Search results for: survival data
25368 Sewage Induced Behavioural Responses in an Air-Breathing Fish, Pangasius pangasius
Authors: Sasikala Govindaraj, P. Palanisamy, G. M. Natarajan
Abstract:
Domestic sewage poses major threats to the aquatic environment in third world countries due to lack of technical and economic sources which can have significant impacts on fish. The tolerance limits to toxicants found in domestic effluents vary among species and their integrative effects may lead to reproductive failure and reduction of survival and growth of the more sensitive fish species. The mechanism of action of toxic substances upon various concentrations of sewage was taken aiming to evaluate locomotory, physiological, neurological and morbidity response of fish. The rapid biomonitoring assessment technique for qualitative evaluation of various industrial pollutants, behavioral responses of an air-breathing fish Pangasius pangasius were used as biomarkers for water quality assessment. The present investigation concluded that sewage is highly toxic to the fish and severely affects their physiology and behavior.Keywords: air-breathing organs, behavioral, locomotory, morbidity, neurological, physiological, sewage
Procedia PDF Downloads 28425367 Big Data Analytics and Data Security in the Cloud via Fully Homomorphic Encryption
Authors: Waziri Victor Onomza, John K. Alhassan, Idris Ismaila, Noel Dogonyaro Moses
Abstract:
This paper describes the problem of building secure computational services for encrypted information in the Cloud Computing without decrypting the encrypted data; therefore, it meets the yearning of computational encryption algorithmic aspiration model that could enhance the security of big data for privacy, confidentiality, availability of the users. The cryptographic model applied for the computational process of the encrypted data is the Fully Homomorphic Encryption Scheme. We contribute theoretical presentations in high-level computational processes that are based on number theory and algebra that can easily be integrated and leveraged in the Cloud computing with detail theoretic mathematical concepts to the fully homomorphic encryption models. This contribution enhances the full implementation of big data analytics based cryptographic security algorithm.Keywords: big data analytics, security, privacy, bootstrapping, homomorphic, homomorphic encryption scheme
Procedia PDF Downloads 38325366 Impact of α-Adrenoceptor Antagonists on Biochemical Relapse in Men Undergoing Radiotherapy for Localised Prostate Cancer
Authors: Briohny H. Spencer, Russ Chess-Williams, Catherine McDermott, Shailendra Anoopkumar-Dukie, David Christie
Abstract:
Background: Prostate cancer is the second most common cancer diagnosed in men worldwide and the most prevalent in Australian men. In 2015, it was estimated that approximately 18,000 new cases of prostate cancer were diagnosed in Australia. Currently, for localised disease, androgen depravation therapy (ADT) and radiotherapy are a major part of the curative management of prostate cancer. ADT acts to reduce the levels of circulating androgens, primarily testosterone and the locally produced androgen, dihydrotestosterone (DHT), or by preventing the subsequent activation of the androgen receptor. Thus, the growth of the cancerous cells can be reduced or ceased. Radiation techniques such as brachytherapy (radiation delivered directly to the prostate by transperineal implant) or external beam radiation therapy (exposure to a sufficient dose of radiation aimed at eradicating malignant cells) are also common techniques used in the treatment of this condition. Radiotherapy (RT) has significant limitations, including reduced effectiveness in treating malignant cells present in hypoxic microenvironments leading to radio-resistance and poor clinical outcomes and also the significant side effects for the patients. Alpha1-adrenoceptor antagonists are used for many prostate cancer patients to control lower urinary tract symptoms, due to the progression of the disease itself or may arise as an adverse effect of the radiotherapy treatment. In Australia, a significant number (not a majority) of patients receive a α1-ADR antagonist and four drugs are available including prazosin, terazosin, alfuzosin and tamsulosin. There is currently limited published data on the effects of α1-ADR antagonists during radiotherapy, but it suggests these medications may improve patient outcomes by enhancing the effect of radiotherapy. Aim: To determine the impact of α1-ADR antagonists treatments on time to biochemical relapse following radiotherapy. Methods: A retrospective study of male patients receiving radiotherapy for biopsy-proven localised prostate cancer was undertaken to compare cancer outcomes for drug-naïve patients and those receiving α1-ADR antagonist treatments. Ethical approval for the collection of data at Genesis CancerCare QLD was obtained and biochemical relapse (defined by a PSA rise of >2ng/mL above the nadir) was recorded in months. Rates of biochemical relapse, prostate specific antigen doubling time (PSADT) and Kaplan-Meier survival curves were also compared. Treatment groups were those receiving α1-ADR antagonists treatment before or concurrent with their radiotherapy. Data was statistically analysed using One-way ANOVA and results expressed as mean ± standard deviation. Major findings: The mean time to biochemical relapse for tamsulosin, prazosin, alfuzosin and controls were 45.3±17.4 (n=36), 41.5±19.6 (n=11), 29.3±6.02 (n=6) and 36.5±17.6 (n=16) months respectively. Tamsulosin, prazosin but not alfuzosin delayed time to biochemical relapse although the differences were not statistically significant. Conclusion: Preliminary data for the prior and/or concurrent use of tamsulosin and prazosin showed a positive trend in delaying time to biochemical relapse although no statistical significance was shown. Larger clinical studies are indicated and with thousands of patient records yet to be analysed, it may determine if there is a significant effect of these drugs on control of prostate cancer.Keywords: alpha1-adrenoceptor antagonists, biochemical relapse, prostate cancer, radiotherapy
