Search results for: statistical evidence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7625

Search results for: statistical evidence

6845 Next Generation Radiation Risk Assessment and Prediction Tools Generation Applying AI-Machine (Deep) Learning Algorithms

Authors: Selim M. Khan

Abstract:

Indoor air quality is strongly influenced by the presence of radioactive radon (222Rn) gas. Indeed, exposure to high 222Rn concentrations is unequivocally linked to DNA damage and lung cancer and is a worsening issue in North American and European built environments, having increased over time within newer housing stocks as a function of as yet unclear variables. Indoor air radon concentration can be influenced by a wide range of environmental, structural, and behavioral factors. As some of these factors are quantitative while others are qualitative, no single statistical model can determine indoor radon level precisely while simultaneously considering all these variables across a complex and highly diverse dataset. The ability of AI- machine (deep) learning to simultaneously analyze multiple quantitative and qualitative features makes it suitable to predict radon with a high degree of precision. Using Canadian and Swedish long-term indoor air radon exposure data, we are using artificial deep neural network models with random weights and polynomial statistical models in MATLAB to assess and predict radon health risk to human as a function of geospatial, human behavioral, and built environmental metrics. Our initial artificial neural network with random weights model run by sigmoid activation tested different combinations of variables and showed the highest prediction accuracy (>96%) within the reasonable iterations. Here, we present details of these emerging methods and discuss strengths and weaknesses compared to the traditional artificial neural network and statistical methods commonly used to predict indoor air quality in different countries. We propose an artificial deep neural network with random weights as a highly effective method for assessing and predicting indoor radon.

Keywords: radon, radiation protection, lung cancer, aI-machine deep learnng, risk assessment, risk prediction, Europe, North America

Procedia PDF Downloads 96
6844 Estimating Knowledge Flow Patterns of Business Method Patents with a Hidden Markov Model

Authors: Yoonjung An, Yongtae Park

Abstract:

Knowledge flows are a critical source of faster technological progress and stouter economic growth. Knowledge flows have been accelerated dramatically with the establishment of a patent system in which each patent is required by law to disclose sufficient technical information for the invention to be recreated. Patent analysis, thus, has been widely used to help investigate technological knowledge flows. However, the existing research is limited in terms of both subject and approach. Particularly, in most of the previous studies, business method (BM) patents were not covered although they are important drivers of knowledge flows as other patents. In addition, these studies usually focus on the static analysis of knowledge flows. Some use approaches that incorporate the time dimension, yet they still fail to trace a true dynamic process of knowledge flows. Therefore, we investigate dynamic patterns of knowledge flows driven by BM patents using a Hidden Markov Model (HMM). An HMM is a popular statistical tool for modeling a wide range of time series data, with no general theoretical limit in regard to statistical pattern classification. Accordingly, it enables characterizing knowledge patterns that may differ by patent, sector, country and so on. We run the model in sets of backward citations and forward citations to compare the patterns of knowledge utilization and knowledge dissemination.

Keywords: business method patents, dynamic pattern, Hidden-Markov Model, knowledge flow

Procedia PDF Downloads 328
6843 Effects of Process Parameter Variation on the Surface Roughness of Rapid Prototyped Samples Using Design of Experiments

Authors: R. Noorani, K. Peerless, J. Mandrell, A. Lopez, R. Dalberto, M. Alzebaq

Abstract:

Rapid prototyping (RP) is an additive manufacturing technology used in industry that works by systematically depositing layers of working material to construct larger, computer-modeled parts. A key challenge associated with this technology is that RP parts often feature undesirable levels of surface roughness for certain applications. To combat this phenomenon, an experimental technique called Design of Experiments (DOE) can be employed during the growth procedure to statistically analyze which RP growth parameters are most influential to part surface roughness. Utilizing DOE to identify such factors is important because it is a technique that can be used to optimize a manufacturing process, which saves time, money, and increases product quality. In this study, a four-factor/two level DOE experiment was performed to investigate the effect of temperature, layer thickness, infill percentage, and infill speed on the surface roughness of RP prototypes. Samples were grown using the sixteen different possible growth combinations associated with a four-factor/two level study, and then the surface roughness data was gathered for each set of factors. After applying DOE statistical analysis to these data, it was determined that layer thickness played the most significant role in the prototype surface roughness.

Keywords: rapid prototyping, surface roughness, design of experiments, statistical analysis, factors and levels

Procedia PDF Downloads 262
6842 Premalignant and Malignant Lesions of Uterine Polyps: Analysis at a University Hospital

Authors: Manjunath A. P., Al-Ajmi G. M., Al Shukri M., Girija S

Abstract:

Introduction: This study aimed to compare the ability of hysteroscopy and ultrasonography to diagnose uterine polyps. To correlate the ultrasonography and hystroscopic findings with various clinical factors and histopathology of uterine polyps. Methods: This is a retrospective study conducted at the Department of Obstetrics and Gynaecology at Sultan Qaboos University Hospital from 2014 to 2019. All women undergoing hysteroscopy for suspected uterine polyps were included. All relevant data were obtained from the electronic patient record and analysed using SPSS. Results: A total of 77 eligible women were analysed. The mean age of the patients was 40 years. The clinical risk factors; obesity, hypertension, and diabetes mellitus, showed no significant statistical association with the presence of uterine polyps (p-value>0.005). Although 20 women (52.6%) with uterine polyps had thickened endometrium (>11 mm), however, there is no statistical association (p-value>0.005). The sensitivity and specificity of ultrasonography in the detection of uterine polyp were 39% and 65%, respectively. Whereas for hysteroscopy, it was 89% and 20%, respectively. The prevalence of malignant and premalignant lesions were 1.85% and 7.4%, respectively. Conclusion: This study found that obesity, hypertension, and diabetes mellitus were not associated with the presence of uterine polyps. There was no association between thick endometrium and uterine polyps. The sensitivity is higher for hysteroscopy, whereas the specificity is higher for sonography in detecting uterine polyps. The prevalence of malignancy was very low in uterine polyps.

