Search results for: SURF(Speed-Up Robust Features)
4369 Activation of Google Classroom Features to Engage Introvert Students in Comprehensible Output
Authors: Raghad Dwaik
Abstract:
It is well known in language acquisition literature that a mere understanding of a reading text is not enough to help students build proficiency in comprehension. Students should rather follow understanding by attempting to express what has been understood by pushing their competence to the limit. Learners' attempt to push their competence was given the term "comprehensible output" by Swain (1985). Teachers in large classes, however, find it sometimes difficult to give all students a chance to communicate their views or to share their ideas during the short class time. In most cases, students who are outgoing dominate class discussion and get more opportunities for practice which leads to ignoring the shy students totally while helping the good ones become better. This paper presents the idea of using Google Classroom features of posting and commenting to allow students who hesitate to participate in class discussions about a reading text to write their views on the wall of a Google Classroom and share them later after they have received feedback and comments from classmates. Such attempts lead to developing their proficiency through additional practice in comprehensible output and to enhancing their confidence in themselves and their views. It was found that virtual classroom interaction would help students maintain vocabulary, use more complex structures and focus on meaning besides form.Keywords: learning groups, reading TESOL, Google Classroom, comprehensible output
Procedia PDF Downloads 764368 Impact Deformation and Fracture Behaviour of Cobalt-Based Haynes 188 Superalloy
Authors: Woei-Shyan Lee, Hao-Chien Kao
Abstract:
The impact deformation and fracture behaviour of cobalt-based Haynes 188 superalloy are investigated by means of a split Hopkinson pressure bar. Impact tests are performed at strain rates ranging from 1×103 s-1 to 5×103 s-1 and temperatures between 25°C and 800°C. The experimental results indicate that the flow response and fracture characteristics of cobalt-based Haynes 188 superalloy are significantly dependent on the strain rate and temperature. The flow stress, work hardening rate and strain rate sensitivity all increase with increasing strain rate or decreasing temperature. It is shown that the impact response of the Haynes 188 specimens is adequately described by the Zerilli-Armstrong fcc model. The fracture analysis results indicate that the Haynes 188 specimens fail predominantly as the result of intensive localised shearing. Furthermore, it is shown that the flow localisation effect leads to the formation of adiabatic shear bands. The fracture surfaces of the deformed Haynes 188 specimens are characterised by dimple- and / or cleavage-like structure with knobby features. The knobby features are thought to be the result of a rise in the local temperature to a value greater than the melting point.Keywords: Haynes 188 alloy, impact, strain rate and temperature effect, adiabatic shearing
Procedia PDF Downloads 3594367 DTI Connectome Changes in the Acute Phase of Aneurysmal Subarachnoid Hemorrhage Improve Outcome Classification
Authors: Sarah E. Nelson, Casey Weiner, Alexander Sigmon, Jun Hua, Haris I. Sair, Jose I. Suarez, Robert D. Stevens
Abstract:
Graph-theoretical information from structural connectomes indicated significant connectivity changes and improved acute prognostication in a Random Forest (RF) model in aneurysmal subarachnoid hemorrhage (aSAH), which can lead to significant morbidity and mortality and has traditionally been fraught by poor methods to predict outcome. This study’s hypothesis was that structural connectivity changes occur in canonical brain networks of acute aSAH patients, and that these changes are associated with functional outcome at six months. In a prospective cohort of patients admitted to a single institution for management of acute aSAH, patients underwent diffusion tensor imaging (DTI) as part of a multimodal MRI scan. A weighted undirected structural connectome was created of each patient’s images using Constant Solid Angle (CSA) tractography, with 176 regions of interest (ROIs) defined by the Johns Hopkins Eve atlas. ROIs were sorted into four networks: Default Mode Network, Executive Control Network, Salience Network, and Whole Brain. The resulting nodes and edges were characterized using graph-theoretic features, including Node Strength (NS), Betweenness Centrality (BC), Network Degree (ND), and Connectedness (C). Clinical (including demographics and World Federation of Neurologic Surgeons scale) and graph features were used separately and in combination to train RF and Logistic Regression classifiers to predict two outcomes: dichotomized modified Rankin Score (mRS) at discharge and at six months after discharge (favorable outcome mRS 0-2, unfavorable outcome mRS 3-6). A total of 56 aSAH patients underwent DTI a median (IQR) of 7 (IQR=8.5) days after admission. The best performing model (RF) combining clinical and DTI graph features had a mean Area Under the Receiver Operator Characteristic Curve (AUROC) of 0.88 ± 0.00 and Area Under the Precision Recall Curve (AUPRC) of 0.95 ± 0.00 over 500 trials. The combined model performed better than the clinical model alone (AUROC 0.81 ± 0.01, AUPRC 0.91 ± 0.00). The highest-ranked graph features for prediction were NS, BC, and ND. These results indicate reorganization of the connectome early after aSAH. The performance of clinical prognostic models was increased significantly by the inclusion of DTI-derived graph connectivity metrics. This methodology could significantly improve prognostication of aSAH.Keywords: connectomics, diffusion tensor imaging, graph theory, machine learning, subarachnoid hemorrhage
Procedia PDF Downloads 1894366 Deep Learning Based-Object-classes Semantic Classification of Arabic Texts
Authors: Imen Elleuch, Wael Ouarda, Gargouri Bilel
