Search results for: canopy characters classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2775

Search results for: canopy characters classification

1965 Comparison Of Data Mining Models To Predict Future Bridge Conditions

Authors: Pablo Martinez, Emad Mohamed, Osama Mohsen, Yasser Mohamed

Abstract:

Highway and bridge agencies, such as the Ministry of Transportation in Ontario, use the Bridge Condition Index (BCI) which is defined as the weighted condition of all bridge elements to determine the rehabilitation priorities for its bridges. Therefore, accurate forecasting of BCI is essential for bridge rehabilitation budgeting planning. The large amount of data available in regard to bridge conditions for several years dictate utilizing traditional mathematical models as infeasible analysis methods. This research study focuses on investigating different classification models that are developed to predict the bridge condition index in the province of Ontario, Canada based on the publicly available data for 2800 bridges over a period of more than 10 years. The data preparation is a key factor to develop acceptable classification models even with the simplest one, the k-NN model. All the models were tested, compared and statistically validated via cross validation and t-test. A simple k-NN model showed reasonable results (within 0.5% relative error) when predicting the bridge condition in an incoming year.

Keywords: asset management, bridge condition index, data mining, forecasting, infrastructure, knowledge discovery in databases, maintenance, predictive models

Procedia PDF Downloads 191
1964 Classifications of Images for the Recognition of People’s Behaviors by SIFT and SVM

Authors: Henni Sid Ahmed, Belbachir Mohamed Faouzi, Jean Caelen

Abstract:

Behavior recognition has been studied for realizing drivers assisting system and automated navigation and is an important studied field in the intelligent Building. In this paper, a recognition method of behavior recognition separated from a real image was studied. Images were divided into several categories according to the actual weather, distance and angle of view etc. SIFT was firstly used to detect key points and describe them because the SIFT (Scale Invariant Feature Transform) features were invariant to image scale and rotation and were robust to changes in the viewpoint and illumination. My goal is to develop a robust and reliable system which is composed of two fixed cameras in every room of intelligent building which are connected to a computer for acquisition of video sequences, with a program using these video sequences as inputs, we use SIFT represented different images of video sequences, and SVM (support vector machine) Lights as a programming tool for classification of images in order to classify people’s behaviors in the intelligent building in order to give maximum comfort with optimized energy consumption.

Keywords: video analysis, people behavior, intelligent building, classification

Procedia PDF Downloads 378
1963 Brain Computer Interface Implementation for Affective Computing Sensing: Classifiers Comparison

Authors: Ramón Aparicio-García, Gustavo Juárez Gracia, Jesús Álvarez Cedillo

Abstract:

A research line of the computer science that involve the study of the Human-Computer Interaction (HCI), which search to recognize and interpret the user intent by the storage and the subsequent analysis of the electrical signals of the brain, for using them in the control of electronic devices. On the other hand, the affective computing research applies the human emotions in the HCI process helping to reduce the user frustration. This paper shows the results obtained during the hardware and software development of a Brain Computer Interface (BCI) capable of recognizing the human emotions through the association of the brain electrical activity patterns. The hardware involves the sensing stage and analogical-digital conversion. The interface software involves algorithms for pre-processing of the signal in time and frequency analysis and the classification of patterns associated with the electrical brain activity. The methods used for the analysis and classification of the signal have been tested separately, by using a database that is accessible to the public, besides to a comparison among classifiers in order to know the best performing.

Keywords: affective computing, interface, brain, intelligent interaction

Procedia PDF Downloads 390
1962 The Reasons for Vegetarianism in Estonia and its Effects to Body Composition

Authors: Ülle Parm, Kata Pedamäe, Jaak Jürimäe, Evelin Lätt, Aivar Orav, Anna-Liisa Tamm

Abstract:

Vegetarianism has gained popularity across the world. It`s being chosen for multiple reasons, but among Estonians, these have remained unknown. Previously, attention to bone health and probable nutrient deficiency of vegetarians has been paid and in vegetarians lower body mass index (BMI) and blood cholesterol level has been found but the results are inconclusive. The goal was to explain reasons for choosing vegetarian diet in Estonia and impact of vegetarianism to body composition – BMI, fat percentage (fat%), fat mass (FM), and fat free mass (FFM). The study group comprised of 68 vegetarians and 103 omnivorous. The determining body composition with DXA (Hologic) was concluded in 2013. Body mass (medical electronic scale, A&D Instruments, Abingdon, UK) and height (Martin metal anthropometer to the nearest 0.1 cm) were measured and BMI calculated (kg/m2). General data (physical activity level included) was collected with questionnaires. The main reasons why vegetarianism was chosen were the healthiness of the vegetarian diet (59%) and the wish to fight for animal rights (72%) Food additives were consumed by less than half of vegetarians, more often by men. Vegetarians had lower BMI than omnivores, especially amongst men. Based on BMI classification, vegetarians were less obese than omnivores. However, there were no differences in the FM, FFM and fat percentage figures of the two groups. Higher BMI might be the cause of higher physical activity level among omnivores compared with vegetarians. For classifying people as underweight, normal weight, overweight and obese both BMI and fat% criteria were used. By BMI classification in comparison with fat%, more people in the normal weight group were considered; by using fat% in comparison with BMI classification, however, more people categorized as overweight. It can be concluded that the main reasons for vegetarianism chosen in Estonia are healthiness of the vegetarian diet and the wish to fight for animal rights and vegetarian diet has no effect on body fat percentage, FM and FFM.