Procedia PDF Downloads 37825365 The Molecular Biology Behind the Spread of Breast Cancer Inflammatory Breast Cancer: Symptoms and Genetic Factors
Authors: Fakhrosadat Sajjadian
Abstract:
In the USA, about 5% of women diagnosed with breast cancer annually are affected by Inflammatory Breast Cancer (IBC), which is a highly aggressive type of Locally Advanced Breast Cancer (LABC). It is a type of LABC that is clinically and pathologically different, known for its rapid growth, invasiveness, and ability to promote the growth of blood vessels. Almost all women are found to have lymph nodes affected upon diagnosis, while around 36% show obvious distant metastases. Even with the latest improvements in multimodality therapies, the outlook for patients with IBC remains bleak, as the average disease-free survival time is less than 2.5 years. Recent research on the genetic factors responsible for the IBC phenotype has resulted in the discovery of genes that play a role in the advancement of this illness. The development of primary human cell lines and animal models has assisted in this research. These advancements offer new possibilities for future actions in identifying and treating IBC.Keywords: breast cancer, inflammation, diagnosis, IBC, LABC
Procedia PDF Downloads 4625364 Metastatic Polypoid Nodular Melanoma Management During The COVID-19 Pandemic
Authors: Stefan Bradu, Daniel Siegel, Jameson Loyal, Andrea Leaf, Alana Kurtti, Usha Alapati, Jared Jagdeo
Abstract:
Compared with all other variants of nodular melanoma, patients with polypoid nodular melanoma have the lowest 5-year survival rate. The pathophysiology and management of polypoid melanoma are scarcely reported in the literature. Although surgical excision is the cornerstone of melanoma management, treatment of polypoid melanoma is complicated by several negative prognostic factors, including early metastasis. This report demonstrates the successful treatment of a rapidly developing red nodular polypoid melanoma with metastasis using surgery and adjuvant nivolumab in a SARS-CoV-2-positive patient who delayed seeking care due to the COVID-19 pandemic. In addition to detailing the successful treatment approach, the immunosuppressive effects of SARS-2-CoV and its possible contribution to the rapid progression of polypoid melanoma are discussed. This case highlights the complex challenges of melanoma diagnosis and management during the COVID-19 pandemic.Keywords: covid-19, dermatology, immunotherapy, melanoma, nivolumab
Procedia PDF Downloads 21325363 The Impact of Web Based Education on Cancer Patients’ Clinical Outcomes
Authors: F. Arıkan, Z. Karakus
Abstract:
Cancer is a widespread disease in the world and is the third reason of deaths among the chronic diseases. Educating patients and caregivers has a vital role for empowering them in managing disease and treatment's symptoms. Informing of the patients about their disease and treatment process decreases patient's distress and decisional conflicts, improves wellbeing of them, increase success of the treatment and survival. In this era, technological education methods are used for patients that have different chronic disease. Many studies indicated that especially web based patient education such as chronic obstructive lung disease; heart failure is more effective than printed materials. Web based education provide easiness to patients while they are reaching health services. It also has more advantages because of it decreases health cost and requirement of staff. It is thought that web based education may be beneficial method for cancer patient's empowerment in coping with the disease's symptoms. The aim of the study is evaluate the effectiveness of web based education for cancer patients' clinical outcomes.Keywords: cancer patients, e-learning, nursing, web based education
Procedia PDF Downloads 43525362 Protecting Privacy and Data Security in Online Business
Authors: Bilquis Ferdousi
Abstract:
With the exponential growth of the online business, the threat to consumers’ privacy and data security has become a serious challenge. This literature review-based study focuses on a better understanding of those threats and what legislative measures have been taken to address those challenges. Research shows that people are increasingly involved in online business using different digital devices and platforms, although this practice varies based on age groups. The threat to consumers’ privacy and data security is a serious hindrance in developing trust among consumers in online businesses. There are some legislative measures taken at the federal and state level to protect consumers’ privacy and data security. The study was based on an extensive review of current literature on protecting consumers’ privacy and data security and legislative measures that have been taken.Keywords: privacy, data security, legislation, online business
Procedia PDF Downloads 11125361 Flowing Online Vehicle GPS Data Clustering Using a New Parallel K-Means Algorithm
