Search results for: Artificial intelligence (AI)
1831 Water Demand Modelling Using Artificial Neural Network in Ramallah
Authors: F. Massri, M. Shkarneh, B. Almassri
Abstract:
Water scarcity and increasing water demand especially for residential use are major challenges facing Palestine. The need to accurately forecast water consumption is useful for the planning and management of this natural resource. The main objective of this paper is to (i) study the major factors influencing the water consumption in Palestine, (ii) understand the general pattern of Household water consumption, (iii) assess the possible changes in household water consumption and suggest appropriate remedies and (iv) develop prediction model based on the Artificial Neural Network to the water consumption in Palestinian cities. The paper is organized in four parts. The first part includes literature review of household water consumption studies. The second part concerns data collection methodology, conceptual frame work for the household water consumption surveys, survey descriptions and data processing methods. The third part presents descriptive statistics, multiple regression and analysis of the water consumption in the two Palestinian cities. The final part develops the use of Artificial Neural Network for modeling the water consumption in Palestinian cities.Keywords: water management, demand forecasting, consumption, ANN, Ramallah
Procedia PDF Downloads 2191830 Continuous Functions Modeling with Artificial Neural Network: An Improvement Technique to Feed the Input-Output Mapping
Authors: A. Belayadi, A. Mougari, L. Ait-Gougam, F. Mekideche-Chafa
Abstract:
The artificial neural network is one of the interesting techniques that have been advantageously used to deal with modeling problems. In this study, the computing with artificial neural network (CANN) is proposed. The model is applied to modulate the information processing of one-dimensional task. We aim to integrate a new method which is based on a new coding approach of generating the input-output mapping. The latter is based on increasing the neuron unit in the last layer. Accordingly, to show the efficiency of the approach under study, a comparison is made between the proposed method of generating the input-output set and the conventional method. The results illustrated that the increasing of the neuron units, in the last layer, allows to find the optimal network’s parameters that fit with the mapping data. Moreover, it permits to decrease the training time, during the computation process, which avoids the use of computers with high memory usage.Keywords: neural network computing, continuous functions generating the input-output mapping, decreasing the training time, machines with big memories
Procedia PDF Downloads 2831829 Knowledge Creation Environment in the Iranian Universities: A Case Study
Authors: Mahdi Shaghaghi, Amir Ghaebi, Fariba Ahmadi
Abstract:
Purpose: The main purpose of the present research is to analyze the knowledge creation environment at a Iranian University (Alzahra University) as a typical University in Iran, using a combination of the i-System and Ba models. This study is necessary for understanding the determinants of knowledge creation at Alzahra University as a typical University in Iran. Methodology: To carry out the present research, which is an applied study in terms of purpose, a descriptive survey method was used. In this study, a combination of the i-System and Ba models has been used to analyze the knowledge creation environment at Alzahra University. i-System consists of 5 constructs including intervention (input), intelligence (process), involvement (process), imagination (process), and integration (output). The Ba environment has three pillars, namely the infrastructure, the agent, and the information. The integration of these two models resulted in 11 constructs which were as follows: intervention (input), infrastructure-intelligence, agent-intelligence, information-intelligence (process); infrastructure-involvement, agent-involvement, information-involvement (process); infrastructure-imagination, agent-imagination, information-imagination (process); and integration (output). These 11 constructs were incorporated into a 52-statement questionnaire and the validity and reliability of the questionnaire were examined and confirmed. The statistical population included the faculty members of Alzahra University (344 people). A total of 181 participants were selected through the stratified random sampling technique. The descriptive statistics, binomial test, regression analysis, and structural equation modeling (SEM) methods were also utilized to analyze the data. Findings: The research findings indicated that among the 11 research constructs, the levels of intervention, information-intelligence, infrastructure-involvement, and agent-imagination constructs were average and not acceptable. The levels of infrastructure-intelligence and information-imagination constructs ranged from average to low. The levels of agent-intelligence and information-involvement constructs were also completely average. The level of infrastructure-imagination construct was average to high and thus was considered acceptable. The levels of agent-involvement and integration constructs were above average and were in a highly acceptable condition. Furthermore, the regression analysis results indicated that only two constructs, viz. the information-imagination and agent-involvement constructs, positively and significantly correlate with the integration construct. The results of the structural equation modeling also revealed that the intervention, intelligence, and involvement constructs are related to the integration construct with the complete mediation of imagination. Discussion and conclusion: The present research suggests that knowledge creation at Alzahra University relatively complies with the combination of the i-System and Ba models. Unlike this model, the intervention, intelligence, and involvement constructs are not directly related to the integration construct and this seems to have three implications: 1) the information sources are not frequently used to assess and identify the research biases; 2) problem finding is probably of less concern at the end of studies and at the time of assessment and validation; 3) the involvement of others has a smaller role in the summarization, assessment, and validation of the research.Keywords: i-System, Ba model , knowledge creation , knowledge management, knowledge creation environment, Iranian Universities