Keywords: endometrial polyps, hysteroscopy, ultrasonography, premalignant, malignant

Procedia PDF Downloads 129
6841 Modeling and Performance Evaluation of an Urban Corridor under Mixed Traffic Flow Condition

Authors: Kavitha Madhu, Karthik K. Srinivasan, R. Sivanandan

Abstract:

Indian traffic can be considered as mixed and heterogeneous due to the presence of various types of vehicles that operate with weak lane discipline. Consequently, vehicles can position themselves anywhere in the traffic stream depending on availability of gaps. The choice of lateral positioning is an important component in representing and characterizing mixed traffic. The field data provides evidence that the trajectory of vehicles in Indian urban roads have significantly varying longitudinal and lateral components. Further, the notion of headway which is widely used for homogeneous traffic simulation is not well defined in conditions lacking lane discipline. From field data it is clear that following is not strict as in homogeneous and lane disciplined conditions and neighbouring vehicles ahead of a given vehicle and those adjacent to it could also influence the subject vehicles choice of position, speed and acceleration. Given these empirical features, the suitability of using headway distributions to characterize mixed traffic in Indian cities is questionable, and needs to be modified appropriately. To address these issues, this paper attempts to analyze the time gap distribution between consecutive vehicles (in a time-sense) crossing a section of roadway. More specifically, to characterize the complex interactions noted above, the influence of composition, manoeuvre types, and lateral placement characteristics on time gap distribution is quantified in this paper. The developed model is used for evaluating various performance measures such as link speed, midblock delay and intersection delay which further helps to characterise the vehicular fuel consumption and emission on urban roads of India. Identifying and analyzing exact interactions between various classes of vehicles in the traffic stream is essential for increasing the accuracy and realism of microscopic traffic flow modelling. In this regard, this study aims to develop and analyze time gap distribution models and quantify it by lead lag pair, manoeuvre type and lateral position characteristics in heterogeneous non-lane based traffic. Once the modelling scheme is developed, this can be used for estimating the vehicle kilometres travelled for the entire traffic system which helps to determine the vehicular fuel consumption and emission. The approach to this objective involves: data collection, statistical modelling and parameter estimation, simulation using calibrated time-gap distribution and its validation, empirical analysis of simulation result and associated traffic flow parameters, and application to analyze illustrative traffic policies. In particular, video graphic methods are used for data extraction from urban mid-block sections in Chennai, where the data comprises of vehicle type, vehicle position (both longitudinal and lateral), speed and time gap. Statistical tests are carried out to compare the simulated data with the actual data and the model performance is evaluated. The effect of integration of above mentioned factors in vehicle generation is studied by comparing the performance measures like density, speed, flow, capacity, area occupancy etc under various traffic conditions and policies. The implications of the quantified distributions and simulation model for estimating the PCU (Passenger Car Units), capacity and level of service of the system are also discussed.

Keywords: lateral movement, mixed traffic condition, simulation modeling, vehicle following models

Procedia PDF Downloads 342
6840 On Pooling Different Levels of Data in Estimating Parameters of Continuous Meta-Analysis

Authors: N. R. N. Idris, S. Baharom

Abstract:

A meta-analysis may be performed using aggregate data (AD) or an individual patient data (IPD). In practice, studies may be available at both IPD and AD level. In this situation, both the IPD and AD should be utilised in order to maximize the available information. Statistical advantages of combining the studies from different level have not been fully explored. This study aims to quantify the statistical benefits of including available IPD when conducting a conventional summary-level meta-analysis. Simulated meta-analysis were used to assess the influence of the levels of data on overall meta-analysis estimates based on IPD-only, AD-only and the combination of IPD and AD (mixed data, MD), under different study scenario. The percentage relative bias (PRB), root mean-square-error (RMSE) and coverage probability were used to assess the efficiency of the overall estimates. The results demonstrate that available IPD should always be included in a conventional meta-analysis using summary level data as they would significantly increased the accuracy of the estimates. On the other hand, if more than 80% of the available data are at IPD level, including the AD does not provide significant differences in terms of accuracy of the estimates. Additionally, combining the IPD and AD has moderating effects on the biasness of the estimates of the treatment effects as the IPD tends to overestimate the treatment effects, while the AD has the tendency to produce underestimated effect estimates. These results may provide some guide in deciding if significant benefit is gained by pooling the two levels of data when conducting meta-analysis.