Keywords: body composition, body fat percentage, body mass index, vegetarianism

Procedia PDF Downloads 419
1961 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review

Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha

Abstract:

Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision-making has not been far-fetched. Proper classification of this textual information in a given context has also been very difficult. As a result, we decided to conduct a systematic review of previous literature on sentiment classification and AI-based techniques that have been used in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that can correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy by assessing different artificial intelligence techniques. We evaluated over 250 articles from digital sources like ScienceDirect, ACM, Google Scholar, and IEEE Xplore and whittled down the number of research to 31. Findings revealed that Deep learning approaches such as CNN, RNN, BERT, and LSTM outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also necessary for developing a robust sentiment classifier and can be obtained from places like Twitter, movie reviews, Kaggle, SST, and SemEval Task4. Hybrid Deep Learning techniques like CNN+LSTM, CNN+GRU, CNN+BERT outperformed single Deep Learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of sentiment analyzer development due to its simplicity and AI-based library functionalities. Based on some of the important findings from this study, we made a recommendation for future research.

Keywords: artificial intelligence, natural language processing, sentiment analysis, social network, text

Procedia PDF Downloads 116
1960 Semi-Supervised Learning Using Pseudo F Measure

Authors: Mahesh Balan U, Rohith Srinivaas Mohanakrishnan, Venkat Subramanian

Abstract:

Positive and unlabeled learning (PU) has gained more attention in both academic and industry research literature recently because of its relevance to existing business problems today. Yet, there still seems to be some existing challenges in terms of validating the performance of PU learning, as the actual truth of unlabeled data points is still unknown in contrast to a binary classification where we know the truth. In this study, we propose a novel PU learning technique based on the Pseudo-F measure, where we address this research gap. In this approach, we train the PU model to discriminate the probability distribution of the positive and unlabeled in the validation and spy data. The predicted probabilities of the PU model have a two-fold validation – (a) the predicted probabilities of reliable positives and predicted positives should be from the same distribution; (b) the predicted probabilities of predicted positives and predicted unlabeled should be from a different distribution. We experimented with this approach on a credit marketing case study in one of the world’s biggest fintech platforms and found evidence for benchmarking performance and backtested using historical data. This study contributes to the existing literature on semi-supervised learning.

Keywords: PU learning, semi-supervised learning, pseudo f measure, classification

Procedia PDF Downloads 237
1959 Spontaneous Message Detection of Annoying Situation in Community Networks Using Mining Algorithm

Authors: P. Senthil Kumari

Abstract:

Main concerns in data mining investigation are social controls of data mining for handling ambiguity, noise, or incompleteness on text data. We describe an innovative approach for unplanned text data detection of community networks achieved by classification mechanism. In a tangible domain claim with humble secrecy backgrounds provided by community network for evading annoying content is presented on consumer message partition. To avoid this, mining methodology provides the capability to unswervingly switch the messages and similarly recover the superiority of ordering. Here we designated learning-centered mining approaches with pre-processing technique to complete this effort. Our involvement of work compact with rule-based personalization for automatic text categorization which was appropriate in many dissimilar frameworks and offers tolerance value for permits the background of comments conferring to a variety of conditions associated with the policy or rule arrangements processed by learning algorithm. Remarkably, we find that the choice of classifier has predicted the class labels for control of the inadequate documents on community network with great value of effect.

Keywords: text mining, data classification, community network, learning algorithm

Procedia PDF Downloads 509
1958 Classification of Random Doppler-Radar Targets during the Surveillance Operations

Authors: G. C. Tikkiwal, Mukesh Upadhyay

Abstract:

During the surveillance operations at war or peace time, the Radar operator gets a scatter of targets over the screen. This may be a tracked vehicle like tank vis-à-vis T72, BMP etc, or it may be a wheeled vehicle like ALS, TATRA, 2.5Tonne, Shaktiman or moving the army, moving convoys etc. The radar operator selects one of the promising targets into single target tracking (STT) mode. Once the target is locked, the operator gets a typical audible signal into his headphones. With reference to the gained experience and training over the time, the operator then identifies the random target. But this process is cumbersome and is solely dependent on the skills of the operator, thus may lead to misclassification of the object. In this paper, we present a technique using mathematical and statistical methods like fast fourier transformation (FFT) and principal component analysis (PCA) to identify the random objects. The process of classification is based on transforming the audible signature of target into music octave-notes. The whole methodology is then automated by developing suitable software. This automation increases the efficiency of identification of the random target by reducing the chances of misclassification. This whole study is based on live data.