Authors: Orhun Vural, Oguz Bayat, Rustu Akay, Osman N. Ucan
Abstract:
This study presents a new parallel approach clustering of GPS data. Evaluation has been made by comparing execution time of various clustering algorithms on GPS data. This paper aims to propose a parallel based on neighborhood K-means algorithm to make it faster. The proposed parallelization approach assumes that each GPS data represents a vehicle and to communicate between vehicles close to each other after vehicles are clustered. This parallelization approach has been examined on different sized continuously changing GPS data and compared with serial K-means algorithm and other serial clustering algorithms. The results demonstrated that proposed parallel K-means algorithm has been shown to work much faster than other clustering algorithms.Keywords: parallel k-means algorithm, parallel clustering, clustering algorithms, clustering on flowing data
Procedia PDF Downloads 22825360 Vectorial Capacity and Age Determination of Anopheles Maculipinnis S. L. (Diptera: Culicidae), in Esfahan and Chahar Mahal and Bakhtiari Provinces, Central Iran
Authors: Fariba Sepahvand, Seyed Hassan Moosa-kazemi
Abstract:
The objective was to determine the population dynamics of Anopheles maculipinnis s.l. in relation to probable malaria transmission. The study was carried out in three villages in Isfahan and charmahal bakhteari provinces of Iran, from April to March 2014. Mosquitoes were collected by Total catch, Human and Animal bait collection. An. maculipinnis play as a dominant vector with exophagic and endophilic behavior. Ovary dissection revealed four dilatations indicate at least 9% of the population can reach to the dangerous age to potentially malaria transmission. Two peaks of blood feeding were observed, 9.00-10.00 P.M, and the 12.00-00.01 A.M. The gonotrophic cycle, survival rate, life expectancy of the species was 4, 0.82 and five days, respectively. Vectorial capacity was measured as 0.028. In conclusion, moderate climatic conditions support the persistence, density and longevity of An maculipinnis s.l. could result in more significant malaria transmission.Keywords: age determination, Anopheles maculipinnis, center of Iran, Malaria
Procedia PDF Downloads 25125359 An Analysis of Privacy and Security for Internet of Things Applications
Authors: Dhananjay Singh, M. Abdullah-Al-Wadud
Abstract:
The Internet of Things is a concept of a large scale ecosystem of wireless actuators. The actuators are defined as things in the IoT, those which contribute or produces some data to the ecosystem. However, ubiquitous data collection, data security, privacy preserving, large volume data processing, and intelligent analytics are some of the key challenges into the IoT technologies. In order to solve the security requirements, challenges and threats in the IoT, we have discussed a message authentication mechanism for IoT applications. Finally, we have discussed data encryption mechanism for messages authentication before propagating into IoT networks.Keywords: Internet of Things (IoT), message authentication, privacy, security
Procedia PDF Downloads 38825358 Cognitive Science Based Scheduling in Grid Environment
Authors: N. D. Iswarya, M. A. Maluk Mohamed, N. Vijaya
Abstract:
Grid is infrastructure that allows the deployment of distributed data in large size from multiple locations to reach a common goal. Scheduling data intensive applications becomes challenging as the size of data sets are very huge in size. Only two solutions exist in order to tackle this challenging issue. First, computation which requires huge data sets to be processed can be transferred to the data site. Second, the required data sets can be transferred to the computation site. In the former scenario, the computation cannot be transferred since the servers are storage/data servers with little or no computational capability. Hence, the second scenario can be considered for further exploration. During scheduling, transferring huge data sets from one site to another site requires more network bandwidth. In order to mitigate this issue, this work focuses on incorporating cognitive science in scheduling. Cognitive Science is the study of human brain and its related activities. Current researches are mainly focused on to incorporate cognitive science in various computational modeling techniques. In this work, the problem solving approach of human brain is studied and incorporated during the data intensive scheduling in grid environments. Here, a cognitive engine is designed and deployed in various grid sites. The intelligent agents present in CE will help in analyzing the request and creating the knowledge base. Depending upon the link capacity, decision will be taken whether to transfer data sets or to partition the data sets. Prediction of next request is made by the agents to serve the requesting site with data sets in advance. This will reduce the data availability time and data transfer time. Replica catalog and Meta data catalog created by the agents assist in decision making process.Keywords: data grid, grid workflow scheduling, cognitive artificial intelligence
Procedia PDF Downloads 39725357 Heritage and Tourism in the Era of Big Data: Analysis of Chinese Cultural Tourism in Catalonia
Authors: Xinge Liao, Francesc Xavier Roige Ventura, Dolores Sanchez Aguilera
Abstract:
With the development of the Internet, the study of tourism behavior has rapidly expanded from the traditional physical market to the online market. Data on the Internet is characterized by dynamic changes, and new data appear all the time. In recent years the generation of a large volume of data was characterized, such as forums, blogs, and other sources, which have expanded over time and space, together they constitute large-scale Internet data, known as Big Data. This data of technological origin that derives from the use of devices and the activity of multiple users is becoming a source of great importance for the study of geography and the behavior of tourists. The study will focus on cultural heritage tourist practices in the context of Big Data. The research will focus on exploring the characteristics and behavior of Chinese tourists in relation to the cultural heritage of Catalonia. Geographical information, target image, perceptions in user-generated content will be studied through data analysis from Weibo -the largest social networks of blogs in China. Through the analysis of the behavior of heritage tourists in the Big Data environment, this study will understand the practices (activities, motivations, perceptions) of cultural tourists and then understand the needs and preferences of tourists in order to better guide the sustainable development of tourism in heritage sites.Keywords: Barcelona, Big Data, Catalonia, cultural heritage, Chinese tourism market, tourists’ behavior
Procedia PDF Downloads 14225356 Towards A Framework for Using Open Data for Accountability: A Case Study of A Program to Reduce Corruption
Authors: Darusalam, Jorish Hulstijn, Marijn Janssen
Abstract:
Media has revealed a variety of corruption cases in the regional and local governments all over the world. Many governments pursued many anti-corruption reforms and have created a system of checks and balances. Three types of corruption are faced by citizens; administrative corruption, collusion and extortion. Accountability is one of the benchmarks for building transparent government. The public sector is required to report the results of the programs that have been implemented so that the citizen can judge whether the institution has been working such as economical, efficient and effective. Open Data is offering solutions for the implementation of good governance in organizations who want to be more transparent. In addition, Open Data can create transparency and accountability to the community. The objective of this paper is to build a framework of open data for accountability to combating corruption. This paper will investigate the relationship between open data, and accountability as part of anti-corruption initiatives. This research will investigate the impact of open data implementation on public organization.Keywords: open data, accountability, anti-corruption, framework
Procedia PDF Downloads 34225355 Syndromic Surveillance Framework Using Tweets Data Analytics
Authors: David Ming Liu, Benjamin Hirsch, Bashir Aden
Abstract:
Syndromic surveillance is to detect or predict disease outbreaks through the analysis of medical sources of data. Using social media data like tweets to do syndromic surveillance becomes more and more popular with the aid of open platform to collect data and the advantage of microblogging text and mobile geographic location features. In this paper, a Syndromic Surveillance Framework is presented with machine learning kernel using tweets data analytics. Influenza and the three cities Abu Dhabi, Al Ain and Dubai of United Arabic Emirates are used as the test disease and trial areas. Hospital cases data provided by the Health Authority of Abu Dhabi (HAAD) are used for the correlation purpose. In our model, Latent Dirichlet allocation (LDA) engine is adapted to do supervised learning classification and N-Fold cross validation confusion matrix are given as the simulation results with overall system recall 85.595% performance achieved.Keywords: Syndromic surveillance, Tweets, Machine Learning, data mining, Latent Dirichlet allocation (LDA), Influenza
Procedia PDF Downloads 12225354 Analysis of Urban Population Using Twitter Distribution Data: Case Study of Makassar City, Indonesia
Authors: Yuyun Wabula, B. J. Dewancker
Abstract:
In the past decade, the social networking app has been growing very rapidly. Geolocation data is one of the important features of social media that can attach the user's location coordinate in the real world. This paper proposes the use of geolocation data from the Twitter social media application to gain knowledge about urban dynamics, especially on human mobility behavior. This paper aims to explore the relation between geolocation Twitter with the existence of people in the urban area. Firstly, the study will analyze the spread of people in the particular area, within the city using Twitter social media data. Secondly, we then match and categorize the existing place based on the same individuals visiting. Then, we combine the Twitter data from the tracking result and the questionnaire data to catch the Twitter user profile. To do that, we used the distribution frequency analysis to learn the visitors’ percentage. To validate the hypothesis, we compare it with the local population statistic data and land use mapping released by the city planning department of Makassar local government. The results show that there is the correlation between Twitter geolocation and questionnaire data. Thus, integration the Twitter data and survey data can reveal the profile of the social media users.Keywords: geolocation, Twitter, distribution analysis, human mobility
Procedia PDF Downloads 31725353 Analysis and Rule Extraction of Coronary Artery Disease Data Using Data Mining