Keywords: aggregate data, combined-level data, individual patient data, meta-analysis

Procedia PDF Downloads 375
6839 Thermal Behavior of a Ventilated Façade Using Perforated Ceramic Bricks

Authors: Helena López-Moreno, Antoni Rodríguez-Sánchez, Carmen Viñas-Arrebola, Cesar Porras-Amores

Abstract:

The ventilated façade has great advantages when compared to traditional façades as it reduces the air conditioning thermal loads due to the stack effect induced by solar radiation in the air chamber. Optimizing energy consumption by using a ventilated façade can be used not only in newly built buildings but also it can be implemented in existing buildings, opening the field of implementation to energy building retrofitting works. In this sense, the following three prototypes of façade where designed, built and further analyzed in this research: non-ventilated façade (NVF); slightly ventilated façade (SLVF) and strongly ventilated façade (STVF). The construction characteristics of the three facades are based on the Spanish regulation of building construction “Technical Building Code”. The façades have been monitored by type-k thermocouples in a representative day of the summer season in Madrid (Spain). Moreover, an analysis of variance (ANOVA) with repeated measures, studying the thermal lag in the ventilated and no-ventilated façades has been designed. Results show that STVF façade presents higher levels of thermal inertia as the thermal lag reduces up to 100% (daily mean) compared to the non-ventilated façade. In addition, the statistical analysis proves that an increase of the ventilation holes size in STVF façades does not improve the thermal lag significantly (p > 0.05) when compared to the SLVF façade.

Keywords: ventilated façade, energy efficiency, thermal behavior, statistical analysis

Procedia PDF Downloads 491
6838 Intellectual Property Rights Reforms and the Quality of Exported Goods

Authors: Gideon Ndubuisi

Abstract:

It is widely acknowledged that the quality of a country’s export matters more decisively than the quantity it exports. Hence, understanding the drivers of exported goods’ quality is a relevant policy question. Among other things, product quality upgrading is a considerable cost uncertainty venture that can be undertaken by an entrepreneur. Once a product is successfully upgraded, however, others can imitate the product, and hence, the returns to the pioneer entrepreneur are socialized. Along with this line, a government policy such as intellectual property rights (IPRs) protection which lessens the non-appropriability problem and incentivizes cost discovery investments becomes both a panacea in addressing the market failure and a sine qua non for an entrepreneur to engage in product quality upgrading. In addendum, product quality upgrading involves complex tasks which often require a lot of knowledge and technology sharing beyond the bounds of the firm thereby creating rooms for knowledge spillovers and imitations. Without an institution that protects upstream suppliers of knowledge and technology, technology masking occurs which bids up marginal production cost and product quality fall. Despite these clear associations between IPRs and product quality upgrading, the surging literature on the drivers of the quality of exported goods has proceeded almost in isolation of IPRs protection as a determinant. Consequently, the current study uses a difference-in-difference method to evaluate the effects of IPRs reforms on the quality of exported goods in 16 developing countries over the sample periods of 1984-2000. The study finds weak evidence that IPRs reforms increase the quality of all exported goods. When the industries are sorted into high and low-patent sensitive industries, however, we find strong indicative evidence that IPRs reform increases the quality of exported goods in high-patent sensitive sectors both in absolute terms and relative to the low-patent sensitive sectors in the post-reform period. We also obtain strong indicative evidence that it brought the quality of exported goods in the high-patent sensitive sectors closer to the quality frontier. Accounting for time-duration effects, these observed effects grow over time. The results are also largely consistent when we consider the sophistication and complexity of exported goods rather than just quality upgrades.

Keywords: exports, export quality, export sophistication, intellectual property rights

Procedia PDF Downloads 124
6837 Advances in Mathematical Sciences: Unveiling the Power of Data Analytics

Authors: Zahid Ullah, Atlas Khan

Abstract:

The rapid advancements in data collection, storage, and processing capabilities have led to an explosion of data in various domains. In this era of big data, mathematical sciences play a crucial role in uncovering valuable insights and driving informed decision-making through data analytics. The purpose of this abstract is to present the latest advances in mathematical sciences and their application in harnessing the power of data analytics. This abstract highlights the interdisciplinary nature of data analytics, showcasing how mathematics intersects with statistics, computer science, and other related fields to develop cutting-edge methodologies. It explores key mathematical techniques such as optimization, mathematical modeling, network analysis, and computational algorithms that underpin effective data analysis and interpretation. The abstract emphasizes the role of mathematical sciences in addressing real-world challenges across different sectors, including finance, healthcare, engineering, social sciences, and beyond. It showcases how mathematical models and statistical methods extract meaningful insights from complex datasets, facilitating evidence-based decision-making and driving innovation. Furthermore, the abstract emphasizes the importance of collaboration and knowledge exchange among researchers, practitioners, and industry professionals. It recognizes the value of interdisciplinary collaborations and the need to bridge the gap between academia and industry to ensure the practical application of mathematical advancements in data analytics. The abstract highlights the significance of ongoing research in mathematical sciences and its impact on data analytics. It emphasizes the need for continued exploration and innovation in mathematical methodologies to tackle emerging challenges in the era of big data and digital transformation. In summary, this abstract sheds light on the advances in mathematical sciences and their pivotal role in unveiling the power of data analytics. It calls for interdisciplinary collaboration, knowledge exchange, and ongoing research to further unlock the potential of mathematical methodologies in addressing complex problems and driving data-driven decision-making in various domains.