Keywords: radar target, FFT, principal component analysis, eigenvector, octave-notes, DSP

Procedia PDF Downloads 394
1957 Prevalence of Lower Third Molar Impactions and Angulations Among Yemeni Population

Authors: Khawlah Al-Khalidi

Abstract:

Prevalence of lower third molar impactions and angulations among Yemeni population The purpose of this study was to look into the prevalence of lower third molars in a sample of patients from Ibb University Affiliated Hospital, as well as to study and categorise their position by using Pell and Gregory classification, and to look into a possible correlation between their position and the indication for extraction. Materials and methods: This is a retrospective, observational study in which a sample of 200 patients from Ibb University Affiliated Hospital were studied, including patient record validation and orthopantomography performed in screening appointments in people aged 16 to 21. Results and discussion: Males make up 63% of the sample, while people aged 19 to 20 make up 41.2%. Lower third molars were found in 365 of the 365 instances examined, accounting for 91% of the sample under study. According to Pell and Gregory's categorisation, the most common position is IIB, with 37%, followed by IIA with 21%; less common classes are IIIA, IC, and IIIC, with 1%, 3%, and 3%, respectively. It was feasible to determine that 56% of the lower third molars in the sample were recommended for extraction during the screening consultation. Finally, there are differences in third molar location and angulation. There was, however, a link between the available space for third molar eruption and the need for tooth extraction.

Keywords: lower third molar, extraction, Pell and Gregory classification, lower third molar impaction

Procedia PDF Downloads 58
1956 Detecting HCC Tumor in Three Phasic CT Liver Images with Optimization of Neural Network

Authors: Mahdieh Khalilinezhad, Silvana Dellepiane, Gianni Vernazza

Abstract:

The aim of the present work is to build a model based on tissue characterization that is able to discriminate pathological and non-pathological regions from three-phasic CT images. Based on feature selection in different phases, in this research, we design a neural network system that has optimal neuron number in a hidden layer. Our approach consists of three steps: feature selection, feature reduction, and classification. For each ROI, 6 distinct set of texture features are extracted such as first order histogram parameters, absolute gradient, run-length matrix, co-occurrence matrix, autoregressive model, and wavelet, for a total of 270 texture features. We show that with the injection of liquid and the analysis of more phases the high relevant features in each region changed. Our results show that for detecting HCC tumor phase3 is the best one in most of the features that we apply to the classification algorithm. The percentage of detection between these two classes according to our method, relates to first order histogram parameters with the accuracy of 85% in phase 1, 95% phase 2, and 95% in phase 3.

Keywords: multi-phasic liver images, texture analysis, neural network, hidden layer

Procedia PDF Downloads 263
1955 Comparative Analysis of Patent Protection between Health System and Enterprises in Shanghai, China

Authors: Na Li, Yunwei Zhang, Yuhong Niu

Abstract:

The study discussed the patent protections of health system and enterprises in Shanghai. The comparisons of technical distribution and scopes of patent protections between Shanghai health system and enterprises were used by the methods of IPC classification, co-words analysis and visual social network. Results reflected a decreasing order within IPC A61 area, namely A61B, A61K, A61M, and A61F. A61B required to be further investigated. The highest authorized patents A61B17 of A61B of IPC A61 area was found. Within A61B17, fracture fixation, ligament reconstruction, cardiac surgery, and biopsy detection were regarded as common concerned fields by Shanghai health system and enterprises. However, compared with cardiac closure which Shanghai enterprises paid attention to, Shanghai health system was more inclined to blockages and hemostatic tools. The results also revealed that the scopes of patent protections of Shanghai enterprises were relatively centralized. Shanghai enterprises had a series of comprehensive strategies for protecting core patents. In contrast, Shanghai health system was considered to be lack of strategic patent protections for core patents.

Keywords: co-words analysis, IPC classification, patent protection, technical distribution

Procedia PDF Downloads 135
1954 Task Distraction vs. Visual Enhancement: Which Is More Effective?

Authors: Huangmei Liu, Si Liu, Jia’nan Liu

Abstract:

The present experiment investigated and compared the effectiveness of two kinds of methods of attention control: Task distraction and visual enhancement. In the study, the effectiveness of task distractions to explicit features and of visual enhancement to implicit features of the same group of Chinese characters were compared based on their effect on the participants’ reaction time, subjective confidence rating, and verbal report. We found support that the visual enhancement on implicit features did overcome the contrary effect of training distraction and led to awareness of those implicit features, at least to some extent.