Abstract:
We proposes in this paper a Deep Learning based approach to classify text in order to enrich an Arabic ontology based on the objects classes of Gaston Gross. Those object classes are defined by taking into account the syntactic and semantic features of the treated language. Thus, our proposed approach is a hybrid one. In fact, it is based on the one hand on the object classes that represents a knowledge based-approach on classification of text and in the other hand it uses the deep learning approach that use the word embedding-based-approach to classify text. We have applied our proposed approach on a corpus constructed from an Arabic dictionary. The obtained semantic classification of text will enrich the Arabic objects classes ontology. In fact, new classes can be added to the ontology or an expansion of the features that characterizes each object class can be updated. The obtained results are compared to a similar work that treats the same object with a classical linguistic approach for the semantic classification of text. This comparison highlight our hybrid proposed approach that can be ameliorated by broaden the dataset used in the deep learning process.Keywords: deep-learning approach, object-classes, semantic classification, Arabic
Procedia PDF Downloads 884365 Metagenomics Features of The Gut Microbiota in Metabolic Syndrome
Authors: Anna D. Kotrova, Alexandr N. Shishkin, Elena I. Ermolenko
Abstract:
The aim. To study the quantitative and qualitative colon bacteria ratio from patients with metabolic syndrome. Materials and methods. Fecal samples from patients of 2 groups were identified and analyzed: the first group was formed by patients with metabolic syndrome, the second one - by healthy individuals. The metagenomics method was used with the analysis of 16S rRNA gene sequences. The libraries of the variable sites (V3 and V4) gene 16S RNA were analyzed using the MiSeq device (Illumina). To prepare the libraries was used the standard recommended by Illumina, a method based on two rounds of PCR. Results. At the phylum level in the microbiota of patients with metabolic syndrome compared to healthy individuals, the proportion of Tenericutes was reduced, the proportion of Actinobacteria was increased. At the genus level, in the group with metabolic syndrome, relative to the second group was increased the proportion of Lachnospira. Conclusion. Changes in the colon bacteria ratio in the gut microbiota of patients with metabolic syndrome were found both at the type and the genus level. In the metabolic syndrome group, there is a decrease in the proportion of bacteria that do not have a cell wall. To confirm the revealed microbiota features in patients with metabolic syndrome, further study with a larger number of samples is required.Keywords: gut microbiota, metabolic syndrome, metagenomics, tenericutes
Procedia PDF Downloads 2224364 Types of Neurons in the Spinal Trigeminal Nucleus of the Camel Brain: Golgi Study
Authors: Qasim A. El Dwairi, Saleh M. Banihani, Ayat S. Banihani, Ziad M. Bataineh
Abstract:
Neurons in the spinal trigeminal nucleus of the camel were studied by Golgi impregnation. Neurons were classified based on differences in size and shape of their cell bodies, density of their dendritic trees, morphology and distribution of their appendages. In the spinal trigeminal nucleus of the camel, at least twelve types of neurons were identified. These neurons include, stalked, islets, octubus-like, lobulated, boat-like, pyramidal, multipolar, round, oval and elongated neurons. They have large number of different forms of appendages not only for their dendrites but also for their cell bodies. Neurons with unique large dilatations especially at their dendritic branching points were found. The morphological features of these neurons were described and compared with their counterparts in other species. Finding of large number of neuronal types with different size and shapes and large number of different forms of appendages for cell bodies and dendrites together with the presence of cells with unique features such as large dilated parts for dendrites may indicate to a very complex information processing for pain and temperature at the level of the spinal trigeminal nucleus in the camel that traditionally live in a very hard environment (the desert).Keywords: camel, golgi, neurons , spinal trigeminal nucleus
Procedia PDF Downloads 3424363 Inhibition of Variant Surface Glycoproteins Translation to Define the Essential Features of the Variant Surface Glycoprotein in Trypanosoma brucei
Authors: Isobel Hambleton, Mark Carrington
Abstract:
Trypanosoma brucei, the causal agent of a range of diseases in humans and livestock, evades the mammalian immune system through a population survival strategy based on the expression of a series of antigenically distinct variant surface glycoproteins (VSGs). RNAi mediated knockdown of the active VSG gene triggers a precytokinesis cell cycle arrest. To determine whether this phenotype is the result of reduced VSG transcript or depleted VSG protein, we used morpholino antisense oligonucleotides to block translation of VSG mRNA. The same precytokinesis cell cycle arrest was observed, suggesting that VSG protein abundance is monitored closely throughout the cell cycle. An inducible expression system has been developed to test various GPI-anchored proteins for their ability to rescue this cell cycle arrest. This system has been used to demonstrate that wild-type VSG expressed from a T7 promoter rescues this phenotype. This indicates that VSG expression from one of the specialised bloodstream expression sites (BES) is not essential for cell division. The same approach has been used to define the minimum essential features of a VSG necessary for function.Keywords: bloodstream expression site, morpholino, precytokinesis cell cycle arrest, variant surface glycoprotein
Procedia PDF Downloads 1504362 CRISPR-Mediated Genome Editing for Yield Enhancement in Tomato
Authors: Aswini M. S.