Keywords: mathematical sciences, data analytics, advances, unveiling

Procedia PDF Downloads 93
6836 Group Sequential Covariate-Adjusted Response Adaptive Designs for Survival Outcomes

Authors: Yaxian Chen, Yeonhee Park

Abstract:

Driven by evolving FDA recommendations, modern clinical trials demand innovative designs that strike a balance between statistical rigor and ethical considerations. Covariate-adjusted response-adaptive (CARA) designs bridge this gap by utilizing patient attributes and responses to skew treatment allocation in favor of the treatment that is best for an individual patient’s profile. However, existing CARA designs for survival outcomes often hinge on specific parametric models, constraining their applicability in clinical practice. In this article, we address this limitation by introducing a CARA design for survival outcomes (CARAS) based on the Cox model and a variance estimator. This method addresses issues of model misspecification and enhances the flexibility of the design. We also propose a group sequential overlapweighted log-rank test to preserve type I error rate in the context of group sequential trials using extensive simulation studies to demonstrate the clinical benefit, statistical efficiency, and robustness to model misspecification of the proposed method compared to traditional randomized controlled trial designs and response-adaptive randomization designs.

Keywords: cox model, log-rank test, optimal allocation ratio, overlap weight, survival outcome

Procedia PDF Downloads 64
6835 Resistance and Sub-Resistances of RC Beams Subjected to Multiple Failure Modes

Authors: F. Sangiorgio, J. Silfwerbrand, G. Mancini

Abstract:

Geometric and mechanical properties all influence the resistance of RC structures and may, in certain combination of property values, increase the risk of a brittle failure of the whole system. This paper presents a statistical and probabilistic investigation on the resistance of RC beams designed according to Eurocodes 2 and 8, and subjected to multiple failure modes, under both the natural variation of material properties and the uncertainty associated with cross-section and transverse reinforcement geometry. A full probabilistic model based on JCSS Probabilistic Model Code is derived. Different beams are studied through material nonlinear analysis via Monte Carlo simulations. The resistance model is consistent with Eurocode 2. Both a multivariate statistical evaluation and the data clustering analysis of outcomes are then performed. Results show that the ultimate load behaviour of RC beams subjected to flexural and shear failure modes seems to be mainly influenced by the combination of the mechanical properties of both longitudinal reinforcement and stirrups, and the tensile strength of concrete, of which the latter appears to affect the overall response of the system in a nonlinear way. The model uncertainty of the resistance model used in the analysis plays undoubtedly an important role in interpreting results.

Keywords: modelling, Monte Carlo simulations, probabilistic models, data clustering, reinforced concrete members, structural design

Procedia PDF Downloads 472
6834 A Unified Approach for Digital Forensics Analysis

Authors: Ali Alshumrani, Nathan Clarke, Bogdan Ghite, Stavros Shiaeles

Abstract:

Digital forensics has become an essential tool in the investigation of cyber and computer-assisted crime. Arguably, given the prevalence of technology and the subsequent digital footprints that exist, it could have a significant role across almost all crimes. However, the variety of technology platforms (such as computers, mobiles, Closed-Circuit Television (CCTV), Internet of Things (IoT), databases, drones, cloud computing services), heterogeneity and volume of data, forensic tool capability, and the investigative cost make investigations both technically challenging and prohibitively expensive. Forensic tools also tend to be siloed into specific technologies, e.g., File System Forensic Analysis Tools (FS-FAT) and Network Forensic Analysis Tools (N-FAT), and a good deal of data sources has little to no specialist forensic tools. Increasingly it also becomes essential to compare and correlate evidence across data sources and to do so in an efficient and effective manner enabling an investigator to answer high-level questions of the data in a timely manner without having to trawl through data and perform the correlation manually. This paper proposes a Unified Forensic Analysis Tool (U-FAT), which aims to establish a common language for electronic information and permit multi-source forensic analysis. Core to this approach is the identification and development of forensic analyses that automate complex data correlations, enabling investigators to investigate cases more efficiently. The paper presents a systematic analysis of major crime categories and identifies what forensic analyses could be used. For example, in a child abduction, an investigation team might have evidence from a range of sources including computing devices (mobile phone, PC), CCTV (potentially a large number), ISP records, and mobile network cell tower data, in addition to third party databases such as the National Sex Offender registry and tax records, with the desire to auto-correlate and across sources and visualize in a cognitively effective manner. U-FAT provides a holistic, flexible, and extensible approach to providing digital forensics in technology, application, and data-agnostic manner, providing powerful and automated forensic analysis.

Keywords: digital forensics, evidence correlation, heterogeneous data, forensics tool

Procedia PDF Downloads 196
6833 A Machine Learning Approach for Anomaly Detection in Environmental IoT-Driven Wastewater Purification Systems

Authors: Giovanni Cicceri, Roberta Maisano, Nathalie Morey, Salvatore Distefano

Abstract:

The main goal of this paper is to present a solution for a water purification system based on an Environmental Internet of Things (EIoT) platform to monitor and control water quality and machine learning (ML) models to support decision making and speed up the processes of purification of water. A real case study has been implemented by deploying an EIoT platform and a network of devices, called Gramb meters and belonging to the Gramb project, on wastewater purification systems located in Calabria, south of Italy. The data thus collected are used to control the wastewater quality, detect anomalies and predict the behaviour of the purification system. To this extent, three different statistical and machine learning models have been adopted and thus compared: Autoregressive Integrated Moving Average (ARIMA), Long Short Term Memory (LSTM) autoencoder, and Facebook Prophet (FP). The results demonstrated that the ML solution (LSTM) out-perform classical statistical approaches (ARIMA, FP), in terms of both accuracy, efficiency and effectiveness in monitoring and controlling the wastewater purification processes.