Procedia PDF Downloads 1011828 An Integrated Approach to Find the Effect of Strain Rate on Ultimate Tensile Strength of Randomly Oriented Short Glass Fiber Composite in Combination with Artificial Neural Network
Authors: Sharad Shrivastava, Arun Jalan
Abstract:
In this study tensile testing was performed on randomly oriented short glass fiber/epoxy resin composite specimens which were prepared using hand lay-up method. Samples were tested over a wide range of strain rate/loading rate from 2mm/min to 40mm/min to see the effect on ultimate tensile strength of the composite. A multi layered 'back propagation artificial neural network of supervised learning type' was used to analyze and predict the tensile properties with strain rate and temperature as given input and output as UTS to predict. Various network structures were designed and investigated with varying parameters and network sizes, and an optimized network structure was proposed to predict the UTS of short glass fiber/epoxy resin composite specimens with reasonably good accuracy.Keywords: glass fiber composite, mechanical properties, strain rate, artificial neural network
Procedia PDF Downloads 4371827 Artificial Intelligent Methodology for Liquid Propellant Engine Design Optimization
Authors: Hassan Naseh, Javad Roozgard
Abstract:
This paper represents the methodology based on Artificial Intelligent (AI) applied to Liquid Propellant Engine (LPE) optimization. The AI methodology utilized from Adaptive neural Fuzzy Inference System (ANFIS). In this methodology, the optimum objective function means to achieve maximum performance (specific impulse). The independent design variables in ANFIS modeling are combustion chamber pressure and temperature and oxidizer to fuel ratio and output of this modeling are specific impulse that can be applied with other objective functions in LPE design optimization. To this end, the LPE’s parameter has been modeled in ANFIS methodology based on generating fuzzy inference system structure by using grid partitioning, subtractive clustering and Fuzzy C-Means (FCM) clustering for both inferences (Mamdani and Sugeno) and various types of membership functions. The final comparing optimization results shown accuracy and processing run time of the Gaussian ANFIS Methodology between all methods.Keywords: ANFIS methodology, artificial intelligent, liquid propellant engine, optimization
Procedia PDF Downloads 5881826 The Impact of Artificial Intelligence on Qualty Conrol and Quality
Authors: Mary Moner Botros Fanawel
Abstract:
Many companies use the statistical tool named as statistical quality control, and which can have a high cost for the companies interested on these statistical tools. The evaluation of the quality of products and services is an important topic, but the reduction of the cost of the implantation of the statistical quality control also has important benefits for the companies. For this reason, it is important to implement a economic design for the various steps included into the statistical quality control. In this paper, we describe some relevant aspects related to the economic design of a quality control chart for the proportion of defective items. They are very important because the suggested issues can reduce the cost of implementing a quality control chart for the proportion of defective items. Note that the main purpose of this chart is to evaluate and control the proportion of defective items of a production process.Keywords: model predictive control, hierarchical control structure, genetic algorithm, water quality with DBPs objectives proportion, type I error, economic plan, distribution function bootstrap control limit, p-value method, out-of-control signals, p-value, quality characteristics
Procedia PDF Downloads 621825 Optimal Placement and Sizing of Distributed Generation in Microgrid for Power Loss Reduction and Voltage Profile Improvement
Authors: Ferinar Moaidi, Mahdi Moaidi
Abstract:
Environmental issues and the ever-increasing in demand of electrical energy make it necessary to have distributed generation (DG) resources in the power system. In this research, in order to realize the goals of reducing losses and improving the voltage profile in a microgrid, the allocation and sizing of DGs have been used. The proposed Genetic Algorithm (GA) is described from the array of artificial intelligence methods for solving the problem. The algorithm is implemented on the IEEE 33 buses network. This study is presented in two scenarios, primarily to illustrate the effect of location and determination of DGs has been done to reduce losses and improve the voltage profile. On the other hand, decisions made with the one-level assumptions of load are not universally accepted for all levels of load. Therefore, in this study, load modelling is performed and the results are presented for multi-levels load state.Keywords: distributed generation, genetic algorithm, microgrid, load modelling, loss reduction, voltage improvement
Procedia PDF Downloads 1431824 Enunciation on Complexities of Selected Tree Searching Algorithms
Authors: Parag Bhalchandra, S. D. Khamitkar
Abstract:
Searching trees is a most interesting application of Artificial Intelligence. Over the period of time, many innovative methods have been evolved to better search trees with respect to computational complexities. Tree searches are difficult to understand due to the exponential growth of possibilities when increasing the number of nodes or levels in the tree. Usually it is understood when we traverse down in the tree, traverse down to greater depth, in the search of a solution or a goal. However, this does not happen in reality as explicit enumeration is not a very efficient method and there are many algorithmic speedups that will find the optimal solution without the burden of evaluating all possible trees. It was a common question before all researchers where they often wonder what algorithms will yield the best and fastest result The intention of this paper is two folds, one to review selected tree search algorithms and search strategies that can be applied to a problem space and the second objective is to stimulate to implement recent developments in the complexity behavior of search strategies. The algorithms discussed here apply in general to both brute force and heuristic searches.Keywords: trees search, asymptotic complexity, brute force, heuristics algorithms
Procedia PDF Downloads 3041823 Intelligent Control of Agricultural Farms, Gardens, Greenhouses, Livestock
Authors: Vahid Bairami Rad
Abstract:
The intelligentization of agricultural fields can control the temperature, humidity, and variables affecting the growth of agricultural products online and on a mobile phone or computer. Smarting agricultural fields and gardens is one of the best and best ways to optimize agricultural equipment and has a 100 percent direct effect on the growth of plants and agricultural products and farms. Smart farms are the topic that we are going to discuss today, the Internet of Things and artificial intelligence. Agriculture is becoming smarter every day. From large industrial operations to individuals growing organic produce locally, technology is at the forefront of reducing costs, improving results and ensuring optimal delivery to market. A key element to having a smart agriculture is the use of useful data. Modern farmers have more tools to collect intelligent data than in previous years. Data related to soil chemistry also allows people to make informed decisions about fertilizing farmland. Moisture meter sensors and accurate irrigation controllers have made the irrigation processes to be optimized and at the same time reduce the cost of water consumption. Drones can apply pesticides precisely on the desired point. Automated harvesting machines navigate crop fields based on position and capacity sensors. The list goes on. Almost any process related to agriculture can use sensors that collect data to optimize existing processes and make informed decisions. The Internet of Things (IoT) is at the center of this great transformation. Internet of Things hardware has grown and developed rapidly to provide low-cost sensors for people's needs. These sensors are embedded in IoT devices with a battery and can be evaluated over the years and have access to a low-power and cost-effective mobile network. IoT device management platforms have also evolved rapidly and can now be used securely and manage existing devices at scale. IoT cloud services also provide a set of application enablement services that can be easily used by developers and allow them to build application business logic. Focus on yourself. These development processes have created powerful and new applications in the field of Internet of Things, and these programs can be used in various industries such as agriculture and building smart farms. But the question is, what makes today's farms truly smart farms? Let us put this question in another way. When will the technologies associated with smart farms reach the point where the range of intelligence they provide can exceed the intelligence of experienced and professional farmers?Keywords: food security, IoT automation, wireless communication, hybrid lifestyle, arduino Uno
Procedia PDF Downloads 561822 A Two-Step Framework for Unsupervised Speaker Segmentation Using BIC and Artificial Neural Network
Authors: Ahmad Alwosheel, Ahmed Alqaraawi
Abstract:
This work proposes a new speaker segmentation approach for two speakers. It is an online approach that does not require a prior information about speaker models. It has two phases, a conventional approach such as unsupervised BIC-based is utilized in the first phase to detect speaker changes and train a Neural Network, while in the second phase, the output trained parameters from the Neural Network are used to predict next incoming audio stream. Using this approach, a comparable accuracy to similar BIC-based approaches is achieved with a significant improvement in terms of computation time.Keywords: artificial neural network, diarization, speaker indexing, speaker segmentation
Procedia PDF Downloads 5021821 Comparative Analysis of Sigmoidal Feedforward Artificial Neural Networks and Radial Basis Function Networks Approach for Localization in Wireless Sensor Networks
Authors: Ashish Payal, C. S. Rai, B. V. R. Reddy
Abstract:
With the increasing use and application of Wireless Sensor Networks (WSN), need has arisen to explore them in more effective and efficient manner. An important area which can bring efficiency to WSNs is the localization process, which refers to the estimation of the position of wireless sensor nodes in an ad hoc network setting, in reference to a coordinate system that may be internal or external to the network. In this paper, we have done comparison and analysed Sigmoidal Feedforward Artificial Neural Networks (SFFANNs) and Radial Basis Function (RBF) networks for developing localization framework in WSNs. The presented work utilizes the Received Signal Strength Indicator (RSSI), measured by static node on 100 x 100 m2 grid from three anchor nodes. The comprehensive evaluation of these approaches is done using MATLAB software. The simulation results effectively demonstrate that FFANNs based sensor motes will show better localization accuracy as compared to RBF.Keywords: localization, wireless sensor networks, artificial neural network, radial basis function, multi-layer perceptron, backpropagation, RSSI, GPS
Procedia PDF Downloads 3391820 Impact Force Difference on Natural Grass Versus Synthetic Turf Football Fields
Authors: Nathaniel C. Villanueva, Ian K. H. Chun, Alyssa S. Fujiwara, Emily R. Leibovitch, Brennan E. Yamamoto, Loren G. Yamamoto
Abstract:
Introduction: In previous studies of high school sports, over 15% of concussions were attributed to contact with the playing surface. While artificial turf fields are increasing in popularity due to lower maintenance costs, artificial turf has been associated with more ankle and knee injuries, with inconclusive data on concussions. In this study, natural grass and artificial football fields were compared in terms of deceleration on fall impact. Methods: Accelerometers were placed on the forehead, apex of the head, and right ear of a Century Body Opponent Bag (BOB) manikin. A Riddell HITS football helmet was secured onto the head of the manikin over the accelerometers. This manikin was dropped onto natural grass (n = 10) and artificial turf (n = 9) high school football fields. The manikin was dropped from a stationary position at a height of 60 cm onto its front, back, and left side. Each of these drops was conducted 10 times at the 40-yard line, 20-yard line, and endzone. The net deceleration on impact was calculated as a net vector from each of the three accelerometers’ x, y, and z vectors from the three different locations on the manikin’s head (9 vector measurements per drop). Results: Mean values for the multiple drops were calculated for each accelerometer and drop type for each field. All accelerometers in forward and backward falls and one accelerometer in side falls showed significantly greater impact force on synthetic turf compared to the natural grass surfaces. Conclusion: Impact force was higher on synthetic fields for all drop types for at least one of the accelerometer locations. These findings suggest that concussion risk might be higher for athletes playing on artificial turf fields.Keywords: concussion, football, biomechanics, sports
Procedia PDF Downloads 1581819 Application of Artificial Neural Network for Prediction of Load-Haul-Dump Machine Performance Characteristics
Authors: J. Balaraju, M. Govinda Raj, C. S. N. Murthy
Abstract:
Every industry is constantly looking for enhancement of its day to day production and productivity. This can be possible only by maintaining the men and machinery at its adequate level. Prediction of performance characteristics plays an important role in performance evaluation of the equipment. Analytical and statistical approaches will take a bit more time to solve complex problems such as performance estimations as compared with software-based approaches. Keeping this in view the present study deals with an Artificial Neural Network (ANN) modelling of a Load-Haul-Dump (LHD) machine to predict the performance characteristics such as reliability, availability and preventive maintenance (PM). A feed-forward-back-propagation ANN technique has been used to model the Levenberg-Marquardt (LM) training algorithm. The performance characteristics were computed using Isograph Reliability Workbench 13.0 software. These computed values were validated using predicted output responses of ANN models. Further, recommendations are given to the industry based on the performed analysis for improvement of equipment performance.Keywords: load-haul-dump, LHD, artificial neural network, ANN, performance, reliability, availability, preventive maintenance
Procedia PDF Downloads 1501818 Personalizing Human Physical Life Routines Recognition over Cloud-based Sensor Data via AI and Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Pervasive computing is a growing research field that aims to acknowledge human physical life routines (HPLR) based on body-worn sensors such as MEMS sensors-based technologies. The use of these technologies for human activity recognition is progressively increasing. On the other hand, personalizing human life routines using numerous machine-learning techniques has always been an intriguing topic. In contrast, various methods have demonstrated the ability to recognize basic movement patterns. However, it still needs to be improved to anticipate the dynamics of human living patterns. This study introduces state-of-the-art techniques for recognizing static and dy-namic patterns and forecasting those challenging activities from multi-fused sensors. Further-more, numerous MEMS signals are extracted from one self-annotated IM-WSHA dataset and two benchmarked datasets. First, we acquired raw data is filtered with z-normalization and denoiser methods. Then, we adopted statistical, local binary pattern, auto-regressive model, and intrinsic time scale decomposition major features for feature extraction from different domains. Next, the acquired features are optimized using maximum relevance and minimum redundancy (mRMR). Finally, the artificial neural network is applied to analyze the whole system's performance. As a result, we attained a 90.27% recognition rate for the self-annotated dataset, while the HARTH and KU-HAR achieved 83% on nine living activities and 90.94% on 18 static and dynamic routines. Thus, the proposed HPLR system outperformed other state-of-the-art systems when evaluated with other methods in the literature.Keywords: artificial intelligence, machine learning, gait analysis, local binary pattern (LBP), statistical features, micro-electro-mechanical systems (MEMS), maximum relevance and minimum re-dundancy (MRMR)
Procedia PDF Downloads 201817 Clinical Experience and Perception of Risk affect the Acceptance and Trust of using AI in Medicine
Authors: Schulz Peter, Kee Kalya, Lwin May, Goh Wilson, Chia Kendrikck, Chueng Max, Lam Thomas, Sung Joseph
Abstract:
As Artificial Intelligence (AI) is progressively making inroads into clinical practice, questions have arisen as to whether acceptance of AI is skewed toward certain medical practitioner segments, even within particular specializations. This study examines distinct AI acceptance among gastroenterologists with contrasting levels of seniority/experience when interacting with AI typologies. Data from 319 gastroenterologists show the presence of four distinct clusters of clinicians based on experience levels and perceived risk typologies. Analysis of cluster-based responses further revealed that acceptance of AI was not uniform. Our findings showed that clinician experience and risk perspective have an interactive role in influencing AI acceptance. Senior clinicians with low-risk perceptions were highly accepting of AI, but those with high-risk perceptions of AI were substantially less accepting. In contrast, junior clinicians were more inclined to embrace AI when they perceived high risk, yet they hesitated to adopt AI when the perceived risk was minimal.Keywords: risk perception, acceptance, trust, medicine