Keywords: task distraction, visual enhancement, attention, awareness, learning

Procedia PDF Downloads 431
1953 Effect of Cement Amount on California Bearing Ratio Values of Different Soil

Authors: Ayse Pekrioglu Balkis, Sawash Mecid

Abstract:

Due to continued growth and rapid development of road construction in worldwide, road sub-layers consist of soil layers, therefore, identification and recognition of type of soil and soil behavior in different condition help to us to select soil according to specification and engineering characteristic, also if necessary sometimes stabilize the soil and treat undesirable properties of soils by adding materials such as bitumen, lime, cement, etc. If the soil beneath the road is not done according to the standards and construction will need more construction time. In this case, a large part of soil should be removed, transported and sometimes deposited. Then purchased sand and gravel is transported to the site and full depth filled and compacted. Stabilization by cement or other treats gives an opportunity to use the existing soil as a base material instead of removing it and purchasing and transporting better fill materials. Classification of soil according to AASHTOO system and USCS help engineers to anticipate soil behavior and select best treatment method. In this study soil classification and the relation between soil classification and stabilization method is discussed, cement stabilization with different percentages have been selected for soil treatment based on NCHRP. There are different parameters to define the strength of soil. In this study, CBR will be used to define the strength of soil. Cement by percentages, 0%, 3%, 7% and 10% added to soil for evaluation effect of added cement to CBR of treated soil. Implementation of stabilization process by different cement content help engineers to select an economic cement amount for the stabilization process according to project specification and characteristics. Stabilization process in optimum moisture content (OMC) and mixing rate effect on the strength of soil in the laboratory and field construction operation have been performed to see the improvement rate in strength and plasticity. Cement stabilization is quicker than a universal method such as removing and changing field soils. Cement addition increases CBR values of different soil types by the range of 22-69%.

Keywords: California Bearing Ratio, cement stabilization, clayey soil, mechanical properties

Procedia PDF Downloads 398
1952 Engagement Analysis Using DAiSEE Dataset

Authors: Naman Solanki, Souraj Mondal

Abstract:

With the world moving towards online communication, the video datastore has exploded in the past few years. Consequently, it has become crucial to analyse participant’s engagement levels in online communication videos. Engagement prediction of people in videos can be useful in many domains, like education, client meetings, dating, etc. Video-level or frame-level prediction of engagement for a user involves the development of robust models that can capture facial micro-emotions efficiently. For the development of an engagement prediction model, it is necessary to have a widely-accepted standard dataset for engagement analysis. DAiSEE is one of the datasets which consist of in-the-wild data and has a gold standard annotation for engagement prediction. Earlier research done using the DAiSEE dataset involved training and testing standard models like CNN-based models, but the results were not satisfactory according to industry standards. In this paper, a multi-level classification approach has been introduced to create a more robust model for engagement analysis using the DAiSEE dataset. This approach has recorded testing accuracies of 0.638, 0.7728, 0.8195, and 0.866 for predicting boredom level, engagement level, confusion level, and frustration level, respectively.

Keywords: computer vision, engagement prediction, deep learning, multi-level classification

Procedia PDF Downloads 115
1951 Data Mining Model for Predicting the Status of HIV Patients during Drug Regimen Change

Authors: Ermias A. Tegegn, Million Meshesha

Abstract:

Human Immunodeficiency Virus and Acquired Immunodeficiency Syndrome (HIV/AIDS) is a major cause of death for most African countries. Ethiopia is one of the seriously affected countries in sub Saharan Africa. Previously in Ethiopia, having HIV/AIDS was almost equivalent to a death sentence. With the introduction of Antiretroviral Therapy (ART), HIV/AIDS has become chronic, but manageable disease. The study focused on a data mining technique to predict future living status of HIV/AIDS patients at the time of drug regimen change when the patients become toxic to the currently taking ART drug combination. The data is taken from University of Gondar Hospital ART program database. Hybrid methodology is followed to explore the application of data mining on ART program dataset. Data cleaning, handling missing values and data transformation were used for preprocessing the data. WEKA 3.7.9 data mining tools, classification algorithms, and expertise are utilized as means to address the research problem. By using four different classification algorithms, (i.e., J48 Classifier, PART rule induction, Naïve Bayes and Neural network) and by adjusting their parameters thirty-two models were built on the pre-processed University of Gondar ART program dataset. The performances of the models were evaluated using the standard metrics of accuracy, precision, recall, and F-measure. The most effective model to predict the status of HIV patients with drug regimen substitution is pruned J48 decision tree with a classification accuracy of 98.01%. This study extracts interesting attributes such as Ever taking Cotrim, Ever taking TbRx, CD4 count, Age, Weight, and Gender so as to predict the status of drug regimen substitution. The outcome of this study can be used as an assistant tool for the clinician to help them make more appropriate drug regimen substitution. Future research directions are forwarded to come up with an applicable system in the area of the study.

Keywords: HIV drug regimen, data mining, hybrid methodology, predictive model

Procedia PDF Downloads 142
1950 An Ensemble Deep Learning Architecture for Imbalanced Classification of Thoracic Surgery Patients

Authors: Saba Ebrahimi, Saeed Ahmadian, Hedie Ashrafi

Abstract:

Selecting appropriate patients for surgery is one of the main issues in thoracic surgery (TS). Both short-term and long-term risks and benefits of surgery must be considered in the patient selection criteria. There are some limitations in the existing datasets of TS patients because of missing values of attributes and imbalanced distribution of survival classes. In this study, a novel ensemble architecture of deep learning networks is proposed based on stacking different linear and non-linear layers to deal with imbalance datasets. The categorical and numerical features are split using different layers with ability to shrink the unnecessary features. Then, after extracting the insight from the raw features, a novel biased-kernel layer is applied to reinforce the gradient of the minority class and cause the network to be trained better comparing the current methods. Finally, the performance and advantages of our proposed model over the existing models are examined for predicting patient survival after thoracic surgery using a real-life clinical data for lung cancer patients.

