are accomplished by Monte Carlo simulation. Reasonable results have been obtained to select the optimized treatment technology for PM2.5, PM10, NOx, and SO2. Additional comparison analysis shows that baghouse is the least cost option as compared to electrostatic precipitator and wet scrubbers for particulate matter, whereas non-selective catalytical reduction and dry-flue gas desulfurization are suitable for NOx and SO2 reduction respectively. Thus, this model can aid planners to reduce these pollutants at a marginal cost by suggesting control pollution devices, while accounting for dynamic meteorological conditions and mining activities.Keywords: air pollution, linear programming, mining, optimization, treatment technologies
Procedia PDF Downloads 20818593 The Application of System Approach to Knowledge Management and Human Resource Management Evidence from Tehran Municipality
Authors: Vajhollah Ghorbanizadeh, Seyed Mohsen Asadi, Mirali Seyednaghavi, Davoud Hoseynpour
Abstract:
In the current era, all organizations need knowledge to be able to manage the diverse human resources. Creative, dynamic and knowledge-based Human resources are important competitive advantage and the scarcest resource in today's knowledge-based economy. In addition managers with skills of knowledge management must be aware of human resource management science. It is now generally accepted that successful implementation of knowledge management requires dynamic interaction between knowledge management and human resource management. This is emphasized at systematic approach to knowledge management as well. However human resource management can be complementary of knowledge management because human resources management with the aim of empowering human resources as the key resource organizations in the 21st century, the use of other resources, creating and growing and developing today. Thus, knowledge is the major capital of every organization which is introduced through the process of knowledge management. In this context, knowledge management is systematic approach to create, receive, organize, access, and use of knowledge and learning in the organization. This article aims to define and explain the concepts of knowledge management and human resource management and the importance of these processes and concepts. Literature related to knowledge management and human resource management as well as related topics were studied, then to design, illustrate and provide a theoretical model to explain the factors affecting the relationship between knowledge management and human resource management and knowledge management system approach, for schematic design and are drawn.Keywords: systemic approach, human resources, knowledge, human resources management, knowledge management
Procedia PDF Downloads 37718592 Equivalent Circuit Model for the Eddy Current Damping with Frequency-Dependence
Authors: Zhiguo Shi, Cheng Ning Loong, Jiazeng Shan, Weichao Wu
Abstract:
This study proposes an equivalent circuit model to simulate the eddy current damping force with shaking table tests and finite element modeling. The model is firstly proposed and applied to a simple eddy current damper, which is modelled in ANSYS, indicating that the proposed model can simulate the eddy current damping force under different types of excitations. Then, a non-contact and friction-free eddy current damper is designed and tested, and the proposed model can reproduce the experimental observations. The excellent agreement between the simulated results and the experimental data validates the accuracy and reliability of the equivalent circuit model. Furthermore, a more complicated model is performed in ANSYS to verify the feasibility of the equivalent circuit model in complex eddy current damper, and the higher-order fractional model and viscous model are adopted for comparison.Keywords: equivalent circuit model, eddy current damping, finite element model, shake table test
Procedia PDF Downloads 19318591 Analyzing the Performance of Different Cost-Based Methods for the Corrective Maintenance of a System in Thermal Power Plants
Authors: Demet Ozgur-Unluakin, Busenur Turkali, S. Caglar Aksezer
Abstract:
Since the age of industrialization, maintenance has always been a very crucial element for all kinds of factories and plants. With today’s increasingly developing technology, the system structure of such facilities has become more complicated, and even a small operational disruption may return huge losses in profits for the companies. In order to reduce these costs, effective maintenance planning is crucial, but at the same time, it is a difficult task because of the complexity of systems. The most important aspect of correct maintenance planning is to understand the structure of the system, not to ignore the dependencies among the components and as a result, to model the system correctly. In this way, it will be better to understand which component improves the system more when it is maintained. Undoubtedly, proactive maintenance at a scheduled