Keywords: environmental internet of things, EIoT, machine learning, anomaly detection, environment monitoring

Procedia PDF Downloads 151
6832 Beneficial Effects of Physical Activity in Treatment with Mental Health

Authors: Aline Giardin

Abstract:

Introduction: This review addresses the relationship between physical education and mental health and its main objective is to discuss the meanings that circulate in Psychiatric Hospitalization Units and Psychosocial Care Centers (CAPS) about the presence of physical education teachers and the practices developed by Them within these services. Material and methods: It is based on the theoretical contribution of the Psychiatric Reform and is methodologically inspired by the Bibliographic Review. Objectives: The objective of this review was to identify the main scientific evidence on the effects of physical activity on the main psychological aspects associated with mental health during the hospitalization process. Results: It was observed that physical activity has beneficial effects in the psychological, social and cognitive aspects, being thus a fundamental aspect of the lifestyle in promoting a healthy and successful treatment. In studies evaluating the effects of physical activity on mental health, the most frequently evaluated outcomes include anxiety, depression, and health-related quality of life (eg, self-esteem and self-efficacy). Evidence from epistemological studies indicates that the level of physical activity is positively associated with good mental health, when mental health is defined as good mood, general well-being and decreased symptoms. Conclusion: It is necessary to intervene and a greater interest of the professionals of physical education in the treatment with the people with mental disorders so that the negative symptoms are modified, through the aid of the physical activity, by better quality of life, physical condition, nutritional state and A healthy emotional appearance.

Keywords: health mental, physical activity, benefits, treatment

Procedia PDF Downloads 346
6831 Cognitions of Physical Education Supervisors and Teachers for Conceptions of Effective Teaching Related to the Concerns Theory

Authors: Ali M. Alsagheir

Abstract:

Effective teaching is concerned to be one of the research fields of teaching, and its fundamental case is to reach the most successful ways that makes teaching fruitful. Undoubtedly, these methods are common factors between all parties who are concerned with the educational process such as instructors, directors, parents, and others. This study had aimed to recognize the cognitions of physical education supervisors and teachers for conceptions of effective teaching according to the interests theory. A questionnaire was used to collect data of the study; the sample contained 230 teachers and supervisors.The results were ended in: that the average of conceptions of effective teaching expressions for the sample of the study decreases at the progress through stages of teaching development in general. The study showed the absence of statistical indicator between teachers and supervisors at the core of both teaching principals and teaching tasks although the results showed that there are statistical indicators at the core of teaching achievements between supervisors and teachers in favor of supervisors. The study ended in to recommendations which can share in increasing the effectiveness of teaching such as: putting clear and specific standards for the effectiveness of teaching in which teacher's performance is based, constructing practical courses that focus on bringing on both supervisors and teachers with skills and strategies of effectiveness teaching, taking care of children achievement as an important factor and a strong indicator on effectiveness of teaching and learning.

Keywords: concerns theory, effective teaching, physical education, supervisors, teachers

Procedia PDF Downloads 410
6830 Difference Between Planning Target Volume (PTV) Based Slow-Ct and Internal Target Volume (ITV) Based 4DCT Imaging Techniques in Stereotactic Body Radiotherapy for Lung Cancer: A Comparative Study

Authors: Madhumita Sahu, S. S. Tiwary

Abstract:

The Radiotherapy of Carcinoma Lung has always been difficult and a matter of great concern. The significant movement due to fractional motion caused due to non-rhythmic respiratory motion poses a great challenge for the treatment of Lung cancer using Ionizing Radiation. The present study compares the accuracy in the measurement of Target Volume using Slow-CT and 4DCT Imaging in SBRT for Lung Tumor. The experimental samples were extracted from patients with Lung Cancer who underwent SBRT. Slow-CT and 4DCT images were acquired under free breathing for each patient. PTV were delineated on Slow CT images. Similarly, ITV was also delineated on each of the 4DCT volumes. Volumetric and Statistical analysis were performed for each patient by measuring corresponding PTV and ITV volumes. The study showed (1) The Maximum Deviation observed between Slow-CT-based PTV and 4DCT imaging-based ITV is 248.58 cc. (2) The Minimum Deviation observed between Slow-CT-based PTV and 4DCT imaging-based ITV is 5.22 cc. (3) The Mean Deviation observed between Slow-CT-based PTV and 4DCT imaging-based ITV is 63.21 cc. The present study concludes that irradiated volume ITV with 4DCT is less as compared to the PTV with Slow-CT. A better and more precise treatment could be given more accurately with 4DCT Imaging by sparing 63.21 CC of mean body volume.