Keywords: deep learning, ensemble models, imbalanced classification, lung cancer, TS patient selection

Procedia PDF Downloads 146
1949 Relationship between Readability of Paper-Based Braille and Character Spacing

Authors: T. Nishimura, K. Doi, H. Fujimoto, T. Wada

Abstract:

The Number of people with acquired visual impairments has increased in recent years. In specialized courses at schools for the blind and in Braille lessons offered by social welfare organizations, many people with acquired visual impairments cannot learn to read adequately Braille. One of the reasons is that the common Braille patterns for people visual impairments who already has mature Braille reading skill being difficult to read for Braille reading beginners. In addition, there is the scanty knowledge of Braille book manufacturing companies regarding what Braille patterns would be easy to read for beginners. Therefore, it is required to investigate a suitable Braille patterns would be easy to read for beginners. In order to obtain knowledge regarding suitable Braille patterns for beginners, this study aimed to elucidate the relationship between readability of paper-based Braille and its patterns. This study focused on character spacing, which readily affects Braille reading ability, to determine a suitable character spacing ratio (ratio of character spacing to dot spacing) for beginners. Specifically, considering beginners with acquired visual impairments who are unfamiliar with reading Braille, we quantitatively evaluated the effect of character spacing ratio on Braille readability through an evaluation experiment using sighted subjects with no experience of reading Braille. In this experiment, ten sighted adults took the blindfold were asked to read test piece (three Braille characters). Braille used as test piece was composed of five dots. They were asked to touch the Braille by sliding their forefinger on the test piece immediately after the test examiner gave a signal to start the experiment. Then, they were required to release their forefinger from the test piece when they perceived the Braille characters. Seven conditions depended on character spacing ratio was held (i.e., 1.2, 1.4, 1.5, 1.6, 1.8, 2.0, 2.2 [mm]), and the other four depended on the dot spacing (i.e., 2.0, 2.5, 3.0, 3.5 [mm]). Ten trials were conducted for each conditions. The test pieces are created using by NISE Graphic could print Braille adjusted arbitrary value of character spacing and dot spacing with high accuracy. We adopted the evaluation indices for correct rate, reading time, and subjective readability to investigate how the character spacing ratio affects Braille readability. The results showed that Braille reading beginners could read Braille accurately and quickly, when character spacing ratio is more than 1.8 and dot spacing is more than 3.0 mm. Furthermore, it is difficult to read Braille accurately and quickly for beginners, when both character spacing and dot spacing are small. For this study, suitable character spacing ratio to make reading easy for Braille beginners is revealed.

Keywords: Braille, character spacing, people with visual impairments, readability

Procedia PDF Downloads 286
1948 Analysis of Big Data on Leisure Activities and Depression for the Disabled

Authors: Hee-Jung Seo, Yunjung Lee, Areum Han, Heeyoung Park, Se-Hyuk Park

Abstract:

The purpose of this study was to analyze the relationship between happiness and depression among people with disabilities and to analyze the social phenomenon of leisure activities among them to promote physical and leisure activities for people with disabilities. The research methods included analyzing differences in happiness according to depression classification. A total of 281 people with disabilities were analyzed using SPSS WIN Ver. 29.0. In addition, the SumTrend platform was used to analyze terms related to 'leisure activities for the disabled.' The findings can be summarized into two main points: First, there were significant differences in happiness according to depression classification. Second, there were 20 mentions before COVID-19, 34 mentions after COVID-19, and currently 43 mentions, with high positive rates observed in each period. Based on these results, the following conclusions were drawn: First, measures for people with disabilities include strengthening online resources and services, social distancing response policies, improving accessibility, and providing support and financial assistance. Second, measures for non-disabled individuals emphasize the need for education and information provision, promoting dialogue and interaction, ensuring accessibility, and promoting inclusive cultural awareness and attitude change.

Keywords: leisure activities, individuals with disabilities, COVID-19 pandemic, depression

Procedia PDF Downloads 51
1947 Proteomic Analysis of Excretory Secretory Antigen (ESA) from Entamoeba histolytica HM1: IMSS

Authors: N. Othman, J. Ujang, M. N. Ismail, R. Noordin, B. H. Lim

Abstract:

Amoebiasis is caused by the Entamoeba histolytica and still endemic in many parts of the tropical region, worldwide. Currently, there is no available vaccine against amoebiasis. Hence, there is an urgent need to develop a vaccine. The excretory secretory antigen (ESA) of E. histolytica is a suitable biomarker for the vaccine candidate since it can modulate the host immune response. Hence, the objective of this study is to identify the proteome of the ESA towards finding suitable biomarker for the vaccine candidate. The non-gel based and gel-based proteomics analyses were performed to identify proteins. Two kinds of mass spectrometry with different ionization systems were utilized i.e. LC-MS/MS (ESI) and MALDI-TOF/TOF. Then, the functional proteins classification analysis was performed using PANTHER software. Combination of the LC -MS/MS for the non-gel based and MALDI-TOF/TOF for the gel-based approaches identified a total of 273 proteins from the ESA. Both systems identified 29 similar proteins whereby 239 and 5 more proteins were identified by LC-MS/MS and MALDI-TOF/TOF, respectively. Functional classification analysis showed the majority of proteins involved in the metabolic process (24%), primary metabolic process (19%) and protein metabolic process (10%). Thus, this study has revealed the proteome the E. histolytica ESA and the identified proteins merit further investigations as a vaccine candidate.