time reduces costs because the scheduled maintenance prohibits high losses in profits. But the necessity of corrective maintenance, which directly affects the situation of the system and provides direct intervention when the system fails, should not be ignored. When a fault occurs in the system, if the problem is not solved immediately and proactive maintenance time is awaited, this may result in increased costs. This study proposes various maintenance methods with different efficiency measures under corrective maintenance strategy on a subsystem of a thermal power plant. To model the dependencies between the components, dynamic Bayesian Network approach is employed. The proposed maintenance methods aim to minimize the total maintenance cost in a planning horizon, as well as to find the most appropriate component to be attacked on, which improves the system reliability utmost. Performances of the methods are compared under corrective maintenance strategy. Furthermore, sensitivity analysis is also applied under different cost values. Results show that all fault effect methods perform better than the replacement effect methods and this conclusion is also valid under different downtime cost values.Keywords: dynamic Bayesian networks, maintenance, multi-component systems, reliability
Procedia PDF Downloads 13018590 A Seismic Study on The Settlement of Superstructures Due to the Tunnel Construction
Authors: Seyed Abolhasan Naeini, Saeideh Mohammadi
Abstract:
Rapid urban development leads to the construction of urban tunnels for transport. Passage of tunnels under the surface structures and utilities prompted the changes in the site conditions and hence alteration of the dynamic response of surface structures. Therefore, in this study, the effect of the interaction of tunnel-superstructure on the site response is investigated numerically. For this purpose, Fast Lagrangian Analysis of Continua (FLAC 2D) is used, and stratification and properties of soil layers are selected based on the line No 7 of Tehran subway. The superstructure is modeled both as an equivalent surcharge and the actual structure, and the results are compared. A comparison of the results shows that consideration of structure geometry is necessary for dynamic analysis and it leads to the changes in displacements and accelerations. Consequently, the geometry of the superstructure should be modeled completely instead of the application of an equivalent load. The effect of tunnel diameter and depth on the settlement of superstructures is also studied. Results show that when the tunnel depth and diameter grow, the settlements increase considerably.Keywords: tunnel, FLAC2D, settlement, dynamic analysis
Procedia PDF Downloads 13118589 Investigations on Pyrolysis Model for Radiatively Dominant Diesel Pool Fire Using Fire Dynamic Simulator
Authors: Siva K. Bathina, Sudheer Siddapureddy
Abstract:
Pool fires are formed when the flammable liquid accidentally spills on the ground or water and ignites. Pool fire is a kind of buoyancy-driven and diffusion flame. There have been many pool fire accidents caused during processing, handling and storing of liquid fuels in chemical and oil industries. Such kind of accidents causes enormous damage to property as well as the loss of lives. Pool fires are complex in nature due to the strong interaction among the combustion, heat and mass transfers and pyrolysis at the fuel surface. Moreover, the experimental study of such large complex fires involves fire safety issues and difficulties in performing experiments. In the present work, large eddy simulations are performed to study such complex fire scenarios using fire dynamic simulator. A 1 m diesel pool fire is considered for the studied cases, and diesel is chosen as it is most commonly involved fuel in fire accidents. Fire simulations are performed by specifying two different boundary conditions: one the fuel is in liquid state and pyrolysis model is invoked, and the other by assuming the fuel is initially in a vapor state and thereby prescribing the mass loss rate. A domain of size 11.2 m × 11.2 m × 7.28 m with uniform structured grid is chosen for the numerical simulations. Grid sensitivity analysis is performed, and a non-dimensional grid size of 12 corresponding to 8 cm grid size is considered. Flame properties like mass burning rate, irradiance, and time-averaged axial flame temperature profile are predicted. The predicted steady-state mass burning rate is 40 g/s and is within the uncertainty limits of the previously reported experimental data (39.4 g/s). Though the profile of the irradiance at a distance from the fire along the height is somewhat in line with the experimental data and the location of the maximum value of irradiance is shifted to a higher location. This may be due to the lack of sophisticated models for the species transportation along with combustion and radiation in the continuous zone. Furthermore, the axial temperatures are not predicted well (for any of the boundary conditions) in any of the zones. The present study shows that the existing models are not sufficient enough for modeling blended fuels like diesel. The predictions are strongly dependent on the experimental values of the soot yield. Future experiments are necessary for generalizing the soot yield for different fires.Keywords: burning rate, fire accidents, fire dynamic simulator, pyrolysis