Keywords: CT imaging, 4DCT imaging, lung cancer, statistical analysis

Procedia PDF Downloads 24
6829 Exploring Fertility Dynamics in the MENA Region: Distribution, Determinants, and Temporal Trends

Authors: Dena Alhaloul

Abstract:

The Middle East and North Africa (MENA) region is characterized by diverse cultures, economies, and social structures. Fertility rates in MENA have seen significant changes over time, with variations among countries and subregions. Understanding fertility patterns in this region is essential due to its impact on demographic dynamics, healthcare, labor markets, and social policies. Rising or declining fertility rates have far-reaching consequences for the region's socioeconomic development. The main thrust of this study is to comprehensively examine fertility rates in the Middle East and North Africa (MENA) region. It aims to understand the distribution, determinants, and temporal trends of fertility rates in MENA countries. The study seeks to provide insights into the factors influencing fertility decisions, assess how fertility rates have evolved over time, and potentially develop statistical models to characterize these trends. As for the methodology of the study, the study uses descriptive statistics to summarize and visualize fertility rate data. It also uses regression analyses to identify determinants of fertility rates as well as statistical modeling to characterize temporal trends in fertility rates. The conclusion of this study The research will contribute to a deeper understanding of fertility dynamics in the MENA region, shedding light on the distribution of fertility rates, their determinants, and historical trends.

Keywords: fertility, distribution, modeling, regression

Procedia PDF Downloads 81
6828 Monthly Labor Forces Surveys Portray Smooth Labor Markets and Bias Fixed Effects Estimation: Evidence from Israel’s Transition from Quarterly to Monthly Surveys

Authors: Haggay Etkes

Abstract:

This study provides evidence for the impact of monthly interviews conducted for the Israeli Labor Force Surveys (LFSs) on estimated flows between labor force (LF) statuses and on coefficients in fixed-effects estimations. The study uses the natural experiment of parallel interviews for the quarterly and the monthly LFSs in Israel in 2011 for demonstrating that the Labor Force Participation (LFP) rate of Jewish persons who participated in the monthly LFS increased between interviews, while in the quarterly LFS it decreased. Interestingly, the estimated impact on the LFP rate of self-reporting individuals is 2.6–3.5 percentage points while the impact on the LFP rate of individuals whose data was reported by another member of their household (a proxy), is lower and statistically insignificant. The relative increase of the LFP rate in the monthly survey is a result of a lower rate of exit from the LF and a somewhat higher rate of entry into the LF relative to these flows in the quarterly survey. These differing flows have a bearing on labor search models as the monthly survey portrays a labor market with less friction and a “steady state” LFP rate that is 5.9 percentage points higher than the quarterly survey. The study also demonstrates that monthly interviews affect a specific group (45–64 year-olds); thus the sign of coefficient of age as an explanatory variable in fixed-effects regressions on LFP is negative in the monthly survey and positive in the quarterly survey.

Keywords: measurement error, surveys, search, LFSs

Procedia PDF Downloads 270
6827 The Evaluation of Complete Blood Cell Count-Based Inflammatory Markers in Pediatric Obesity and Metabolic Syndrome

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Obesity is defined as a severe chronic disease characterized by a low-grade inflammatory state. Therefore, inflammatory markers gained utmost importance during the evaluation of obesity and metabolic syndrome (MetS), a disease characterized by central obesity, elevated blood pressure, increased fasting blood glucose and elevated triglycerides or reduced high density lipoprotein cholesterol (HDL-C) values. Some inflammatory markers based upon complete blood cell count (CBC) are available. In this study, it was questioned which inflammatory marker was the best to evaluate the differences between various obesity groups. 514 pediatric individuals were recruited. 132 children with MetS, 155 morbid obese (MO), 90 obese (OB), 38 overweight (OW) and 99 children with normal BMI (N-BMI) were included into the scope of this study. Obesity groups were constituted using age- and sex-dependent body mass index (BMI) percentiles tabulated by World Health Organization. MetS components were determined to be able to specify children with MetS. CBC were determined using automated hematology analyzer. HDL-C analysis was performed. Using CBC parameters and HDL-C values, ratio markers of inflammation, which cover neutrophil-to-lymphocyte ratio (NLR), derived neutrophil-to-lymphocyte ratio (dNLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR), monocyte-to-HDL-C ratio (MHR) were calculated. Statistical analyses were performed. The statistical significance degree was considered as p < 0.05. There was no statistically significant difference among the groups in terms of platelet count, neutrophil count, lymphocyte count, monocyte count, and NLR. PLR differed significantly between OW and N-BMI as well as MetS. Monocyte-to HDL-C value exhibited statistical significance between MetS and N-BMI, OB, and MO groups. HDL-C value differed between MetS and N-BMI, OW, OB, MO groups. MHR was the ratio, which exhibits the best performance among the other CBC-based inflammatory markers. On the other hand, when MHR was compared to HDL-C only, it was suggested that HDL-C has given much more valuable information. Therefore, this parameter still keeps its value from the diagnostic point of view. Our results suggest that MHR can be an inflammatory marker during the evaluation of pediatric MetS, but the predictive value of this parameter was not superior to HDL-C during the evaluation of obesity.