Keywords: E. histolytica, ESA, proteomics, biomarker

Procedia PDF Downloads 344
1946 The Same Rules of Traditional Chinese Herbal Medicine in Treating Chronic Idiopathic Urticaria and Hypertension

Authors: Heng W. Chang, Mao F. Sun

Abstract:

Chronic Idiopathic Urticaria (CIU) and hypertension are rarely discussed together in modern and traditional Chinese medicine, and often belong to different medical departments. However, in traditional Chinese medicinal theory, the two diseases have some similar characters. For example, they are both relevant to 'wind'. This study conducted a literature review using the China National Knowledge Infrastructure to identify herbs yielding the same effect for the two diseases. The finding showed that the common herbs used most frequently is Rehmanniae. The conclusion is that the same TCM (Traditional Chinese Medicine) mechanism of the two diseases may be 'blood heat'. It requires further study to prove it in the future.

Keywords: urticaria, herbs, hypertension, Rehmanniae

Procedia PDF Downloads 156
1945 Microorganism and Laurus nobilis from Mascara - Algeria

Authors: Karima Oldyerou, B. Meddah, A. Tirtouil

Abstract:

Laurusnobilis is an aromatic plant, common in Algeria and widely used by local people as a source of spice and for medicinal purposes. The essential oil of this plant is the subject of this work in a physicochemical and microbiological study. The extraction of the essential oil was carried by steam distillation and the highest yield (1.5%) was determined in May. The organoleptic and physico-chemical characters are consistent with those obtained in the literature with some differences that can be attributed to certain factors. Evaluation of antibacterial activity showed a sensitivity of Salmonella spp. with an MIC of 2,5 mg.ml-1, and other bacteria of the intestinal flora of Wistar rats: E. coli and Lactobacillus sp. have a high potential for resistance with MICs respectively equal to 10 and 20 mg.ml-1.

Keywords: laurus nobilis, essential oil, physicochemical character, MIC, intestinal flora, antibacterial activity

Procedia PDF Downloads 338
1944 Using Machine-Learning Methods for Allergen Amino Acid Sequence's Permutations

Authors: Kuei-Ling Sun, Emily Chia-Yu Su

Abstract:

Allergy is a hypersensitive overreaction of the immune system to environmental stimuli, and a major health problem. These overreactions include rashes, sneezing, fever, food allergies, anaphylaxis, asthmatic, shock, or other abnormal conditions. Allergies can be caused by food, insect stings, pollen, animal wool, and other allergens. Their development of allergies is due to both genetic and environmental factors. Allergies involve immunoglobulin E antibodies, a part of the body’s immune system. Immunoglobulin E antibodies will bind to an allergen and then transfer to a receptor on mast cells or basophils triggering the release of inflammatory chemicals such as histamine. Based on the increasingly serious problem of environmental change, changes in lifestyle, air pollution problem, and other factors, in this study, we both collect allergens and non-allergens from several databases and use several machine learning methods for classification, including logistic regression (LR), stepwise regression, decision tree (DT) and neural networks (NN) to do the model comparison and determine the permutations of allergen amino acid’s sequence.

Keywords: allergy, classification, decision tree, logistic regression, machine learning

Procedia PDF Downloads 305
1943 Emotion Classification Using Recurrent Neural Network and Scalable Pattern Mining

Authors: Jaishree Ranganathan, MuthuPriya Shanmugakani Velsamy, Shamika Kulkarni, Angelina Tzacheva

Abstract:

Emotions play an important role in everyday life. An-alyzing these emotions or feelings from social media platforms like Twitter, Facebook, blogs, and forums based on user comments and reviews plays an important role in various factors. Some of them include brand monitoring, marketing strategies, reputation, and competitor analysis. The opinions or sentiments mined from such data helps understand the current state of the user. It does not directly provide intuitive insights on what actions to be taken to benefit the end user or business. Actionable Pattern Mining method provides suggestions or actionable recommendations on what changes or actions need to be taken in order to benefit the end user. In this paper, we propose automatic classification of emotions in Twitter data using Recurrent Neural Network - Gated Recurrent Unit. We achieve training accuracy of 87.58% and validation accuracy of 86.16%. Also, we extract action rules with respect to the user emotion that helps to provide actionable suggestion.