Procedia PDF Downloads 20118588 The Extended Skew Gaussian Process for Regression
Authors: M. T. Alodat
Abstract:
In this paper, we propose a generalization to the Gaussian process regression(GPR) model called the extended skew Gaussian process for regression(ESGPr) model. The ESGPR model works better than the GPR model when the errors are skewed. We derive the predictive distribution for the ESGPR model at a new input. Also we apply the ESGPR model to FOREX data and we find that it fits the Forex data better than the GPR model.Keywords: extended skew normal distribution, Gaussian process for regression, predictive distribution, ESGPr model
Procedia PDF Downloads 55418587 Dynamic Reroute Modeling for Emergency Evacuation: Case Study of Brunswick City, Germany
Authors: Yun-Pang Flötteröd, Jakob Erdmann
Abstract:
The human behaviors during evacuations are quite complex. One of the critical behaviors which affect the efficiency of evacuation is route choice. Therefore, the respective simulation modeling work needs to function properly. In this paper, Simulation of Urban Mobility’s (SUMO) current dynamic route modeling during evacuation, i.e. the rerouting functions, is examined with a real case study. The result consistency of the simulation and the reality is checked as well. Four influence factors (1) time to get information, (2) probability to cancel a trip, (3) probability to use navigation equipment, and (4) rerouting and information updating period are considered to analyze possible traffic impacts during the evacuation and to examine the rerouting functions in SUMO. Furthermore, some behavioral characters of the case study are analyzed with use of the corresponding detector data and applied in the simulation. The experiment results show that the dynamic route modeling in SUMO can deal with the proposed scenarios properly. Some issues and function needs related to route choice are discussed and further improvements are suggested.Keywords: evacuation, microscopic traffic simulation, rerouting, SUMO
Procedia PDF Downloads 19418586 Design, Analysis and Obstacle Avoidance Control of an Electric Wheelchair with Sit-Sleep-Seat Elevation Functions
Authors: Waleed Ahmed, Huang Xiaohua, Wilayat Ali
Abstract:
The wheelchair users are generally exposed to physical and psychological health problems, e.g., pressure sores and pain in the hip joint, associated with seating posture or being inactive in a wheelchair for a long time. Reclining Wheelchair with back, thigh, and leg adjustment helps in daily life activities and health preservation. The seat elevating function of an electric wheelchair allows the user (lower limb amputation) to reach different heights. An electric wheelchair is expected to ease the lives of the elderly and disable people by giving them mobility support and decreasing the percentage of accidents caused by users’ narrow sight or joystick operation errors. Thus, this paper proposed the design, analysis and obstacle avoidance control of an electric wheelchair with sit-sleep-seat elevation functions. A 3D model of a wheelchair is designed in SolidWorks that was later used for multi-body dynamic (MBD) analysis and to verify driving control system. The control system uses the fuzzy algorithm to avoid the obstacle by getting information in the form of distance from the ultrasonic sensor and user-specified direction from the joystick’s operation. The proposed fuzzy driving control system focuses on the direction and velocity of the wheelchair. The wheelchair model has been examined and proven in MSC Adams (Automated Dynamic Analysis of Mechanical Systems). The designed fuzzy control algorithm is implemented on Gazebo robotic 3D simulator using Robotic Operating System (ROS) middleware. The proposed wheelchair design enhanced mobility and quality of life by improving the user’s functional capabilities. Simulation results verify the non-accidental behavior of the electric wheelchair.Keywords: fuzzy logic control, joystick, multi body dynamics, obstacle avoidance, scissor mechanism, sensor
Procedia PDF Downloads 12918585 Camera Model Identification for Mi Pad 4, Oppo A37f, Samsung M20, and Oppo f9
Authors: Ulrich Wake, Eniman Syamsuddin
Abstract:
The model for camera model identificaiton is trained using pretrained model ResNet43 and ResNet50. The dataset consists of 500 photos of each phone. Dataset is divided into 1280 photos for training, 320 photos for validation and 400 photos for testing. The model is trained using One Cycle Policy Method and tested using Test-Time Augmentation. Furthermore, the model is trained for 50 epoch using regularization such as drop out and early stopping. The result is 90% accuracy for validation set and above 85% for Test-Time Augmentation using ResNet50. Every model is also trained by slightly updating the pretrained model’s weightsKeywords: One Cycle Policy, ResNet34, ResNet50, Test-Time Agumentation