Abstract:
Tomato (Solanum lycopersicum L.) is one of the most significant vegetable crops in terms of its economic benefits. Both fresh and processed tomatoes are consumed. Tomatoes have a limited genetic base, which makes breeding extremely challenging. Plant breeding has become much simpler and more effective with genome editing tools of CRISPR and CRISPR-associated 9 protein (CRISPR/Cas9), which address the problems with traditional breeding, chemical/physical mutagenesis, and transgenics. With the use of CRISPR/Cas9, a number of tomato traits have been functionally distinguished and edited. These traits include plant architecture as well as flower characters (leaf, flower, male sterility, and parthenocarpy), fruit ripening, quality and nutrition (lycopene, carotenoid, GABA, TSS, and shelf-life), disease resistance (late blight, TYLCV, and powdery mildew), tolerance to abiotic stress (heat, drought, and salinity) and resistance to herbicides. This study explores the potential of CRISPR/Cas9 genome editing for enhancing yield in tomato plants. The study utilized the CRISPR/Cas9 genome editing technology to functionally edit various traits in tomatoes. The de novo domestication of elite features from wild cousins to cultivated tomatoes and vice versa has been demonstrated by the introgression of CRISPR/Cas9. The CycB (Lycopene beta someri) gene-mediated Cas9 editing increased the lycopene content in tomato. Also, Cas9-mediated editing of the AGL6 (Agamous-like 6) gene resulted in parthenocarpic fruit development under heat-stress conditions. The advent of CRISPR/Cas has rendered it possible to use digital resources for single guide RNA design and multiplexing, cloning (such as Golden Gate cloning, GoldenBraid, etc.), creating robust CRISPR/Cas constructs, and implementing effective transformation protocols like the Agrobacterium and DNA free protoplast method for Cas9-gRNAs ribonucleoproteins (RNPs) complex. Additionally, homologous recombination (HR)-based gene knock-in (HKI) via geminivirus replicon and base/prime editing (Target-AID technology) remains possible. Hence, CRISPR/Cas facilitates fast and efficient breeding in the improvement of tomatoes.Keywords: CRISPR-Cas, biotic and abiotic stress, flower and fruit traits, genome editing, polygenic trait, tomato and trait introgression
Procedia PDF Downloads 704361 A Study of ZY3 Satellite Digital Elevation Model Verification and Refinement with Shuttle Radar Topography Mission
Authors: Bo Wang
Abstract:
As the first high-resolution civil optical satellite, ZY-3 satellite is able to obtain high-resolution multi-view images with three linear array sensors. The images can be used to generate Digital Elevation Models (DEM) through dense matching of stereo images. However, due to the clouds, forest, water and buildings covered on the images, there are some problems in the dense matching results such as outliers and areas failed to be matched (matching holes). This paper introduced an algorithm to verify the accuracy of DEM that generated by ZY-3 satellite with Shuttle Radar Topography Mission (SRTM). Since the accuracy of SRTM (Internal accuracy: 5 m; External accuracy: 15 m) is relatively uniform in the worldwide, it may be used to improve the accuracy of ZY-3 DEM. Based on the analysis of mass DEM and SRTM data, the processing can be divided into two aspects. The registration of ZY-3 DEM and SRTM can be firstly performed using the conjugate line features and area features matched between these two datasets. Then the ZY-3 DEM can be refined by eliminating the matching outliers and filling the matching holes. The matching outliers can be eliminated based on the statistics on Local Vector Binning (LVB). The matching holes can be filled by the elevation interpolated from SRTM. Some works are also conducted for the accuracy statistics of the ZY-3 DEM.Keywords: ZY-3 satellite imagery, DEM, SRTM, refinement
Procedia PDF Downloads 3444360 A Comprehensive Methodology for Voice Segmentation of Large Sets of Speech Files Recorded in Naturalistic Environments
Authors: Ana Londral, Burcu Demiray, Marcus Cheetham
Abstract:
Speech recording is a methodology used in many different studies related to cognitive and behaviour research. Modern advances in digital equipment brought the possibility of continuously recording hours of speech in naturalistic environments and building rich sets of sound files. Speech analysis can then extract from these files multiple features for different scopes of research in Language and Communication. However, tools for analysing a large set of sound files and automatically extract relevant features from these files are often inaccessible to researchers that are not familiar with programming languages. Manual analysis is a common alternative, with a high time and efficiency cost. In the analysis of long sound files, the first step is the voice segmentation, i.e. to detect and label segments containing speech. We present a comprehensive methodology aiming to support researchers on voice segmentation, as the first step for data analysis of a big set of sound files. Praat, an open source software, is suggested as a tool to run a voice detection algorithm, label segments and files and extract other quantitative features on a structure of folders containing a large number of sound files. We present the validation of our methodology with a set of 5000 sound files that were collected in the daily life of a group of voluntary participants with age over 65. A smartphone device was used to collect sound using the Electronically Activated Recorder (EAR): an app programmed to record 30-second sound samples that were randomly distributed throughout the day. Results demonstrated that automatic segmentation and labelling of files containing speech segments was 74% faster when compared to a manual analysis performed with two independent coders. Furthermore, the methodology presented allows manual adjustments of voiced segments with visualisation of the sound signal and the automatic extraction of quantitative information on speech. In conclusion, we propose a comprehensive methodology for voice segmentation, to be used by researchers that have to work with large sets of sound files and are not familiar with programming tools.Keywords: automatic speech analysis, behavior analysis, naturalistic environments, voice segmentation
Procedia PDF Downloads 2814359 Unveiling Karst Features in Miocene Carbonate Reservoirs of Central Luconia-Malaysia: Case Study of F23 Field's Karstification
Authors: Abd Al-Salam Al-Masgari, Haylay Tsegab, Ismailalwali Babikir, Monera A. Shoieb
Abstract:
We present a study of Malaysia's Central Luconia region, which is an essential deposit of Miocene carbonate reservoirs. This study aims to identify and map areas of selected carbonate platforms, develop high-resolution statistical karst models, and generate comprehensive karst geobody models for selected carbonate fields. This study uses seismic characterization and advanced geophysical surveys to identify karst signatures in Miocene carbonate reservoirs. The results highlight the use of variance, RMS, RGB colour blending, and 3D visualization Prop seismic sequence stratigraphy seismic attributes to visualize the karstified areas across the F23 field of Central Luconia. The offshore karst model serves as a powerful visualization tool to reveal the karstization of carbonate sediments of interest. The results of this study contribute to a better understanding of the karst distribution of Miocene carbonate reservoirs in Central Luconia, which are essential for hydrocarbon exploration and production. This is because these features significantly impact the reservoir geometry, flow path and characteristics.Keywords: karst, central Luconia, seismic attributes, Miocene carbonate build-ups
Procedia PDF Downloads 714358 Personalizing Human Physical Life Routines Recognition over Cloud-based Sensor Data via AI and Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Pervasive computing is a growing research field that aims to acknowledge human physical life routines (HPLR) based on body-worn sensors such as MEMS sensors-based technologies. The use of these technologies for human activity recognition is progressively increasing. On the other hand, personalizing human life routines using numerous machine-learning techniques has always been an intriguing topic. In contrast, various methods have demonstrated the ability to recognize basic movement patterns. However, it still needs to be improved to anticipate the dynamics of human living patterns. This study introduces state-of-the-art techniques for recognizing static and dy-namic patterns and forecasting those challenging activities from multi-fused sensors. Further-more, numerous MEMS signals are extracted from one self-annotated IM-WSHA dataset and two benchmarked datasets. First, we acquired raw data is filtered with z-normalization and denoiser methods. Then, we adopted statistical, local binary pattern, auto-regressive model, and intrinsic time scale decomposition major features for feature extraction from different domains. Next, the acquired features are optimized using maximum relevance and minimum redundancy (mRMR). Finally, the artificial neural network is applied to analyze the whole system's performance. As a result, we attained a 90.27% recognition rate for the self-annotated dataset, while the HARTH and KU-HAR achieved 83% on nine living activities and 90.94% on 18 static and dynamic routines. Thus, the proposed HPLR system outperformed other state-of-the-art systems when evaluated with other methods in the literature.Keywords: artificial intelligence, machine learning, gait analysis, local binary pattern (LBP), statistical features, micro-electro-mechanical systems (MEMS), maximum relevance and minimum re-dundancy (MRMR)
Procedia PDF Downloads 214357 Smart Irrigation Systems and Website: Based Platform for Farmer Welfare
Authors: Anusha Jain, Santosh Vishwanathan, Praveen K. Gupta, Shwetha S., Kavitha S. N.