Procedia PDF Downloads 131816 The Application of Artificial Neural Networks for the Performance Prediction of Evacuated Tube Solar Air Collector with Phase Change Material
Authors: Sukhbir Singh
Abstract:
This paper describes the modeling of novel solar air collector (NSAC) system by using artificial neural network (ANN) model. The objective of the study is to demonstrate the application of the ANN model to predict the performance of the NSAC with acetamide as a phase change material (PCM) storage. Input data set consist of time, solar intensity and ambient temperature wherever as outlet air temperature of NSAC was considered as output. Experiments were conducted between 9.00 and 24.00 h in June and July 2014 underneath the prevailing atmospheric condition of Kurukshetra (city of the India). After that, experimental results were utilized to train the back propagation neural network (BPNN) to predict the outlet air temperature of NSAC. The results of proposed algorithm show that the BPNN is effective tool for the prediction of responses. The BPNN predicted results are 99% in agreement with the experimental results.Keywords: Evacuated tube solar air collector, Artificial neural network, Phase change material, solar air collector
Procedia PDF Downloads 1201815 Proof of Concept Design and Development of a Computer-Aided Medical Evaluation of Symptoms Web App: An Expert System for Medical Diagnosis in General Practice
Authors: Ananda Perera
Abstract:
Computer-Assisted Medical Evaluation of Symptoms (CAMEOS) is a medical expert system designed to help General Practices (GPs) make an accurate diagnosis. CAMEOS comprises a knowledge base, user input, inference engine, reasoning module, and output statement. The knowledge base was developed by the author. User input is an Html file. The physician user collects data in the consultation. Data is sent to the inference engine at servers. CAMEOS uses set theory to simulate diagnostic reasoning. The program output is a list of differential diagnoses, the most probable diagnosis, and the diagnostic reasoning.Keywords: CDSS, computerized decision support systems, expert systems, general practice, diagnosis, diagnostic systems, primary care diagnostic system, artificial intelligence in medicine
Procedia PDF Downloads 1551814 Investigating the Impact of Job-Related and Organisational Factors on Employee Engagement: An Emotionally Relevant Approach Based on Psychological Climate and Organisational Emotional Intelligence (OEI)
Authors: Nuno Da Camara, Victor Dulewicz, Malcolm Higgs
Abstract:
Factors on employee engagement: In particular, although theorists have described the critical role of emotional cognition of the workplace environment as antecedents to employee engagement, empirical research on the impact of emotional cognition on employee engagement is limited. However, previous researchers have typically provided evidence of the link between emotional cognition of the workplace environment and workplace attitudes such as job satisfaction and organisational commitment. This study therefore aims to investigate the impact of emotional cognition of job, role, leader and organisation domains of the work environment – as represented by measures of psychological climate and organizational emotional intelligence (OEI) - on employee engagement. The research is based on a quantitative cross-sectional survey of employees in a UK charity organization (n=174). The research instruments applied include the psychological climate scale, the organisational emotional intelligence questionnaire (OEIQ) and the Utrecht Work Engagement Scale (UWES). The data were analysed using hierarchical regression and partial least squares (PLS) analytical techniques. The results of the study show that both psychological climate and OEI, which represent emotional cognition of job, role, leader and organisation domains in the workplace are significant drivers of employee engagement. In particular, the study found that a sense of contribution and challenge at work are the strongest drivers of vigour, dedication and absorption and highlights the importance of emotionally relevant approaches in furthering our understanding of workplace engagement.Keywords: employee engagement, organisational emotional intelligence, psychological climate, workplace attitudes
Procedia PDF Downloads 5051813 Downscaling Daily Temperature with Neuroevolutionary Algorithm
Authors: Min Shi
Abstract:
State of the art research with Artificial Neural Networks for the downscaling of General Circulation Models (GCMs) mainly uses back-propagation algorithm as a training approach. This paper introduces another training approach of ANNs, Evolutionary Algorithm. The combined algorithm names neuroevolutionary (NE) algorithm. We investigate and evaluate the use of the NE algorithms in statistical downscaling by generating temperature estimates at interior points given information from a lattice of surrounding locations. The results of our experiments indicate that NE algorithms can be efficient alternative downscaling methods for daily temperatures.Keywords: temperature, downscaling, artificial neural networks, evolutionary algorithms
Procedia PDF Downloads 3491812 The Effect of Artificial Intelligence on Construction Development
Authors: Shady Gamal Aziz Shehata
Abstract:
Difficulty in defining construction quality arises due to perception based on the nature and requirements of the market, the different partners themselves and the results they want. Quantitative research was used in this constructivist research. A case-based study was conducted to assess the structures of positive attitudes and expectations in the context of quality improvement. A survey based on expert opinions was analyzed among construction organizations/companies operating in the construction industry in Pakistan. The financial strength, management structure and construction experience of the construction companies formed the basis of their selection. A good concept is visible at the project level and is seen as the most valuable part of the construction project. Each quality improvement technique was expected to increase the user's profits by improving the efficiency of the construction project. The Survey is useful for construction professionals to evaluate current construction concepts and expectations for the application of quality improvement techniques in construction projects.Keywords: correlation analysis, lean construction tools, lean construction, logistic regression analysis, risk management, safety construction quality, expectation, improvement, perception
Procedia PDF Downloads 591811 AI for Efficient Geothermal Exploration and Utilization
Authors: Velimir Monty Vesselinov, Trais Kliplhuis, Hope Jasperson
Abstract:
Artificial intelligence (AI) is a powerful tool in the geothermal energy sector, aiding in both exploration and utilization. Identifying promising geothermal sites can be challenging due to limited surface indicators and the need for expensive drilling to confirm subsurface resources. Geothermal reservoirs can be located deep underground and exhibit complex geological structures, making traditional exploration methods time-consuming and imprecise. AI algorithms can analyze vast datasets of geological, geophysical, and remote sensing data, including satellite imagery, seismic surveys, geochemistry, geology, etc. Machine learning algorithms can identify subtle patterns and relationships within this data, potentially revealing hidden geothermal potential in areas previously overlooked. To address these challenges, a SIML (Science-Informed Machine Learning) technology has been developed. SIML methods are different from traditional ML techniques. In both cases, the ML models are trained to predict the spatial distribution of an output (e.g., pressure, temperature, heat flux) based on a series of inputs (e.g., permeability, porosity, etc.). The traditional ML (a) relies on deep and wide neural networks (NNs) based on simple algebraic mappings to represent complex processes. In contrast, the SIML neurons incorporate complex mappings (including constitutive relationships and physics/chemistry models). This results in ML models that have a physical meaning and satisfy physics laws and constraints. The prototype of the developed software, called GeoTGO, is accessible through the cloud. Our software prototype demonstrates how different data sources can be made available for processing, executed demonstrative SIML analyses, and presents the results in a table and graphic form.Keywords: science-informed machine learning, artificial inteligence, exploration, utilization, hidden geothermal
Procedia PDF Downloads 531810 Numerical Methods for Topological Optimization of Wooden Structural Elements
Authors: Daniela Tapusi, Adrian Andronic, Naomi Tufan, Ruxandra Erbașu, Ioana Teodorescu
Abstract:
The proposed theme of this article falls within the policy of reducing carbon emissions imposed by the ‘Green New Deal’ by replacing structural elements made of energy-intensive materials with ecological materials. In this sense, wood has many qualities (high strength/mass and stiffness/mass ratio, low specific gravity, recovery/recycling) that make it competitive with classic building materials. The topological optimization of the linear glulam elements, resulting from different types of analysis (Finite Element Method, simple regression on metamodels), tests on models or by Monte-Carlo simulation, leads to a material reduction of more than 10%. This article proposes a method of obtaining topologically optimized shapes for different types of glued laminated timber beams. The results obtained will constitute the database for AI training.Keywords: timber, glued laminated timber, artificial-intelligence, environment, carbon emissions
Procedia PDF Downloads 391809 The Effect of Artificial Intelligence on Media Production
Authors: Mona Mikhail Shakhloul Gadalla
Abstract:
The brand-new media revolution, which features a huge range of new media technologies like blogs, social networking, visual worlds, and wikis, has had a tremendous impact on communications, traditional media and across different disciplines. This paper gives an evaluation of the impact of recent media technology on the news, social interactions and conventional media in developing and advanced nations. The look points to the reality that there is a widespread impact of recent media technologies on the news, social interactions and the conventional media in developing and developed nations, albeit undoubtedly and negatively. Social interactions have been considerably affected, in addition to news manufacturing and reporting. It's miles reiterated that regardless of the pervasiveness of recent media technologies, it might now not carry a complete decline of conventional media. This paper contributes to the theoretical framework of the new media and will assist in assessing the extent of the effect of the new media in special places.Keywords: court reporting, offenders in media, quantitative content analysis, victims in mediamedia literacy, ICT, internet, education communication, media, news, new media technologies, social interactions, traditional media
Procedia PDF Downloads 341808 Optimization of Friction Stir Welding Parameters for Joining Aluminium Alloys using Response Surface Methodology and Artificial Neural Network
Authors: A. M. Khourshid, A. M. El-Kassas, I. Sabry
Abstract:
The objective of this work was to investigate the mechanical properties in order to demonstrate the feasibility of friction stir welding for joining Al 6061 aluminium alloys. Welding was performed on pipe with different thickness (2, 3 and 4 mm), five rotational speeds (485, 710, 910, 1120 and 1400 rpm) and a traverse speed of 4mm/min. This work focuses on two methods which are artificial neural networks using software and Response Surface Methodology (RSM) to predict the tensile strength, the percentage of elongation and hardness of friction stir welded 6061 aluminium alloy. An Artificial Neural Network (ANN) model was developed for the analysis of the friction stir welding parameters of 6061 pipe. Tensile strength, the percentage of elongation and hardness of weld joints were predicted by taking the parameters tool rotation speed, material thickness and axial force as a function. A comparison was made between measured and predicted data. Response Surface Methodology (RSM) was also developed and the values obtained for the response tensile strength, the percentage of elongation and hardness are compared with measured values. The effect of FSW process parameters on mechanical properties of 6061 aluminium alloy has been analysed in detail.Keywords: friction stir welding, aluminium alloy, response surface methodology, artificial neural network
Procedia PDF Downloads 2931807 Intrusion Detection Using Dual Artificial Techniques
Authors: Rana I. Abdulghani, Amera I. Melhum
Abstract:
With the abnormal growth of the usage of computers over networks and under the consideration or agreement of most of the computer security experts who said that the goal of building a secure system is never achieved effectively, all these points led to the design of the intrusion detection systems(IDS). This research adopts a comparison between two techniques for network intrusion detection, The first one used the (Particles Swarm Optimization) that fall within the field (Swarm Intelligence). In this Act, the algorithm Enhanced for the purpose of obtaining the minimum error rate by amending the cluster centers when better fitness function is found through the training stages. Results show that this modification gives more efficient exploration of the original algorithm. The second algorithm used a (Back propagation NN) algorithm. Finally a comparison between the results of two methods used were based on (NSL_KDD) data sets for the construction and evaluation of intrusion detection systems. This research is only interested in clustering the two categories (Normal and Abnormal) for the given connection records. Practices experiments result in intrude detection rate (99.183818%) for EPSO and intrude detection rate (69.446416%) for BP neural network.Keywords: IDS, SI, BP, NSL_KDD, PSO
Procedia PDF Downloads 3821806 Machine Learning Automatic Detection on Twitter Cyberbullying
Authors: Raghad A. Altowairgi
Abstract:
With the wide spread of social media platforms, young people tend to use them extensively as the first means of communication due to their ease and modernity. But these platforms often create a fertile ground for bullies to practice their aggressive behavior against their victims. Platform usage cannot be reduced, but intelligent mechanisms can be implemented to reduce the abuse. This is where machine learning comes in. Understanding and classifying text can be helpful in order to minimize the act of cyberbullying. Artificial intelligence techniques have expanded to formulate an applied tool to address the phenomenon of cyberbullying. In this research, machine learning models are built to classify text into two classes; cyberbullying and non-cyberbullying. After preprocessing the data in 4 stages; removing characters that do not provide meaningful information to the models, tokenization, removing stop words, and lowering text. BoW and TF-IDF are used as the main features for the five classifiers, which are; logistic regression, Naïve Bayes, Random Forest, XGboost, and Catboost classifiers. Each of them scores 92%, 90%, 92%, 91%, 86% respectively.Keywords: cyberbullying, machine learning, Bag-of-Words, term frequency-inverse document frequency, natural language processing, Catboost
Procedia PDF Downloads 1301805 Estimating Poverty Levels from Satellite Imagery: A Comparison of Human Readers and an Artificial Intelligence Model
Authors: Ola Hall, Ibrahim Wahab, Thorsteinn Rognvaldsson, Mattias Ohlsson
Abstract:
The subfield of poverty and welfare estimation that applies machine learning tools and methods on satellite imagery is a nascent but rapidly growing one. This is in part driven by the sustainable development goal, whose overarching principle is that no region is left behind. Among other things, this requires that welfare levels can be accurately and rapidly estimated at different spatial scales and resolutions. Conventional tools of household surveys and interviews do not suffice in this regard. While they are useful for gaining a longitudinal understanding of the welfare levels of populations, they do not offer adequate spatial coverage for the accuracy that is needed, nor are their implementation sufficiently swift to gain an accurate insight into people and places. It is this void that satellite imagery fills. Previously, this was near-impossible to implement due to the sheer volume of data that needed processing. Recent advances in machine learning, especially the deep learning subtype, such as deep neural networks, have made this a rapidly growing area of scholarship. Despite their unprecedented levels of performance, such models lack transparency and explainability and thus have seen limited downstream applications as humans generally are apprehensive of techniques that are not inherently interpretable and trustworthy. While several studies have demonstrated the superhuman performance of AI models, none has directly compared the performance of such models and human readers in the domain of poverty studies. In the present study, we directly compare the performance of human readers and a DL model using different resolutions of satellite imagery to estimate the welfare levels of demographic and health survey clusters in Tanzania, using the wealth quintile ratings from the same survey as the ground truth data. The cluster-level imagery covers all 608 cluster locations, of which 428 were classified as rural. The imagery for the human readers was sourced from the Google Maps Platform at an ultra-high resolution of 0.6m per pixel at zoom level 18, while that of the machine learning model was sourced from the comparatively lower resolution Sentinel-2 10m per pixel data for the same cluster locations. Rank correlation coefficients of between 0.31 and 0.32 achieved