Procedia PDF Downloads 20918584 Identifying Dynamic Structural Parameters of Soil-Structure System Based on Data Recorded during Strong Earthquakes
Authors: Vahidreza Mahmoudabadi, Omid Bahar, Mohammad Kazem Jafari
Abstract:
In many applied engineering problems, structural analysis is usually conducted by assuming a rigid bed, while imposing the effect of structure bed flexibility can affect significantly on the structure response. This article focuses on investigation and evaluation of the effects arising from considering a soil-structure system in evaluation of dynamic characteristics of a steel structure with respect to elastic and inelastic behaviors. The recorded structure acceleration during Taiwan’s strong Chi-Chi earthquake on different floors of the structure was our evaluation criteria. The respective structure is an eight-story steel bending frame structure designed using a displacement-based direct method assuring weak beam - strong column function. The results indicated that different identification methods i.e. reverse Fourier transform or transfer functions, is capable to determine some of the dynamic parameters of the structure precisely, rather than evaluating all of them at once (mode frequencies, mode shapes, structure damping, structure rigidity, etc.). Response evaluation based on the input and output data elucidated that the structure first mode is not significantly affected, even considering the soil-structure interaction effect, but the upper modes have been changed. Also, it was found that the response transfer function of the different stories, in which plastic hinges have occurred in the structure components, provides similar results.Keywords: bending steel frame structure, dynamic characteristics, displacement-based design, soil-structure system, system identification
Procedia PDF Downloads 50518583 Complexity in a Leslie-Gower Delayed Prey-Predator Model
Authors: Anuraj Singh
Abstract:
The complex dynamics is explored in a prey predator system with multiple delays. The predator dynamics is governed by Leslie-Gower scheme. The existence of periodic solutions via Hopf bifurcation with respect to delay parameters is established. To substantiate analytical findings, numerical simulations are performed. The system shows rich dynamic behavior including chaos and limit cycles.Keywords: chaos, Hopf bifurcation, stability, time delay
Procedia PDF Downloads 32618582 Uncovering the Complex Structure of Building Design Process Based on Royal Institute of British Architects Plan of Work
Authors: Fawaz A. Binsarra, Halim Boussabaine
Abstract:
The notion of complexity science has been attracting the interest of researchers and professionals due to the need of enhancing the efficiency of understanding complex systems dynamic and structure of interactions. In addition, complexity analysis has been used as an approach to investigate complex systems that contains a large number of components interacts with each other to accomplish specific outcomes and emerges specific behavior. The design process is considered as a complex action that involves large number interacted components, which are ranked as design tasks, design team, and the components of the design process. Those three main aspects of the building design process consist of several components that interact with each other as a dynamic system with complex information flow. In this paper, the goal is to uncover the complex structure of information interactions in building design process. The Investigating of Royal Institute of British Architects Plan Of Work 2013 information interactions as a case study to uncover the structure and building design process complexity using network analysis software to model the information interaction will significantly enhance the efficiency of the building design process outcomes.Keywords: complexity, process, building desgin, Riba, design complexity, network, network analysis
Procedia PDF Downloads 52918581 On Optimum Stratification
Authors: M. G. M. Khan, V. D. Prasad, D. K. Rao
Abstract:
In this manuscript, we discuss the problem of determining the optimum stratification of a study (or main) variable based on the auxiliary variable that follows a uniform distribution. If the stratification of survey variable is made using the auxiliary variable it may lead to substantial gains in precision of the estimates. This problem is formulated as a Nonlinear Programming Problem (NLPP), which turn out to multistage decision problem and is solved using dynamic programming technique.Keywords: auxiliary variable, dynamic programming technique, nonlinear programming problem, optimum stratification, uniform distribution
Procedia PDF Downloads 33418580 Simulation-Based Optimization of a Non-Uniform Piezoelectric Energy Harvester with Stack Boundary