Keywords: children, complete blood cell count, high density lipoprotein cholesterol, metabolic syndrome, obesity

Procedia PDF Downloads 129
6826 Mixed-ownership Reform and Quality of Internal Control of State-owned Enterprises: Logic and Evidence

Authors: Mao Ju

Abstract:

As a capital organizing form, the mixed-ownership reform of state-owned enterprises (SOEs) is an important way to stimulate enterprises’ vitality through reshaping the shareholding structure, enhancing mutual complementation of shareholders’ resources, and improving corporate governance and the quality of internal control. Based on the process of mixed-ownership reform and according to IPO and the change in the key shareholding structure of the listed companies, this paper divides the reform into two stages: primary mixed-ownership reform and secondary mixed-ownership reform (deeper mixed-ownership reform), and uses this as the basis to construct the proxy variable of the mixed-ownership reform of SOEs, research on the relationship between the mixed-ownership reform of SOEs and the quality of internal control. The research reveals that: (1) SOEs completing a secondary mixed-ownership reform can enhance the quality of internal control; (2) In the secondary mixed-ownership reform, the introduction of heterogeneous major shareholders will generate more obvious enhancement in the quality of internal control than the introduction of homogeneous major shareholders. Further research shows that the internal environment and marketization process play a moderating role in the process of the secondary mixed-ownership reform affecting the quality of internal control, that is, a better internal environment or a higher degree of marketization can promote the improvement of the quality of internal control in secondary mixed-ownership reform. The conclusion of the research provides experimental evidence for the expected results of the mixed-ownership reform policy.

Keywords: mixed-ownership reform of state-owned enterprises, secondary mixed-ownership reform, quality of internal control, primary mixed-ownership reform

Procedia PDF Downloads 20
6825 Peculiar Mineralogical and Chemical Evolution of Contaminated Igneous Rocks at a Gabbro-Carbonate Contact, Wadai Bayhan, Yemen

Authors: Murad Ali, Shoji Arai, Mohamed Khedr, Mukhtar Nasher, Shawki Nasr

Abstract:

The Wadi Bayhan area of southeastern Yemen is about 60 km NW of Al-Bayda city in the Al-Bayda uplift terrane at the southeast margin of the Arabian-Nubian Shield. Intrusion of alkali gabbro into carbonate rocks apparently produced an 8m to 10 m thick reaction zone at the contact. This had been identified as nepheline pyroxenite. We have observed this to be mineralogically zoned with calc-silicate assemblages (e.g. pyroxene, calcite, spinel, garnet and melilite). The presence of melilite implies a skarn. The sinuous embayed pyroxenite-skarn contact, the presence of skarn minerals in pyroxenite, and textural evidence for growth of calc-silicate skarn by replacement of both carbonate rocks and solid pyroxenite indicate that reaction involved assimilation of carbonate wall rock by magma and loss of Al and Si to the skarn. Textural relationships between minerals provide evidence for a metasomatic development of the skarn at the expense of the pyroxenite. This process, related to the circulation of fluids equilibrated with carbonates, is responsible for those pyroxenite-spinel (± calcite) skarns. The uneven modal distribution of euhedral pyroxenite and enveloping nepheline in pyroxenite, the restricted occurrence of alkali gabbro as dikes in pyroxenite and skarn and the leucocratic matrix of pyroxenite suggest that pyroxenite represents an accumulation of titanaugite cemented by an alkali-rich residual magma and that alkali gabbro represents a part of the residual contaminated magma that was squeezed out of the pyroxene crystal mush. Carbonate assimilation is modeled by reaction of calcite and magmatic plagioclase, which results in resorption of plagioclase, growth of pyroxene enriched in Ca, Fe, Ti, and Al, and solution of nepheline in residual contaminated magma. The composition of nepheline pyroxenite evolved by addition of Ca from dissolved carbonate rocks, loss of Al and Si to skarn, and local segregation of solid pyroxene and alkali gabbro magma. The predominance of pyroxenite among contaminated rocks and their restriction to a large zone along the intrusive contact provide little evidence for the genesis of a significant volume of alkaline magmatic surroundings by carbonate assimilation.

Keywords: Yemen, Wadi Bayhan, skarn, pyroxenite, carbonatite, metasomatic

Procedia PDF Downloads 323
6824 Analysis of Operating Speed on Four-Lane Divided Highways under Mixed Traffic Conditions

Authors: Chaitanya Varma, Arpan Mehar

Abstract:

The present study demonstrates the procedure to analyse speed data collected on various four-lane divided sections in India. Field data for the study was collected at different straight and curved sections on rural highways with the help of radar speed gun and video camera. The data collected at the sections were analysed and parameters pertain to speed distributions were estimated. The different statistical distribution was analysed on vehicle type speed data and for mixed traffic speed data. It was found that vehicle type speed data was either follows the normal distribution or Log-normal distribution, whereas the mixed traffic speed data follows more than one type of statistical distribution. The most common fit observed on mixed traffic speed data were Beta distribution and Weibull distribution. The separate operating speed model based on traffic and roadway geometric parameters were proposed in the present study. The operating speed model with traffic parameters and curve geometry parameters were established. Two different operating speed models were proposed with variables 1/R and Ln(R) and were found to be realistic with a different range of curve radius. The models developed in the present study are simple and realistic and can be used for forecasting operating speed on four-lane highways.