Authors: Rezaei Hachesu Peyman, Oliyaee Azadeh, Salahzadeh Zahra, Alizadeh Somayyeh, Safaei Naser
Abstract:
Coronary Artery Disease (CAD) is one major cause of disability in adults and one main cause of death in developed. In this study, data mining techniques including Decision Trees, Artificial neural networks (ANNs), and Support Vector Machine (SVM) analyze CAD data. Data of 4948 patients who had suffered from heart diseases were included in the analysis. CAD is the target variable, and 24 inputs or predictor variables are used for the classification. The performance of these techniques is compared in terms of sensitivity, specificity, and accuracy. The most significant factor influencing CAD is chest pain. Elderly males (age > 53) have a high probability to be diagnosed with CAD. SVM algorithm is the most useful way for evaluation and prediction of CAD patients as compared to non-CAD ones. Application of data mining techniques in analyzing coronary artery diseases is a good method for investigating the existing relationships between variables.Keywords: classification, coronary artery disease, data-mining, knowledge discovery, extract
Procedia PDF Downloads 66325352 Sensor Data Analysis for a Large Mining Major
Authors: Sudipto Shanker Dasgupta
Abstract:
One of the largest mining companies wanted to look at health analytics for their driverless trucks. These trucks were the key to their supply chain logistics. The automated trucks had multi-level sub-assemblies which would send out sensor information. The use case that was worked on was to capture the sensor signal from the truck subcomponents and analyze the health of the trucks from repair and replacement purview. Open source software was used to stream the data into a clustered Hadoop setup in Amazon Web Services cloud and Apache Spark SQL was used to analyze the data. All of this was achieved through a 10 node amazon 32 core, 64 GB RAM setup real-time analytics was achieved on ‘300 million records’. To check the scalability of the system, the cluster was increased to 100 node setup. This talk will highlight how Open Source software was used to achieve the above use case and the insights on the high data throughput on a cloud set up.Keywords: streaming analytics, data science, big data, Hadoop, high throughput, sensor data
Procedia PDF Downloads 40825351 Data-Centric Anomaly Detection with Diffusion Models
Authors: Sheldon Liu, Gordon Wang, Lei Liu, Xuefeng Liu
Abstract:
Anomaly detection, also referred to as one-class classification, plays a crucial role in identifying product images that deviate from the expected distribution. This study introduces Data-centric Anomaly Detection with Diffusion Models (DCADDM), presenting a systematic strategy for data collection and further diversifying the data with image generation via diffusion models. The algorithm addresses data collection challenges in real-world scenarios and points toward data augmentation with the integration of generative AI capabilities. The paper explores the generation of normal images using diffusion models. The experiments demonstrate that with 30% of the original normal image size, modeling in an unsupervised setting with state-of-the-art approaches can achieve equivalent performances. With the addition of generated images via diffusion models (10% equivalence of the original dataset size), the proposed algorithm achieves better or equivalent anomaly localization performance.Keywords: diffusion models, anomaly detection, data-centric, generative AI
Procedia PDF Downloads 8925350 A Simple Fluid Dynamic Model for Slippery Pulse Pattern in Traditional Chinese Pulse Diagnosis
Authors: Yifang Gong
Abstract:
Pulse diagnosis is one of the most important diagnosis methods in traditional Chinese medicine. It is also the trickiest method to learn. It is known as that it can only to be sensed not explained. This becomes a serious threat to the survival of this diagnostic method. However, there are a large amount of experiences accumulated during the several thousand years of practice of Chinese doctors. A pulse pattern called 'Slippery pulse' is one of the indications of pregnancy. A simple fluid dynamic model is proposed to simulate the effects of the existence of a placenta. The placenta is modeled as an extra plenum in an extremely simplified fluid network model. It is found that because of the existence of the extra plenum, indeed the pulse pattern shows a secondary peak in one pulse period. As for the author’s knowledge, this work is the first time to show the link between Pulse diagnoses and basic physical principle. Key parameters which might affect the pattern are also investigated.Keywords: Chinese medicine, flow network, pregnancy, pulse
Procedia PDF Downloads 39025349 Regulation on the Protection of Personal Data Versus Quality Data Assurance in the Healthcare System Case Report
Authors: Elizabeta Krstić Vukelja
Abstract:
Digitization of personal data is a consequence of the development of information and communication technologies that create a new work environment with many advantages and challenges, but also potential threats to privacy and personal data protection. Regulation (EU) 2016/679 of the European Parliament and of the Council is becoming a law and obligation that should address the issues of personal data protection and information security. The existence of the Regulation leads to the conclusion that national legislation in the field of virtual environment, protection of the rights of EU citizens and processing of their personal data is insufficiently effective. In the health system, special emphasis is placed on the processing of special categories of personal data, such as health data. The healthcare industry is recognized as a particularly sensitive area in which a large amount of medical data is processed, the digitization of which enables quick access and quick identification of the health insured. The protection of the individual requires quality IT solutions that guarantee the technical protection of personal categories. However, the real problems are the technical and human nature and the spatial limitations of the application of the Regulation. Some conclusions will be drawn by analyzing the implementation of the basic principles of the Regulation on the example of the Croatian health care system and comparing it with similar activities in other EU member states.Keywords: regulation, healthcare system, personal dana protection, quality data assurance
Procedia PDF Downloads 4625348 Parallel Vector Processing Using Multi Level Orbital DATA
Authors: Nagi Mekhiel
Abstract:
Many applications use vector operations by applying single instruction to multiple data that map to different locations in conventional memory. Transferring data from memory is limited by access latency and bandwidth affecting the performance gain of vector processing. We present a memory system that makes all of its content available to processors in time so that processors need not to access the memory, we force each location to be available to all processors at a specific time. The data move in different orbits to become available to other processors in higher orbits at different time. We use this memory to apply parallel vector operations to data streams at first orbit level. Data processed in the first level move to upper orbit one data element at a time, allowing a processor in that orbit to apply another vector operation to deal with serial code limitations inherited in all parallel applications and interleaved it with lower level vector operations.Keywords: Memory Organization, Parallel Processors, Serial Code, Vector Processing
Procedia PDF Downloads 27325347 Reconstructability Analysis for Landslide Prediction
Authors: David Percy
Abstract:
Landslides are a geologic phenomenon that affects a large number of inhabited places and are constantly being monitored and studied for the prediction of future occurrences. Reconstructability analysis (RA) is a methodology for extracting informative models from large volumes of data that work exclusively with discrete data. While RA has been used in medical applications and social science extensively, we are introducing it to the spatial sciences through applications like landslide prediction. Since RA works exclusively with discrete data, such as soil classification or bedrock type, working with continuous data, such as porosity, requires that these data are binned for inclusion in the model. RA constructs models of the data which pick out the most informative elements, independent variables (IVs), from each layer that predict the dependent variable (DV), landslide occurrence. Each layer included in the model retains its classification data as a primary encoding of the data. Unlike other machine learning algorithms that force the data into one-hot encoding type of schemes, RA works directly with the data as it is encoded, with the exception of continuous data, which must be binned. The usual physical and derived layers are included in the model, and testing our results against other published methodologies, such as neural networks, yields accuracy that is similar but with the advantage of a completely transparent model. The results of an RA session with a data set are a report on every combination of variables and their probability of landslide events occurring. In this way, every combination of informative state combinations can be examined.Keywords: reconstructability analysis, machine learning, landslides, raster analysis
Procedia PDF Downloads 7325346 Data Analytics in Hospitality Industry
Authors: Tammy Wee, Detlev Remy, Arif Perdana
Abstract:
In the recent years, data analytics has become the buzzword in the hospitality industry. The hospitality industry is another example of a data-rich industry that has yet fully benefited from the insights of data analytics. Effective use of data analytics can change how hotels operate, market and position themselves competitively in the hospitality industry. However, at the moment, the data obtained by individual hotels remain under-utilized. This research is a preliminary research on data analytics in the hospitality industry, using an in-depth face-to-face interview on one hotel as a start to a multi-level research. The main case study of this research, hotel A, is a chain brand of international hotel that has been systematically gathering and collecting data on its own customer for the past five years. The data collection points begin from the moment a guest book a room until the guest leave the hotel premises, which includes room reservation, spa booking, and catering. Although hotel A has been gathering data intelligence on its customer for some time, they have yet utilized the data to its fullest potential, and they are aware of their limitation as well as the potential of data analytics. Currently, the utilization of data analytics in hotel A is limited in the area of customer service improvement, namely to enhance the personalization of service for each individual customer. Hotel A is able to utilize the data to improve and enhance their service which in turn, encourage repeated customers. According to hotel A, 50% of their guests returned