Authors: Alireza Keshmiri, Shahriar Bagheri, Nan Wu
Abstract:
This research presents an analytical model for the development of an energy harvester with piezoelectric rings stacked at the boundary of the structure based on the Adomian decomposition method. The model is applied to geometrically non-uniform beams to derive the steady-state dynamic response of the structure subjected to base motion excitation and efficiently harvest the subsequent vibrational energy. The in-plane polarization of the piezoelectric rings is employed to enhance the electrical power output. A parametric study for the proposed energy harvester with various design parameters is done to prepare the dataset required for optimization. Finally, simulation-based optimization technique helps to find the optimum structural design with maximum efficiency. To solve the optimization problem, an artificial neural network is first trained to replace the simulation model, and then, a genetic algorithm is employed to find the optimized design variables. Higher geometrical non-uniformity and length of the beam lowers the structure natural frequency and generates a larger power output.Keywords: piezoelectricity, energy harvesting, simulation-based optimization, artificial neural network, genetic algorithm
Procedia PDF Downloads 12318579 Coarse-Graining in Micromagnetic Simulations of Magnetic Hyperthermia
Authors: Razyeh Behbahani, Martin L. Plumer, Ivan Saika-Voivod
Abstract:
Micromagnetic simulations based on the stochastic Landau-Lifshitz-Gilbert equation are used to calculate dynamic magnetic hysteresis loops relevant to magnetic hyperthermia applications. With the goal to effectively simulate room-temperature loops for large iron-oxide based systems at relatively slow sweep rates on the order of 1 Oe/ns or less, a coarse-graining scheme is proposed and tested. The scheme is derived from a previously developed renormalization-group approach. Loops associated with nanorods, used as building blocks for larger nanoparticles that were employed in preclinical trials (Dennis et al., 2009 Nanotechnology 20 395103), serve as the model test system. The scaling algorithm is shown to produce nearly identical loops over several decades in the model grain sizes. Sweep-rate scaling involving the damping constant alpha is also demonstrated.Keywords: coarse-graining, hyperthermia, hysteresis loops, micromagnetic simulations
Procedia PDF Downloads 14918578 Moderating and Mediating Effects of Business Model Innovation Barriers during Crises: A Structural Equation Model Tested on German Chemical Start-Ups
Authors: Sarah Mueller-Saegebrecht, André Brendler
Abstract:
Business model innovation (BMI) as an intentional change of an existing business model (BM) or the design of a new BM is essential to a firm's development in dynamic markets. The relevance of BMI is also evident in the ongoing COVID-19 pandemic, in which start-ups, in particular, are affected by limited access to resources. However, first studies also show that they react faster to the pandemic than established firms. A strategy to successfully handle such threatening dynamic changes represents BMI. Entrepreneurship literature shows how and when firms should utilize BMI in times of crisis and which barriers one can expect during the BMI process. Nevertheless, research merging BMI barriers and crises is still underexplored. Specifically, further knowledge about antecedents and the effect of moderators on the BMI process is necessary for advancing BMI research. The addressed research gap of this study is two-folded: First, foundations to the subject on how different crises impact BM change intention exist, yet their analysis lacks the inclusion of barriers. Especially, entrepreneurship literature lacks knowledge about the individual perception of BMI barriers, which is essential to predict managerial reactions. Moreover, internal BMI barriers have been the focal point of current research, while external BMI barriers remain virtually understudied. Second, to date, BMI research is based on qualitative methodologies. Thus, a lack of quantitative work can specify and confirm these qualitative findings. By focusing on the crisis context, this study contributes to BMI literature by offering a first quantitative attempt to embed BMI barriers into a structural equation model. It measures managers' perception of BMI development and implementation barriers in the BMI process, asking the following research question: How does a manager's perception of BMI barriers influence BMI development and implementation in times of crisis? Two distinct research streams in economic literature explain how individuals react when perceiving a threat. "Prospect Theory" claims that managers demonstrate risk-seeking tendencies when facing a potential loss, and opposing "Threat-Rigidity Theory" suggests that managers demonstrate risk-averse behavior when facing a potential loss. This study quantitively tests which theory can best predict managers' BM reaction to a perceived crisis. Out of three in-depth