Abstract:
Agriculture has a major impact on the Indian economy, with the highest employment ratio than any sector of the country. Currently, most of the traditional agricultural practices and farming methods are manual, which results in farmers not realizing their maximum productivity often due to increasing in labour cost, inefficient use of water sources leading to wastage of water, inadequate soil moisture content, subsequently leading to food insecurity of the country. This research paper aims to solve this problem by developing a full-fledged web application-based platform that has the capacity to associate itself with a Microcontroller-based Automated Irrigation System which schedules the irrigation of crops based on real-time soil moisture content employing soil moisture sensors centric to the crop’s requirements using WSN (Wireless Sensor Networks) and M2M (Machine To Machine Communication) concepts, thus optimizing the use of the available limited water resource, thereby maximizing the crop yield. This robust automated irrigation system provides end-to-end automation of Irrigation of crops at any circumstances such as droughts, irregular rainfall patterns, extreme weather conditions, etc. This platform will also be capable of achieving a nationwide united farming community and ensuring the welfare of farmers. This platform is designed to equip farmers with prerequisite knowledge on tech and the latest farming practices in general. In order to achieve this, the MailChimp mailing service is used through which interested farmers/individuals' email id will be recorded and curated articles on innovations in the world of agriculture will be provided to the farmers via e-mail. In this proposed system, service is enabled on the platform where nearby crop vendors will be able to enter their pickup locations, accepted prices and other relevant information. This will enable farmers to choose their vendors wisely. Along with this, we have created a blogging service that will enable farmers and agricultural enthusiasts to share experiences, helpful knowledge, hardships, etc., with the entire farming community. These are some of the many features that the platform has to offer.Keywords: WSN (wireless sensor networks), M2M (M/C to M/C communication), automation, irrigation system, sustainability, SAAS (software as a service), soil moisture sensor
Procedia PDF Downloads 1294356 Automated Prediction of HIV-associated Cervical Cancer Patients Using Data Mining Techniques for Survival Analysis
Authors: O. J. Akinsola, Yinan Zheng, Rose Anorlu, F. T. Ogunsola, Lifang Hou, Robert Leo-Murphy
Abstract:
Cervical Cancer (CC) is the 2nd most common cancer among women living in low and middle-income countries, with no associated symptoms during formative periods. With the advancement and innovative medical research, there are numerous preventive measures being utilized, but the incidence of cervical cancer cannot be truncated with the application of only screening tests. The mortality associated with this invasive cervical cancer can be nipped in the bud through the important role of early-stage detection. This study research selected an array of different top features selection techniques which was aimed at developing a model that could validly diagnose the risk factors of cervical cancer. A retrospective clinic-based cohort study was conducted on 178 HIV-associated cervical cancer patients in Lagos University teaching Hospital, Nigeria (U54 data repository) in April 2022. The outcome measure was the automated prediction of the HIV-associated cervical cancer cases, while the predictor variables include: demographic information, reproductive history, birth control, sexual history, cervical cancer screening history for invasive cervical cancer. The proposed technique was assessed with R and Python programming software to produce the model by utilizing the classification algorithms for the detection and diagnosis of cervical cancer disease. Four machine learning classification algorithms used are: the machine learning model was split into training and testing dataset into ratio 80:20. The numerical features were also standardized while hyperparameter tuning was carried out on the machine learning to train and test the data. Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN). Some fitting features were selected for the detection and diagnosis of cervical cancer diseases from selected characteristics in the dataset using the contribution of various selection methods for the classification cervical cancer into healthy or diseased status. The mean age of patients was 49.7±12.1 years, mean age at pregnancy was 23.3±5.5 years, mean age at first sexual experience was 19.4±3.2 years, while the mean BMI was 27.1±5.6 kg/m2. A larger percentage of the patients are Married (62.9%), while most of them have at least two sexual partners (72.5%). Age of patients (OR=1.065, p<0.001**), marital status (OR=0.375, p=0.011**), number of pregnancy live-births (OR=1.317, p=0.007**), and use of birth control pills (OR=0.291, p=0.015**) were found to be significantly associated with HIV-associated cervical cancer. On top ten 10 features (variables) considered in the analysis, RF claims the overall model performance, which include: accuracy of (72.0%), the precision of (84.6%), a recall of (84.6%) and F1-score of (74.0%) while LR has: an accuracy of (74.0%), precision of (70.0%), recall of (70.0%) and F1-score of (70.0%). The RF model identified 10 features predictive of developing cervical cancer. The age of patients was considered as the most important risk factor, followed by the number of pregnancy livebirths, marital status, and use of birth control pills, The study shows that data mining techniques could be used to identify women living with HIV at high risk of developing cervical cancer in Nigeria and other sub-Saharan African countries.Keywords: associated cervical cancer, data mining, random forest, logistic regression
Procedia PDF Downloads 834355 High-Resolution Computed Tomography Imaging Features during Pandemic 'COVID-19'
Authors: Sahar Heidary, Ramin Ghasemi Shayan
Abstract:
By the development of new coronavirus (2019-nCoV) pneumonia, chest high-resolution computed tomography (HRCT) has been one of the main investigative implements. To realize timely and truthful diagnostics, defining the radiological features of the infection is of excessive value. The purpose of this impression was to consider the imaging demonstrations of early-stage coronavirus disease 2019 (COVID-19) and to run an imaging base for a primary finding of supposed cases and stratified interference. The right prophetic rate of HRCT was 85%, sensitivity was 73% for all patients. Total accuracy was 68%. There was no important change in these values for symptomatic and asymptomatic persons. These consequences were besides free of the period of X-ray from the beginning of signs or interaction. Therefore, we suggest that HRCT is a brilliant attachment for early identification of COVID-19 pneumonia in both symptomatic and asymptomatic individuals in adding to the role of predictive gauge for COVID-19 pneumonia. Patients experienced non-contrast HRCT chest checkups and images were restored in a thin 1.25 mm lung window. Images were estimated for the existence of lung scratches & a CT severity notch was allocated separately for each patient based on the number of lung lobes convoluted.Keywords: COVID-19, radiology, respiratory diseases, HRCT
Procedia PDF Downloads 1424354 Institutional Quality and Tax Compliance: A Cross-Country Regression Evidence
Authors: Debi Konukcu Onal, Tarkan Cavusoglu
Abstract:
In modern societies, the costs of public goods and services are shared through taxes paid by citizens. However, taxation has always been a frictional issue, as tax obligations are perceived to be a financial burden for taxpayers rather than being merit that fulfills the redistribution, regulation and stabilization functions of the welfare state. The tax compliance literature evolves into discussing why people still pay taxes in systems with low costs of legal enforcement. Related empirical and theoretical works show that a wide range of socially oriented behavioral factors can stimulate voluntary compliance and subversive effects as well. These behavioral motivations are argued to be driven by self-enforcing rules of informal institutions, either independently or through interactions with legal orders set by formal institutions. The main focus of this study is to investigate empirically whether institutional particularities have a significant role in explaining the cross-country differences in the tax noncompliance levels. A part of the controversy about the driving forces behind tax noncompliance may be attributed to the lack of empirical evidence. Thus, this study aims to fill this gap through regression estimates, which help to trace the link between institutional quality and noncompliance on a cross-country basis. Tax evasion estimates of Buehn and Schneider is used as the proxy measure for the tax noncompliance levels. Institutional quality is quantified by three different indicators (percentile ranks of Worldwide Governance Indicators, ratings of the International Country Risk Guide, and the country ratings of the Freedom in the World). Robust Least Squares and Threshold Regression estimates based on the sample of the Organization for Economic Co-operation and Development (OECD) countries imply that tax compliance increases with institutional quality. Moreover, a threshold-based asymmetry is detected in the effect of institutional quality on tax noncompliance. That is, the negative effects of tax burdens on compliance are found to be more pronounced in countries with institutional quality below a certain threshold. These findings are robust to all alternative indicators of institutional quality, supporting the significant interaction of societal values with the individual taxpayer decisions.Keywords: institutional quality, OECD economies, tax compliance, tax evasion
Procedia PDF Downloads 1344353 Audio-Visual Recognition Based on Effective Model and Distillation
Authors: Heng Yang, Tao Luo, Yakun Zhang, Kai Wang, Wei Qin, Liang Xie, Ye Yan, Erwei Yin
Abstract:
Recent years have seen that audio-visual recognition has shown great potential in a strong noise environment. The existing method of audio-visual recognition has explored methods with ResNet and feature fusion. However, on the one hand, ResNet always occupies a large amount of memory resources, restricting the application in engineering. On the other hand, the feature merging also brings some interferences in a high noise environment. In order to solve the problems, we proposed an effective framework with bidirectional distillation. At first, in consideration of the good performance in extracting of features, we chose the light model, Efficientnet as our extractor of spatial features. Secondly, self-distillation was applied to learn more information from raw data. Finally, we proposed a bidirectional distillation in decision-level fusion. In more detail, our experimental results are based on a multi-model dataset from 24 volunteers. Eventually, the lipreading accuracy of our framework was increased by 2.3% compared with existing systems, and our framework made progress in audio-visual fusion in a high noise environment compared with the system of audio recognition without visual.Keywords: lipreading, audio-visual, Efficientnet, distillation
Procedia PDF Downloads 1344352 Development of a Secured Telemedical System Using Biometric Feature
Authors: O. Iyare, A. H. Afolayan, O. T. Oluwadare, B. K. Alese
Abstract:
Access to advanced medical services has been one of the medical challenges faced by our present society especially in distant geographical locations which may be inaccessible. Then the need for telemedicine arises through which live videos of a doctor can be streamed to a patient located anywhere in the world at any time. Patients’ medical records contain very sensitive information which should not be made accessible to unauthorized people in order to protect privacy, integrity and confidentiality. This research work focuses on a more robust security measure which is biometric (fingerprint) as a form of access control to data of patients by the medical specialist/practitioner.Keywords: biometrics, telemedicine, privacy, patient information
Procedia PDF Downloads 2894351 The Development and Future of Hong Kong Typography
Authors: Amic G. Ho
Abstract:
Language usage and typography in Hong Kong are unique, as can be seen clearly on the streets of the city. In contrast to many other parts of the world, where there is only one language, in Hong Kong many signs and billboards display two languages: Chinese and English. The language usage on signage, fonts and types used, and the designs in magazines and advertisements all demonstrate the unique features of Hong Kong typographic design, which reflect the multicultural nature of Hong Kong society. This study is the first step in investigating the nature and development of Hong Kong typography. The preliminary research explored how the historical development of Hong Kong is reflected in its unique typography. Following a review of historical development, a quantitative study was designed: Local Hong Kong participants were invited to provide input on what makes the Hong Kong typographic style unique. Their input was collected and analyzed. This provided us with information about the characteristic criteria and features of Hong Kong typography, as recognized by the local people. The most significant typographic designs in Hong Kong were then investigated and the influence of Chinese and other cultures on Hong Kong typography was assessed. The research results provide an indication to local designers on how they can strengthen local design outcomes and promote the values and culture of their mother town.Keywords: typography, Hong Kong, historical developments, multiple cultures