Keywords: emotion mining, twitter, recurrent neural network, gated recurrent unit, actionable pattern mining

Procedia PDF Downloads 168
1942 Represent Light and Shade of Old Beijing: Construction of Historical Picture Display Platform Based on Geographic Information System (GIS)

Authors: Li Niu, Jihong Liang, Lichao Liu, Huidi Chen

Abstract:

With the drawing of ancient palace painter, the layout of Beijing famous architect and the lens under photographers, a series of pictures which described whether emperors or ordinary people, whether gardens or Hutongs, whether historical events or life scenarios has emerged into our society. These precious resources are scattered around and preserved in different places Such as organizations like archives and libraries, along with individuals. The research combined decentralized photographic resources with Geographic Information System (GIS), focusing on the figure, event, time and location of the pictures to map them with geographic information in webpage and to display them productively. In order to meet the demand of reality, we designed a metadata description proposal, which is referred to DC and VRA standards. Another essential procedure is to formulate a four-tier classification system to correspond with the metadata proposals. As for visualization, we used Photo Waterfall and Time Line to display our resources in front end. Last but not the least, leading the Web 2.0 trend, the research developed an artistic, friendly, expandable, universal and user involvement platform to show the historical and culture precipitation of Beijing.

Keywords: historical picture, geographic information system, display platform, four-tier classification system

Procedia PDF Downloads 271
1941 A New Approach of Preprocessing with SVM Optimization Based on PSO for Bearing Fault Diagnosis

Authors: Tawfik Thelaidjia, Salah Chenikher

Abstract:

Bearing fault diagnosis has attracted significant attention over the past few decades. It consists of two major parts: vibration signal feature extraction and condition classification for the extracted features. In this paper, feature extraction from faulty bearing vibration signals is performed by a combination of the signal’s Kurtosis and features obtained through the preprocessing of the vibration signal samples using Db2 discrete wavelet transform at the fifth level of decomposition. In this way, a 7-dimensional vector of the vibration signal feature is obtained. After feature extraction from vibration signal, the support vector machine (SVM) was applied to automate the fault diagnosis procedure. To improve the classification accuracy for bearing fault prediction, particle swarm optimization (PSO) is employed to simultaneously optimize the SVM kernel function parameter and the penalty parameter. The results have shown feasibility and effectiveness of the proposed approach

Keywords: condition monitoring, discrete wavelet transform, fault diagnosis, kurtosis, machine learning, particle swarm optimization, roller bearing, rotating machines, support vector machine, vibration measurement

Procedia PDF Downloads 439
1940 Predictive Modelling of Aircraft Component Replacement Using Imbalanced Learning and Ensemble Method

Authors: Dangut Maren David, Skaf Zakwan

Abstract:

Adequate monitoring of vehicle component in other to obtain high uptime is the goal of predictive maintenance, the major challenge faced by businesses in industries is the significant cost associated with a delay in service delivery due to system downtime. Most of those businesses are interested in predicting those problems and proactively prevent them in advance before it occurs, which is the core advantage of Prognostic Health Management (PHM) application. The recent emergence of industry 4.0 or industrial internet of things (IIoT) has led to the need for monitoring systems activities and enhancing system-to-system or component-to- component interactions, this has resulted to a large generation of data known as big data. Analysis of big data represents an increasingly important, however, due to complexity inherently in the dataset such as imbalance classification problems, it becomes extremely difficult to build a model with accurate high precision. Data-driven predictive modeling for condition-based maintenance (CBM) has recently drowned research interest with growing attention to both academics and industries. The large data generated from industrial process inherently comes with a different degree of complexity which posed a challenge for analytics. Thus, imbalance classification problem exists perversely in industrial datasets which can affect the performance of learning algorithms yielding to poor classifier accuracy in model development. Misclassification of faults can result in unplanned breakdown leading economic loss. In this paper, an advanced approach for handling imbalance classification problem is proposed and then a prognostic model for predicting aircraft component replacement is developed to predict component replacement in advanced by exploring aircraft historical data, the approached is based on hybrid ensemble-based method which improves the prediction of the minority class during learning, we also investigate the impact of our approach on multiclass imbalance problem. We validate the feasibility and effectiveness in terms of the performance of our approach using real-world aircraft operation and maintenance datasets, which spans over 7 years. Our approach shows better performance compared to other similar approaches. We also validate our approach strength for handling multiclass imbalanced dataset, our results also show good performance compared to other based classifiers.

Keywords: prognostics, data-driven, imbalance classification, deep learning

Procedia PDF Downloads 175
1939 Masked Candlestick Model: A Pre-Trained Model for Trading Prediction

Authors: Ling Qi, Matloob Khushi, Josiah Poon

Abstract:

This paper introduces a pre-trained Masked Candlestick Model (MCM) for trading time-series data. The pre-trained model is based on three core designs. First, we convert trading price data at each data point as a set of normalized elements and produce embeddings of each element. Second, we generate a masked sequence of such embedded elements as inputs for self-supervised learning. Third, we use the encoder mechanism from the transformer to train the inputs. The masked model learns the contextual relations among the sequence of embedded elements, which can aid downstream classification tasks. To evaluate the performance of the pre-trained model, we fine-tune MCM for three different downstream classification tasks to predict future price trends. The fine-tuned models achieved better accuracy rates for all three tasks than the baseline models. To better analyze the effectiveness of MCM, we test the same architecture for three currency pairs, namely EUR/GBP, AUD/USD, and EUR/JPY. The experimentation results demonstrate MCM’s effectiveness on all three currency pairs and indicate the MCM’s capability for signal extraction from trading data.