interviews in the German chemical industry, 60 past BMIs were identified. The participating start-up managers gave insights into their start-up's strategic and operational functioning. After, each interviewee described crises that had already affected their BM. The participants explained how they conducted BMI to overcome these crises, which development and implementation barriers they faced, and how severe they perceived them, assessed on a 5-point Likert scale. In contrast to current research, results reveal that a higher perceived threat level of a crisis harms BM experimentation. Managers seem to conduct less BMI in times of crisis, whereby BMI development barriers dampen this relation. The structural equation model unveils a mediating role of BMI implementation barriers on the link between the intention to change a BM and the concrete BMI implementation. In conclusion, this study confirms the threat-rigidity theory.Keywords: barrier perception, business model innovation, business model innovation barriers, crises, prospect theory, start-ups, structural equation model, threat-rigidity theory
Procedia PDF Downloads 9518577 Numerical Investigation of Dynamic Stall over a Wind Turbine Pitching Airfoil by Using OpenFOAM
Authors: Mahbod Seyednia, Shidvash Vakilipour, Mehran Masdari
Abstract:
Computations for two-dimensional flow past a stationary and harmonically pitching wind turbine airfoil at a moderate value of Reynolds number (400000) are carried out by progressively increasing the angle of attack for stationary airfoil and at fixed pitching frequencies for rotary one. The incompressible Navier-Stokes equations in conjunction with Unsteady Reynolds Average Navier-Stokes (URANS) equations for turbulence modeling are solved by OpenFOAM package to investigate the aerodynamic phenomena occurred at stationary and pitching conditions on a NACA 6-series wind turbine airfoil. The aim of this study is to enhance the accuracy of numerical simulation in predicting the aerodynamic behavior of an oscillating airfoil in OpenFOAM. Hence, for turbulence modelling, k-ω-SST with low-Reynolds correction is employed to capture the unsteady phenomena occurred in stationary and oscillating motion of the airfoil. Using aerodynamic and pressure coefficients along with flow patterns, the unsteady aerodynamics at pre-, near-, and post-static stall regions are analyzed in harmonically pitching airfoil, and the results are validated with the corresponding experimental data possessed by the authors. The results indicate that implementing the mentioned turbulence model leads to accurate prediction of the angle of static stall for stationary airfoil and flow separation, dynamic stall phenomenon, and reattachment of the flow on the surface of airfoil for pitching one. Due to the geometry of the studied 6-series airfoil, the vortex on the upper surface of the airfoil during upstrokes is formed at the trailing edge. Therefore, the pattern flow obtained by our numerical simulations represents the formation and change of the trailing-edge vortex at near- and post-stall regions where this process determines the dynamic stall phenomenon.Keywords: CFD, moderate Reynolds number, OpenFOAM, pitching oscillation, unsteady aerodynamics, wind turbine
Procedia PDF Downloads 20418576 Applicability of Fuzzy Logic for Intrusion Detection in Mobile Adhoc Networks
Authors: Ruchi Makani, B. V. R. Reddy
Abstract:
Mobile Adhoc Networks (MANETs) are gaining popularity due to their potential of providing low-cost mobile connectivity solutions to real-world communication problems. Integrating Intrusion Detection Systems (IDS) in MANETs is a tedious task by reason of its distinctive features such as dynamic topology, de-centralized authority and highly controlled/limited resource environment. IDS primarily use automated soft-computing techniques to monitor the inflow/outflow of traffic packets in a given network to detect intrusion. Use of machine learning techniques in IDS enables system to make decisions on intrusion while continuous keep learning about their dynamic environment. An appropriate IDS model is essential to be selected to expedite this application challenges. Thus, this paper focused on fuzzy-logic based machine learning IDS technique for MANETs and presented their applicability for achieving effectiveness in identifying the intrusions. Further, the selection of appropriate protocol attributes and fuzzy rules generation plays significant role for accuracy of the fuzzy-logic based IDS, have been discussed. This paper also presents the critical attributes of MANET’s routing protocol and its applicability in fuzzy logic based IDS.Keywords: AODV, mobile adhoc networks, intrusion detection, anomaly detection, fuzzy logic, fuzzy membership function, fuzzy inference system
Procedia PDF Downloads 17918575 A Cohesive Zone Model with Parameters Determined by Uniaxial Stress-Strain Curve
Abstract:
A key issue of cohesive zone models is how to determine the cohesive zone model parameters based on real material test data. In this paper, uniaxial nominal stress-strain curve (SS curve) is used to determine two key parameters of a cohesive zone model (CZM): The maximum traction and the area under the curve of traction-separation law (TSL). To this end, the true SS curve is obtained based on the nominal SS curve, and the relationship between the nominal SS curve and TSL is derived based on an assumption that the stress for cracking should be the same in both CZM and the real material. In particular, the true SS curve after necking is derived from the nominal SS curve by taking the average of the power law extrapolation and the linear extrapolation, and a damage factor is introduced to offset the true stress reduction caused by the voids generated at the necking zone. The maximum traction of the TSL is equal to the maximum true stress calculated based on the damage factor at the end of hardening. In addition, a simple specimen is modeled by Abaqus/Standard to calculate the critical J-integral, and the fracture energy calculated by the critical J-integral represents the stored strain energy in the necking zone calculated by the true SS curve. Finally, the CZM parameters obtained by the present method are compared to those used in a previous related work for a simulation of the drop-weight tear test.Keywords: dynamic fracture, cohesive zone model, traction-separation law, stress-strain curve, J-integral
Procedia PDF Downloads 47518574 Integration of Big Data to Predict Transportation for Smart Cities
Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin
Abstract:
The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system. The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.Keywords: big data, machine learning, smart city, social cost, transportation network
Procedia PDF Downloads 26218573 Human Walking Vertical Force and Vertical Vibration of Pedestrian Bridge Induced by Its Higher Components
Authors: Masahiro Yoneda
Abstract:
The purpose of this study is to identify human walking vertical force by using FFT power spectrum density from the experimental acceleration data of the human body. An experiment on human walking is carried out on a stationary floor especially paying attention to higher components of dynamic vertical walking force. Based on measured acceleration data of the human lumbar part, not only in-phase component with frequency of 2 fw, 3 fw, but also in-opposite-phase component with frequency of 0.5 fw, 1.5 fw, 2.5 fw where fw is the walking rate is observed. The vertical vibration of pedestrian bridge induced by higher components of human walking vertical force is also discussed in this paper. A full scale measurement for the existing pedestrian bridge with center span length of 33 m is carried out focusing on the resonance phenomenon due to higher components of human walking vertical force. Dynamic response characteristics excited by these vertical higher components of human walking are revealed from the dynamic design viewpoint of pedestrian bridge.Keywords: simplified method, human walking vertical force, higher component, pedestrian bridge vibration
Procedia PDF Downloads 43518572 Behavior Factors Evaluation for Reinforced Concrete Structures
Authors: Muhammad Rizwan, Naveed Ahmad, Akhtar Naeem Khan
Abstract:
Seismic behavior factors are evaluated for the performance assessment of low rise reinforced concrete RC frame structures based on experimental study of unidirectional dynamic shake table testing of two 1/3rd reduced scaled two storey frames, with a code confirming special moment resisting frame (SMRF) model and a noncompliant model of similar characteristics but built in low strength concrete .The models were subjected to a scaled accelerogram record of 1994 Northridge earthquake to deformed the test models to final collapse stage in order to obtain the structural response parameters. The fully compliant model was observed with more stable beam-sway response, experiencing beam flexure yielding and ground-storey column base yielding upon subjecting to 100% of the record. The response modification factor - R factor obtained for the code complaint and deficient prototype structures were 7.5 and 4.5 respectively, which is about 10% and 40% less than the UBC-97 specified value for special moment resisting reinforced concrete frame structures.Keywords: Northridge 1994 earthquake, reinforced concrete frame, response modification factor, shake table testing
Procedia PDF Downloads 17318571 Monocular Depth Estimation Benchmarking with Thermal Dataset
Authors: Ali Akyar, Osman Serdar Gedik
Abstract:
Depth estimation is a challenging computer vision task that involves estimating the distance between objects in a scene and the camera. It predicts how far each pixel in the 2D image is from the capturing point. There are some important Monocular Depth Estimation (MDE) studies that are based on Vision Transformers (ViT). We benchmark three major studies. The first work aims to build a simple and powerful foundation model that deals with any images under any condition. The second work proposes a method by mixing multiple datasets during training and a robust training objective. The third work combines generalization performance and state-of-the-art results on specific datasets. Although there are studies with thermal images too, we wanted to benchmark these three non-thermal, state-of-the-art studies with a hybrid image dataset which is taken by Multi-Spectral Dynamic Imaging (MSX) technology. MSX technology produces detailed thermal images by bringing together the thermal and visual spectrums. Using this technology, our dataset images are not blur and poorly detailed as the normal thermal images. On the other hand, they are not taken at the perfect light conditions as RGB images. We compared three methods under test with our thermal dataset which was not done before. Additionally, we propose an image enhancement deep learning model for thermal data. This model helps extract the features required for monocular depth estimation. The experimental results demonstrate that, after using our proposed model, the performance of these three methods under test increased significantly for thermal image depth prediction.Keywords: monocular depth estimation, thermal dataset, benchmarking, vision transformers
Procedia PDF Downloads 3418570 Approximate Solution of Some Mixed Boundary Value Problems of the Generalized Theory of Couple-Stress Thermo-Elasticity
Authors: Manana Chumburidze, David Lekveishvili
Abstract:
We have considered the harmonic oscillations and general dynamic (pseudo oscillations) systems of theory generalized Green-Lindsay of couple-stress thermo-elasticity for isotropic, homogeneous elastic media. Approximate solution of some mixed boundary value problems for finite domain, bounded by the some closed surface are constructed.Keywords: the couple-stress thermoelasticity, boundary value problems, dynamic problems, approximate solution
Procedia PDF Downloads 50718569 Development of PSS/E Dynamic Model for Controlling Battery Output to Improve Frequency Stability in Power Systems
Authors: Dae-Hee Son, Soon-Ryul Nam
Abstract:
The power system frequency falls when disturbance such as rapid increase of system load or loss of a generating unit occurs in power systems. Especially, increase in the number of renewable generating units has a bad influence on the power system because of loss of generating unit depending on the circumstance. Conventional technologies use frequency droop control battery output for the frequency regulation and balance between supply and demand. If power is supplied using the fast output characteristic of the battery, power system stability can be further more improved. To improve the power system stability, we propose battery output control using ROCOF (Rate of Change of Frequency) in this paper. The bigger the power difference between the supply and the demand, the bigger the ROCOF drops. Battery output is controlled proportionally to the magnitude of the ROCOF, allowing for faster response to power imbalances. To simulate the control method of battery output system, we develop the user defined model using PSS/E and confirm that power system stability is improved by comparing with frequency droop control.Keywords: PSS/E user defined model, power deviation, frequency droop control, ROCOF (rate of change of frequency)
Procedia PDF Downloads 41518568 Determination of Cohesive Zone Model’s Parameters Based On the Uniaxial Stress-Strain Curve
Authors: Y. J. Wang, C. Q. Ru
Abstract:
A key issue of cohesive zone models is how to determine the cohesive zone model (CZM) parameters based on real material test data. In this paper, uniaxial nominal stress-strain curve (SS curve) is used to determine two key parameters of a cohesive zone model: the maximum traction and the area under the curve of traction-separation law (TSL). To this end, the true SS curve is obtained based on the nominal SS curve, and the relationship between the nominal SS curve and TSL is derived based on an assumption that the stress for cracking should be the same in both CZM and the real material. In particular, the true SS curve after necking is derived from the nominal SS curve by taking the average of the power law extrapolation and the linear extrapolation, and a damage factor is introduced to offset the true stress reduction caused by the voids generated at the necking zone. The maximum traction of the TSL is equal to the maximum true stress calculated based on the damage factor at the end of hardening. In addition, a simple specimen is simulated by Abaqus/Standard to calculate the critical J-integral, and the fracture energy calculated by the critical J-integral represents the stored strain energy in the necking zone calculated by the true SS curve. Finally, the CZM parameters obtained by the present method are compared to those used in a previous related work for a simulation of the drop-weight tear test.Keywords: dynamic fracture, cohesive zone model, traction-separation law, stress-strain curve, J-integral
Procedia PDF Downloads 514