Procedia PDF Downloads 5154350 Enhanced Photoelectrochemical Water Splitting Coupled with Pharmaceutical Pollutants Degradation on Zr:BiVO4 Photoanodes by Synergetic Catalytic Activity of NiFeOOH Nanostructures
Authors: Mabrook Saleh Amera, Prabhakarn Arunachalama, Maged N. Shaddadb, Abdulhadi Al-Qadia
Abstract:
Global energy crises and water pollution have negatively impacted sustainable development in recent years. It is most promising to use Bismuth vanadate (BiVO4) as an electrode for photoelectrocatalytic (PEC) oxidation of water and pollution degradation. However, BiVO4 anodes suffer from poor charge separation and slow water oxidation. In this paper, a Zr:BiVO4/NiFeOOH heterojunction was successfully prepared by electrodeposition and photoelectrochemical transformation process. The method resulted in a notable 5-fold improvement in photocurrent features (1.27 mAcm−2 at 1.23 VRHE) and a lower onset potential of 0.6 VRHE. Photoanodes with high photocatalytic features and high photocorrosion resistance may be attributed their high conformity and amorphous nature of the coating. In this study, PEC was compared to electrocatalysis (EC), and the effect of bias potential on PEC degradation was discussed for tetracycline (TCH), riboflavin, and streptomycin. In PEC, TCH was degraded in the most efficient way (96 %) by Zr:BiVO4/NiFeOOH, three times larger than Zr:BiVO4 and EC (55 %). Thus, this study offers a potential solution for oxidizing PEC water and treating water pollution.Keywords: photoelectrochemical, water splitting, pharmaceutical pollutants degradation, photoanodes, cocatalyst
Procedia PDF Downloads 544349 An Optimal Control Method for Reconstruction of Topography in Dam-Break Flows
Authors: Alia Alghosoun, Nabil El Moçayd, Mohammed Seaid
Abstract:
Modeling dam-break flows over non-flat beds requires an accurate representation of the topography which is the main source of uncertainty in the model. Therefore, developing robust and accurate techniques for reconstructing topography in this class of problems would reduce the uncertainty in the flow system. In many hydraulic applications, experimental techniques have been widely used to measure the bed topography. In practice, experimental work in hydraulics may be very demanding in both time and cost. Meanwhile, computational hydraulics have served as an alternative for laboratory and field experiments. Unlike the forward problem, the inverse problem is used to identify the bed parameters from the given experimental data. In this case, the shallow water equations used for modeling the hydraulics need to be rearranged in a way that the model parameters can be evaluated from measured data. However, this approach is not always possible and it suffers from stability restrictions. In the present work, we propose an adaptive optimal control technique to numerically identify the underlying bed topography from a given set of free-surface observation data. In this approach, a minimization function is defined to iteratively determine the model parameters. The proposed technique can be interpreted as a fractional-stage scheme. In the first stage, the forward problem is solved to determine the measurable parameters from known data. In the second stage, the adaptive control Ensemble Kalman Filter is implemented to combine the optimality of observation data in order to obtain the accurate estimation of the topography. The main features of this method are on one hand, the ability to solve for different complex geometries with no need for any rearrangements in the original model to rewrite it in an explicit form. On the other hand, its achievement of strong stability for simulations of flows in different regimes containing shocks or discontinuities over any geometry. Numerical results are presented for a dam-break flow problem over non-flat bed using different solvers for the shallow water equations. The robustness of the proposed method is investigated using different numbers of loops, sensitivity parameters, initial samples and location of observations. The obtained results demonstrate high reliability and accuracy of the proposed techniques.Keywords: erodible beds, finite element method, finite volume method, nonlinear elasticity, shallow water equations, stresses in soil
Procedia PDF Downloads 1304348 Feature Engineering Based Detection of Buffer Overflow Vulnerability in Source Code Using Deep Neural Networks
Authors: Mst Shapna Akter, Hossain Shahriar
Abstract:
One of the most important challenges in the field of software code audit is the presence of vulnerabilities in software source code. Every year, more and more software flaws are found, either internally in proprietary code or revealed publicly. These flaws are highly likely exploited and lead to system compromise, data leakage, or denial of service. C and C++ open-source code are now available in order to create a largescale, machine-learning system for function-level vulnerability identification. We assembled a sizable dataset of millions of opensource functions that point to potential exploits. We developed an efficient and scalable vulnerability detection method based on deep neural network models that learn features extracted from the source codes. The source code is first converted into a minimal intermediate representation to remove the pointless components and shorten the dependency. Moreover, we keep the semantic and syntactic information using state-of-the-art word embedding algorithms such as glove and fastText. The embedded vectors are subsequently fed into deep learning networks such as LSTM, BilSTM, LSTM-Autoencoder, word2vec, BERT, and GPT-2 to classify the possible vulnerabilities. Furthermore, we proposed a neural network model which can overcome issues associated with traditional neural networks. Evaluation metrics such as f1 score, precision, recall, accuracy, and total execution time have been used to measure the performance. We made a comparative analysis between results derived from features containing a minimal text representation and semantic and syntactic information. We found that all of the deep learning models provide comparatively higher accuracy when we use semantic and syntactic information as the features but require higher execution time as the word embedding the algorithm puts on a bit of complexity to the overall system.Keywords: cyber security, vulnerability detection, neural networks, feature extraction