Keywords: masked language model, transformer, time series prediction, trading prediction, embedding, transfer learning, self-supervised learning

Procedia PDF Downloads 129
1938 Application of Principle Component Analysis for Classification of Random Doppler-Radar Targets during the Surveillance Operations

Authors: G. C. Tikkiwal, Mukesh Upadhyay

Abstract:

During the surveillance operations at war or peace time, the Radar operator gets a scatter of targets over the screen. This may be a tracked vehicle like tank vis-à-vis T72, BMP etc, or it may be a wheeled vehicle like ALS, TATRA, 2.5Tonne, Shaktiman or moving army, moving convoys etc. The Radar operator selects one of the promising targets into Single Target Tracking (STT) mode. Once the target is locked, the operator gets a typical audible signal into his headphones. With reference to the gained experience and training over the time, the operator then identifies the random target. But this process is cumbersome and is solely dependent on the skills of the operator, thus may lead to misclassification of the object. In this paper we present a technique using mathematical and statistical methods like Fast Fourier Transformation (FFT) and Principal Component Analysis (PCA) to identify the random objects. The process of classification is based on transforming the audible signature of target into music octave-notes. The whole methodology is then automated by developing suitable software. This automation increases the efficiency of identification of the random target by reducing the chances of misclassification. This whole study is based on live data.

Keywords: radar target, fft, principal component analysis, eigenvector, octave-notes, dsp

Procedia PDF Downloads 346
1937 Children’s Perception of Conversational Agents and Their Attention When Learning from Dialogic TV

Authors: Katherine Karayianis

Abstract:

Children with Attention Deficit Hyperactivity Disorder (ADHD) have trouble learning in traditional classrooms. These children miss out on important developmental opportunities in school, which leads to challenges starting in early childhood, and these problems persist throughout their adult lives. Despite receiving supplemental support in school, children with ADHD still perform below their non-ADHD peers. Thus, there is a great need to find better ways of facilitating learning in children with ADHD. Evidence has shown that children with ADHD learn best through interactive engagement, but this is not always possible in schools, given classroom restraints and the large student-to-teacher ratio. Redesigning classrooms may not be feasible, so informal learning opportunities provide a possible alternative. One popular informal learning opportunity is educational TV shows like Sesame Street. These types of educational shows can teach children foundational skills taught in pre-K and early elementary school. One downside to these shows is the lack of interactive dialogue between the TV characters and the child viewers. Pseudo-interaction is often deployed, but the benefits are limited if the characters can neither understand nor contingently respond to the child. AI technology has become extremely advanced and is now popular in many electronic devices that both children and adults have access to. AI has been successfully used to create interactive dialogue in children’s educational TV shows, and results show that this enhances children’s learning and engagement, especially when children perceive the character as a reliable teacher. It is likely that children with ADHD, whose minds may otherwise wander, may especially benefit from this type of interactive technology, possibly to a greater extent depending on their perception of the animated dialogic agent. To investigate this issue, I have begun examining the moderating role of inattention among children’s learning from an educational TV show with different types of dialogic interactions. Preliminary results have shown that when character interactions are neither immediate nor accurate, children who are more easily distracted will have greater difficulty learning from the show, but contingent interactions with a TV character seem to buffer these negative effects of distractibility by keeping the child engaged. To extend this line of work, the moderating role of the child’s perception of the dialogic agent as a reliable teacher will be examined in the association between children’s attention and the type of dialogic interaction in the TV show. As such, the current study will investigate this moderated moderation.

Keywords: attention, dialogic TV, informal learning, educational TV, perception of teacher

Procedia PDF Downloads 86
1936 A Case Study of Deep Learning for Disease Detection in Crops

Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell

Abstract:

In the precision agriculture area, one of the main tasks is the automated detection of diseases in crops. Machine Learning algorithms have been studied in recent decades for such tasks in view of their potential for improving economic outcomes that automated disease detection may attain over crop fields. The latest generation of deep learning convolution neural networks has presented significant results in the area of image classification. In this way, this work has tested the implementation of an architecture of deep learning convolution neural network for the detection of diseases in different types of crops. A data augmentation strategy was used to meet the requirements of the algorithm implemented with a deep learning framework. Two test scenarios were deployed. The first scenario implemented a neural network under images extracted from a controlled environment while the second one took images both from the field and the controlled environment. The results evaluated the generalisation capacity of the neural networks in relation to the two types of images presented. Results yielded a general classification accuracy of 59% in scenario 1 and 96% in scenario 2.

Keywords: convolutional neural networks, deep learning, disease detection, precision agriculture

Procedia PDF Downloads 260