to their hotel, and 70% extended nights because of the personalized service. Apart from using the data analytics for enhancing customer service, hotel A also uses the data in marketing. Hotel A uses the data analytics to predict or forecast the change in consumer behavior and demand, by tracking their guest’s booking preference, payment preference and demand shift between properties. However, hotel A admitted that the data they have been collecting was not fully utilized due to two challenges. The first challenge of using data analytics in hotel A is the data is not clean. At the moment, the data collection of one guest profile is meaningful only for one department in the hotel but meaningless for another department. Cleaning up the data and getting standards correctly for usage by different departments are some of the main concerns of hotel A. The second challenge of using data analytics in hotel A is the non-integral internal system. At the moment, the internal system used by hotel A do not integrate with each other well, limiting the ability to collect data systematically. Hotel A is considering another system to replace the current one for more comprehensive data collection. Hotel proprietors recognized the potential of data analytics as reported in this research, however, the current challenges of implementing a system to collect data come with a cost. This research has identified the current utilization of data analytics and the challenges faced when it comes to implementing data analytics.Keywords: data analytics, hospitality industry, customer relationship management, hotel marketing
Procedia PDF Downloads 18425345 Realization of a (GIS) for Drilling (DWS) through the Adrar Region
Authors: Djelloul Benatiallah, Ali Benatiallah, Abdelkader Harouz
Abstract:
Geographic Information Systems (GIS) include various methods and computer techniques to model, capture digitally, store, manage, view and analyze. Geographic information systems have the characteristic to appeal to many scientific and technical field, and many methods. In this article we will present a complete and operational geographic information system, following the theoretical principles of data management and adapting to spatial data, especially data concerning the monitoring of drinking water supply wells (DWS) Adrar region. The expected results of this system are firstly an offer consulting standard features, updating and editing beneficiaries and geographical data, on the other hand, provides specific functionality contractors entered data, calculations parameterized and statistics.Keywords: GIS, DWS, drilling, Adrar
Procedia PDF Downloads 31225344 Generic Data Warehousing for Consumer Electronics Retail Industry
Authors: S. Habte, K. Ouazzane, P. Patel, S. Patel
Abstract:
The dynamic and highly competitive nature of the consumer electronics retail industry means that businesses in this industry are experiencing different decision making challenges in relation to pricing, inventory control, consumer satisfaction and product offerings. To overcome the challenges facing retailers and create opportunities, we propose a generic data warehousing solution which can be applied to a wide range of consumer electronics retailers with a minimum configuration. The solution includes a dimensional data model, a template SQL script, a high level architectural descriptions, ETL tool developed using C#, a set of APIs, and data access tools. It has been successfully applied by ASK Outlets Ltd UK resulting in improved productivity and enhanced sales growth.Keywords: consumer electronics, data warehousing, dimensional data model, generic, retail industry
Procedia PDF Downloads 41625343 Sequential Data Assimilation with High-Frequency (HF) Radar Surface Current
Authors: Lei Ren, Michael Hartnett, Stephen Nash
Abstract:
The abundant measured surface current from HF radar system in coastal area is assimilated into model to improve the modeling forecasting ability. A simple sequential data assimilation scheme, Direct Insertion (DI), is applied to update model forecast states. The influence of Direct Insertion data assimilation over time is analyzed at one reference point. Vector maps of surface current from models are compared with HF radar measurements. Root-Mean-Squared-Error (RMSE) between modeling results and HF radar measurements is calculated during the last four days with no data assimilation.Keywords: data assimilation, CODAR, HF radar, surface current, direct insertion
Procedia PDF Downloads 57725342 Measured versus Default Interstate Traffic Data in New Mexico, USA
Authors: M. A. Hasan, M. R. Islam, R. A. Tarefder
Abstract:
This study investigates how the site specific traffic data differs from the Mechanistic Empirical Pavement Design Software default values. Two Weigh-in-Motion (WIM) stations were installed in Interstate-40 (I-40) and Interstate-25 (I-25) to developed site specific data. A computer program named WIM Data Analysis Software (WIMDAS) was developed using Microsoft C-Sharp (.Net) for quality checking and processing of raw WIM data. A complete year data from November 2013 to October 2014 was analyzed using the developed WIM Data Analysis Program. After that, the vehicle class distribution, directional distribution, lane distribution, monthly adjustment factor, hourly distribution, axle load spectra, average number of axle per vehicle, axle spacing, lateral wander distribution, and wheelbase distribution were calculated. Then a comparative study was done between measured data and AASHTOWare default values. It was found that the measured general traffic inputs for I-40 and I-25 significantly differ from the default values.Keywords: AASHTOWare, traffic, weigh-in-motion, axle load distribution