by the human readers were much lower when compared to those attained by the machine learning model – 0.69-0.79. This superhuman performance by the model is even more significant given that it was trained on the relatively lower 10-meter resolution satellite data while the human readers estimated welfare levels from the higher 0.6m spatial resolution data from which key markers of poverty and slums – roofing and road quality – are discernible. It is important to note, however, that the human readers did not receive any training before ratings, and had this been done, their performance might have improved. The stellar performance of the model also comes with the inevitable shortfall relating to limited transparency and explainability. The findings have significant implications for attaining the objective of the current frontier of deep learning models in this domain of scholarship – eXplainable Artificial Intelligence through a collaborative rather than a comparative framework.Keywords: poverty prediction, satellite imagery, human readers, machine learning, Tanzania
Procedia PDF Downloads 1051804 Emotional Intelligence as a Predictor of Job Satisfaction in the Nigerian Construction Industry
Authors: Adedayo Johnson Ogungbile, Ayodeji Emmanuel Oke, Oluwaseyi Alabi Awodele
Abstract:
This study examines the role of emotional intelligence (EI) as a predictor of job satisfaction within the Nigerian construction industry. Utilizing a methodology that combines mean comparison and correlation analysis, the research explores how EI influences job satisfaction across diverse demographic and professional categories. The construction industry, known for its dynamic and often challenging work environment, provides a unique context to investigate how EI contributes to employee satisfaction. The findings reveal a significant positive correlation between EI and job satisfaction across the industry. Gender-based analysis shows that male employees typically report higher EI and job satisfaction levels compared to their female counterparts, although the impact of EI on job satisfaction is more substantial among women. The study further explores the relationship between trait EI and specific job satisfaction categories, identifying a general positive association with overall job satisfaction but not with supervisor-related satisfaction. Employees are categorized into four EI classes, consistently showing that higher EI levels correspond to greater job satisfaction. These findings align with existing literature, underscoring EI's pivotal role in enhancing job satisfaction in the construction sector. The study concludes that fostering EI among construction industry professionals can lead to improved job satisfaction and performance. Consequently, organizations are encouraged to integrate EI development into their professional growth programs to cultivate a more satisfied and effective workforce. In essence, this research highlights the importance of EI as a key predictor of job satisfaction in the Nigerian construction industry, providing valuable insights for both industry stakeholders and researchers into the benefits of prioritizing emotional intelligence in this high-stakes environment.Keywords: emotional intelligence, job satisfaction, construction industry, workforce productivity, demographics
Procedia PDF Downloads 211803 Key Performance Indicators and the Model for Achieving Digital Inclusion for Smart Cities
Authors: Khalid Obaed Mahmod, Mesut Cevik
Abstract:
The term smart city has appeared recently and was accompanied by many definitions and concepts, but as a simplified and clear definition, it can be said that the smart city is a geographical location that has gained efficiency and flexibility in providing public services to citizens through its use of technological and communication technologies, and this is what distinguishes it from other cities. Smart cities connect the various components of the city through the main and sub-networks in addition to a set of applications and thus be able to collect data that is the basis for providing technological solutions to manage resources and provide services. The basis of the work of the smart city is the use of artificial intelligence and the technology of the Internet of Things. The work presents the concept of smart cities, the pillars, standards, and evaluation indicators on which smart cities depend, and the reasons that prompted the world to move towards its establishment. It also provides a simplified hypothetical way to measure the ideal smart city model by defining some indicators and key pillars, simulating them with logic circuits, and testing them to determine if the city can be considered an ideal smart city or not.Keywords: factors, indicators, logic gates, pillars, smart city
Procedia PDF Downloads 1501802 ANN Based Simulation of PWM Scheme for Seven Phase Voltage Source Inverter Using MATLAB/Simulink
Authors: Mohammad Arif Khan
Abstract:
This paper analyzes and presents the development of Artificial Neural Network based controller of space vector modulation (ANN-SVPWM) for a seven-phase voltage source inverter. At first, the conventional method of producing sinusoidal output voltage by utilizing six active and one zero space vectors are used to synthesize the input reference, is elaborated and then new PWM scheme called Artificial Neural Network Based PWM is presented. The ANN based controller has the advantage of the very fast implementation and analyzing the algorithms and avoids the direct computation of trigonometric and non-linear functions. The ANN controller uses the individual training strategy with the fixed weight and supervised models. A computer simulation program has been developed using Matlab/Simulink together with the neural network toolbox for training the ANN-controller. A comparison of the proposed scheme with the conventional scheme is presented based on various performance indices. Extensive Simulation results are provided to validate the findings.Keywords: space vector PWM, total harmonic distortion, seven-phase, voltage source inverter, multi-phase, artificial neural network
Procedia PDF Downloads 452