Procedia PDF Downloads 894347 The Determinants of Country Corruption: Unobserved Heterogeneity and Individual Choice- An empirical Application with Finite Mixture Models
Authors: Alessandra Marcelletti, Giovanni Trovato
Abstract:
Corruption in public offices is found to be the reflection of country-specific features, however, the exact magnitude and the statistical significance of its determinants effect has not yet been identified. The paper aims to propose an estimation method to measure the impact of country fundamentals on corruption, showing that covariates could differently affect the extent of corruption across countries. Thus, we exploit a model able to take into account different factors affecting the incentive to ask or to be asked for a bribe, coherently with the use of the Corruption Perception Index. We assume that discordant results achieved in literature may be explained by omitted hidden factors affecting the agents' decision process. Moreover, assuming homogeneous covariates effect may lead to unreliable conclusions since the country-specific environment is not accounted for. We apply a Finite Mixture Model with concomitant variables to 129 countries from 1995 to 2006, accounting for the impact of the initial conditions in the socio-economic structure on the corruption patterns. Our findings confirm the hypothesis of the decision process of accepting or asking for a bribe varies with specific country fundamental features.Keywords: Corruption, Finite Mixture Models, Concomitant Variables, Countries Classification
Procedia PDF Downloads 2644346 Radar Fault Diagnosis Strategy Based on Deep Learning
Authors: Bin Feng, Zhulin Zong
Abstract:
Radar systems are critical in the modern military, aviation, and maritime operations, and their proper functioning is essential for the success of these operations. However, due to the complexity and sensitivity of radar systems, they are susceptible to various faults that can significantly affect their performance. Traditional radar fault diagnosis strategies rely on expert knowledge and rule-based approaches, which are often limited in effectiveness and require a lot of time and resources. Deep learning has recently emerged as a promising approach for fault diagnosis due to its ability to learn features and patterns from large amounts of data automatically. In this paper, we propose a radar fault diagnosis strategy based on deep learning that can accurately identify and classify faults in radar systems. Our approach uses convolutional neural networks (CNN) to extract features from radar signals and fault classify the features. The proposed strategy is trained and validated on a dataset of measured radar signals with various types of faults. The results show that it achieves high accuracy in fault diagnosis. To further evaluate the effectiveness of the proposed strategy, we compare it with traditional rule-based approaches and other machine learning-based methods, including decision trees, support vector machines (SVMs), and random forests. The results demonstrate that our deep learning-based approach outperforms the traditional approaches in terms of accuracy and efficiency. Finally, we discuss the potential applications and limitations of the proposed strategy, as well as future research directions. Our study highlights the importance and potential of deep learning for radar fault diagnosis. It suggests that it can be a valuable tool for improving the performance and reliability of radar systems. In summary, this paper presents a radar fault diagnosis strategy based on deep learning that achieves high accuracy and efficiency in identifying and classifying faults in radar systems. The proposed strategy has significant potential for practical applications and can pave the way for further research.Keywords: radar system, fault diagnosis, deep learning, radar fault
Procedia PDF Downloads 904345 Analysis of Anti-Tuberculosis Immune Response Induced in Lungs by Intranasal Immunization with Mycobacterium indicus pranii
Authors: Ananya Gupta, Sangeeta Bhaskar
Abstract:
Mycobacterium indicus pranii (MIP) is a saprophytic mycobacterium. It is a predecessor of M. avium complex (MAC). Whole genome analysis and growth kinetics studies have placed MIP in between pathogenic and non-pathogenic species. It shares significant antigenic repertoire with M. tuberculosis and have unique immunomodulatory properties. MIP provides better protection than BCG against pulmonary tuberculosis in animal models. Immunization with MIP by aerosol route provides significantly higher protection as compared to immunization by subcutaneous (s.c.) route. However, mechanism behind differential protection has not been studied. In this study, using mice model we have evaluated and compared the M.tb specific immune response in lung compartments (airway lumen / lung interstitium) as well as spleen following MIP immunization via nasal (i.n.) and s.c. route. MIP i.n. vaccination resulted in increased seeding of memory T cells (CD4+ and CD8+ T-cells) in the airway lumen. Frequency of CD4+ T cells expressing Th1 migratory marker (CXCR3) and activation marker (CD69) were also high in airway lumen of MIP i.n. group. Significantly high ex vivo secretion of cytokines- IFN-, IL-12, IL-17 and TNF- from cells of airway luminal spaces provides evidence of antigen-specific lung immune response, besides generating systemic immunity comparable to MIP s.c. group. Analysis of T cell response on per cell basis revealed that antigen specific T-cells of MIP i.n. group were functionally superior as higher percentage of these cells simultaneously secreted IFN-gamma, IL-2 and TNF-alpha cytokines as compared to MIP s.c. group. T-cells secreting more than one of the cytokines simultaneously are believed to have robust effector response and crucial for protection, compared with single cytokine secreting T-cells. Adoptive transfer of airway luminal T-cells from MIP i.n. group into trachea of naive B6 mice revealed that MIP induced CD8 T-cells play crucial role in providing long term protection. Thus the study demonstrates that MIP intranasal vaccination induces M.tb specific memory T-cells in the airway lumen that results in an early and robust recall response against M.tb infection.Keywords: airway lumen, Mycobacterium indicus pranii, Th1 migratory markers, vaccination
Procedia PDF Downloads 1874344 Learning Chinese Suprasegmentals for a Better Communicative Performance
Authors: Qi Wang
Abstract:
Chinese has become a powerful worldwide language and millions of learners are studying it all over the words. Chinese is a tone language with unique meaningful characters, which makes foreign learners master it with more difficulties. On the other hand, as each foreign language, the learners of Chinese first will learn the basic Chinese Sound Structure (the initials and finals, tones, Neutral Tone and Tone Sandhi). It’s quite common that in the following studies, teachers made a lot of efforts on drilling and error correcting, in order to help students to pronounce correctly, but ignored the training of suprasegmental features (e.g. stress, intonation). This paper analysed the oral data based on our graduation students (two-year program) from 2006-2013, presents the intonation pattern of our graduates to speak Chinese as second language -high and plain with heavy accents, without lexical stress, appropriate stop endings and intonation, which led to the misunderstanding in different real contexts of communications and the international official Chinese test, e.g. HSK (Chinese Proficiency Test), HSKK (HSK Speaking Test). This paper also demonstrated how the Chinese to use the suprasegmental features strategically in different functions and moods (declarative, interrogative, imperative, exclamatory and rhetorical intonations) in order to train the learners to achieve better Communicative Performance.Keywords: second language learning, suprasegmental, communication, HSK (Chinese Proficiency Test)
Procedia PDF Downloads 4374343 Automatic Classification Using Dynamic Fuzzy C Means Algorithm and Mathematical Morphology: Application in 3D MRI Image
Authors: Abdelkhalek Bakkari
Abstract:
Image segmentation is a critical step in image processing and pattern recognition. In this paper, we proposed a new robust automatic image classification based on a dynamic fuzzy c-means algorithm and mathematical morphology. The proposed segmentation algorithm (DFCM_MM) has been applied to MR perfusion images. The obtained results show the validity and robustness of the proposed approach.Keywords: segmentation, classification, dynamic, fuzzy c-means, MR image
Procedia PDF Downloads 4794342 A Technique for Image Segmentation Using K-Means Clustering Classification
Authors: Sadia Basar, Naila Habib, Awais Adnan
Abstract:
The paper presents the Technique for Image Segmentation Using K-Means Clustering Classification. The presented algorithms were specific, however, missed the neighboring information and required high-speed computerized machines to run the segmentation algorithms. Clustering is the process of partitioning a group of data points into a small number of clusters. The proposed method is content-aware and feature extraction method which is able to run on low-end computerized machines, simple algorithm, required low-quality streaming, efficient and used for security purpose. It has the capability to highlight the boundary and the object. At first, the user enters the data in the representation of the input. Then in the next step, the digital image is converted into groups clusters. Clusters are divided into many regions. The same categories with same features of clusters are assembled within a group and different clusters are placed in other groups. Finally, the clusters are combined with respect to similar features and then represented in the form of segments. The clustered image depicts the clear representation of the digital image in order to highlight the regions and boundaries of the image. At last, the final image is presented in the form of segments. All colors of the image are separated in clusters.Keywords: clustering, image segmentation, K-means function, local and global minimum, region
Procedia PDF Downloads 3764341 Heuristic Classification of Hydrophone Recordings
Authors: Daniel M. Wolff, Patricia Gray, Rafael de la Parra Venegas
Abstract:
An unsupervised machine listening system is constructed and applied to a dataset of 17,195 30-second marine hydrophone recordings. The system is then heuristically supplemented with anecdotal listening, contextual recording information, and supervised learning techniques to reduce the number of false positives. Features for classification are assembled by extracting the following data from each of the audio files: the spectral centroid, root-mean-squared values for each frequency band of a 10-octave filter bank, and mel-frequency cepstral coefficients in 5-second frames. In this way both time- and frequency-domain information are contained in the features to be passed to a clustering algorithm. Classification is performed using the k-means algorithm and then a k-nearest neighbors search. Different values of k are experimented with, in addition to different combinations of the available feature sets. Hypothesized class labels are 'primarily anthrophony' and 'primarily biophony', where the best class result conforming to the former label has 104 members after heuristic pruning. This demonstrates how a large audio dataset has been made more tractable with machine learning techniques, forming the foundation of a framework designed to acoustically monitor and gauge biological and anthropogenic activity in a marine environment.Keywords: anthrophony, hydrophone, k-means, machine learning
Procedia PDF Downloads 1704340 Mind Care Assistant - Companion App
Authors: Roshani Gusain, Deep Sinha, Karan Nayal, Anmol Kumar Mishra, Manav Singh
Abstract:
In this research paper, we introduce "Mind Care Assistant - Companion App", which is a Flutter and Firebase-based mental health monitor. The app wants to improve and monitor the mental health of its users, it uses noninvasive ways to check for a change in their emotional state. By responding to questions, the app will provide individualized suggestions ᅳ tasks and mindfulness exercises ᅳ for users who are depressed or anxious. The app features a chat-bot that incorporates cognitive behavioural therapy (CBT) principles and combines natural language processing with machine learning to develop personalised responses. The feature of the app that makes it easy for us to choose between iOS and Android is cross-platform, which allows users from both mobile systems to experience almost no changes in their interfaces. With Firebase integration synchronized and real-time data storage, security is easily possible. The paper covers the architecture of the app, how it was developed and some important features. The primary research result presents the promise of a "Mind Care Assistant" in mental health care using new wait-for-health technology, proposing a full stack application to be able to manage depression/anxiety and overall Mental well-being very effectively.Keywords: mental health, mobile application, flutter, firebase, Depression, Anxiety
Procedia PDF Downloads 12