Procedia PDF Downloads 34525341 Design of Knowledge Management System with Geographic Information System
Authors: Angga Hidayah Ramadhan, Luciana Andrawina, M. Azani Hasibuan
Abstract:
Data will be as a core of the decision if it has a good treatment or process, which is process that data into information, and information into knowledge to make a wisdom or decision. Today, many companies have not realize it include XYZ University Admission Directorate as executor of National Admission called Seleksi Masuk Bersama (SMB) that during the time, the workers only uses their feeling to make a decision. Whereas if it done, then that company can analyze the data to make a right decision to get a pin sales from student candidate or registrant that follow SMB as many as possible. Therefore, needs Knowledge Management System (KMS) with Geographic Information System (GIS) use 5C4C that can process that company data becomes more useful and can help make decisions. This information system can process data into information based on the pin sold data with 5C (Contextualized, Categorize, Calculation, Correction, Condensed) and convert information into knowledge with 4C (Comparing, Consequence, Connection, Conversation) that has been several steps until these data can be useful to make easier to take a decision or wisdom, resolve problems, communicate, and quicker to learn to the employees have not experience and also for ease of viewing/visualization based on spatial data that equipped with GIS functionality that can be used to indicate events in each province with indicator that facilitate in this system. The system also have a function to save the tacit on the system then to be proceed into explicit in expert system based on the problems that will be found from the consequences of information. With the system each team can make a decision with same ways, structured, and the important is based on the actual event/data.Keywords: 5C4C, data, information, knowledge
Procedia PDF Downloads 46825340 Oncogenic Functions of Long Non-Coding RNA XIST in Human Nasopharyngeal Carcinoma by Targeting MiR-34a-5p
Authors: Cheng-Cao Sun, Shu-Jun Li, De-Jia Li
Abstract:
Long non-coding RNA (lncRNA) X inactivate-specific transcript (XIST) has been verified as an oncogenic gene in several human malignant tumors, and its dysregulation was closed associated with tumor initiation, development and progression. Nevertheless, whether the aberrant expression of XIST in human nasopharyngeal carcinoma (NPC) is corrected with malignancy, metastasis or prognosis has not been elaborated. Here, we discovered that XIST was up-regulated in NPC tissues and higher expression of XIST contributed to a markedly poorer survival time. In addition, multivariate analysis demonstrated XIST was an independent risk factor for prognosis. XIST over-expression enhanced, while XIST silencing hampered the cell growth in NPC. Additionally, mechanistic analysis revealed that XIST up-regulated the expression of miR-34a-5p targeted gene E2F3 through acting as a competitive ‘sponge’ of miR-34a-5p. Taking all into account, we concluded that XIST functioned as an oncogene in NPC through up-regulating E2F3 in part through ‘spongeing’ miR-34a-5p.Keywords: X inactivate-specific transcript; hsa-miRNA-34a-5p, miR-34a-5p; E2F3, nasopharyngeal carcinoma, tumorigenesis
Procedia PDF Downloads 24125339 Development of a Robust Protein Classifier to Predict EMT Status of Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma (CESC) Tumors
Authors: ZhenlinJu, Christopher P. Vellano, RehanAkbani, Yiling Lu, Gordon B. Mills
Abstract:
The epithelial–mesenchymal transition (EMT) is a process by which epithelial cells acquire mesenchymal characteristics, such as profound disruption of cell-cell junctions, loss of apical-basolateral polarity, and extensive reorganization of the actin cytoskeleton to induce cell motility and invasion. A hallmark of EMT is its capacity to promote metastasis, which is due in part to activation of several transcription factors and subsequent downregulation of E-cadherin. Unfortunately, current approaches have yet to uncover robust protein marker sets that can classify tumors as possessing strong EMT signatures. In this study, we utilize reverse phase protein array (RPPA) data and consensus clustering methods to successfully classify a subset of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) tumors into an EMT protein signaling group (EMT group). The overall survival (OS) of patients in the EMT group is significantly worse than those in the other Hormone and PI3K/AKT signaling groups. In addition to a shrinkage and selection method for linear regression (LASSO), we applied training/test set and Monte Carlo resampling approaches to identify a set of protein markers that predicts the EMT status of CESC tumors. We fit a logistic model to these protein markers and developed a classifier, which was fixed in the training set and validated in the testing set. The classifier robustly predicted the EMT status of the testing set with an area under the curve (AUC) of 0.975 by Receiver Operating Characteristic (ROC) analysis. This method not only identifies a core set of proteins underlying an EMT signature in cervical cancer patients, but also provides a tool to examine protein predictors that drive molecular subtypes in other diseases.Keywords: consensus clustering, TCGA CESC, Silhouette, Monte Carlo LASSO
Procedia PDF Downloads 471