Keywords: highway, mixed traffic flow, modeling, operating speed

Procedia PDF Downloads 460
6823 Role of DatScan in the Diagnosis of Parkinson's Disease

Authors: Shraddha Gopal, Jayam Lazarus

Abstract:

Aims: To study the referral practice and impact of DAT-scan in the diagnosis or exclusion of Parkinson’s disease. Settings and Designs: A retrospective study Materials and methods: A retrospective study of the results of 60 patients who were referred for a DAT scan over a period of 2 years from the Department of Neurology at Northern Lincolnshire and Goole NHS trust. The reason for DAT scan referral was noted under 5 categories against Parkinson’s disease; drug-induced Parkinson’s, essential tremors, diagnostic dilemma, not responding to Parkinson’s treatment, and others. We assessed the number of patients who were diagnosed with Parkinson’s disease against the number of patients in whom Parkinson’s disease was excluded or an alternative diagnosis was made. Statistical methods: Microsoft Excel was used for data collection and statistical analysis, Results: 30 of the 60 scans were performed to confirm the diagnosis of early Parkinson’s disease, 13 were done to differentiate essential tremors from Parkinsonism, 6 were performed to exclude drug-induced Parkinsonism, 5 were done to look for alternative diagnosis as the patients were not responding to anti-Parkinson medication and 6 indications were outside the recommended guidelines. 55% of cases were confirmed with a diagnosis of Parkinson’s disease. 43.33% had Parkinson’s disease excluded. 33 of the 60 scans showed bilateral abnormalities and confirmed the clinical diagnosis of Parkinson’s disease. Conclusion: DAT scan provides valuable information in confirming Parkinson’s disease in 55% of patients along with excluding the diagnosis in 43.33% of patients aiding an alternative diagnosis.

Keywords: DATSCAN, Parkinson's disease, diagnosis, essential tremors

Procedia PDF Downloads 232
6822 Vitamin D Supplementation Potentiates the Clinical Benefits of Metformin and Pioglitazone in Indian Women with Polycystic Ovary Syndrome

Authors: Mohd Asharf Ganie, Aafia Rashid, Mohd Afzal Zargar, Showkat Ali Zargar, Syed Mudasar, Tabasum Parvaiz, Zafar Amin Shah

Abstract:

Accumulating evidence suggests that Vitamin D deficiency (VDD) might at least contribute to the metabolic co-morbidities in PCOS. Hence, we aimed to study the effect of vitamin D supplementation in co-prescription with insulin sensitizers like metformin and pioglitazone on clinical, hormonal and metabolic parameters in women with PCOS. In this open label randomized, controlled trial a total of 120 women with PCOS diagnosis (AE-PCOS 2009 Criteria) were assigned to four treatment groups (n= 30 in each): group I (metformin 1 gm/day in combination with cholecalciferol 4000 IU/day), group II (pioglitazone 30 mg/day in combination with cholecalciferol 4000 IU/day), group III (metformin 1 gm /day) and group IV (pioglitazone 30 mg/day). Vitamin D supplementation was given as 60,000 units every two weeks for 24 weeks. All the subjects were routinely evaluated for clinical, biochemical, hormonal and insulin sensitivity parameters in addition to various safety parameters especially serum calcium levels at baseline and after 24 weeks of the treatment. Our results indicate that 95.5% of PCOS women were vitamin D deficient at baseline. Serum 25 (OH) D levels increased significantly (p < 0.001) in groups I and II without any adverse effects after 24 weeks of oral administration of 4000 IU cholecalciferol daily. However, serum 25 (OH) D levels remained unchanged in group III and IV. By six months, number of menstrual cycles per year increased whereas Ferriman-Gallwey score, serum total testosterone and HOMA-IR decreased significantly (P < 0.001) in the treatment groups supplemented with cholecalciferol as compared to those treated either drug alone. No significant beneficial changes were observed on weight, BMI, blood pressure, glucose tolerance and serum lipids in any of the groups supplemented with cholecalciferol. We conclude that daily dose of 4000 IU cholecalciferol might be a useful adjunct in complex treatment of PCOS with fewer adverse events. Furthermore, pioglitazone and cholecalciferol combination seems to be marginally better although there was no statistical significance.

Keywords: PCOS, vitamin D supplementation, insulin resistance, spironolactone, metformin, pioglitazone

Procedia PDF Downloads 381
6821 Flora of Seaweeds and the Preliminary Screening of the Fungal Endophytes

Authors: Nur Farah Ain Zainee, Ahmad Ismail, Nazlina Ibrahim, Asmida Ismail

Abstract:

Seaweeds are economically important as they have the potential of being utilized, the capabilities and opportunities for further expansion as well as the availability of other species for future development. Hence, research on the diversity and distribution of seaweeds have to be expanded whilst the seaweeds are one of the Malaysian marine valuable heritage. The study on the distribution of seaweeds at Pengerang, Johor was carried out between February and November 2015 at Kampung Jawa Darat and Kampung Sungai Buntu. The study sites are located at the south-southeast of Peninsular Malaysia where the Petronas Refinery and Petrochemicals Integrated Project Development (RAPID) are in progress. In future, the richness of seaweeds in Pengerang will vanish soon due to the loss of habitat prior to RAPID project. The research was completed to study the diversity of seaweed and to determine the present of fungal endophyte isolated from the seaweed. The sample was calculated by using quadrat with 25-meter line transect by 3 replication for each site. The specimen were preserved, identified, processed in the laboratory and kept as herbarium specimen in Algae Herbarium, Universiti Kebangsaan Malaysia. The complete thallus specimens for fungal endophyte screening were chosen meticulously, transferred into sterile zip-lock plastic bag and kept in the freezer for further process. A total of 29 species has been identified including 12 species of Chlorophyta, 2 species of Phaeophyta and 14 species of Rhodophyta. From February to November 2015, the number of species highly varied and there was a significant change in community structure of seaweeds. Kampung Sungai Buntu shows the highest diversity throughout the study compared to Kampung Jawa Darat. This evidence can be related to the high habitat preference such as types of shores which is rocky, sandy and having lagoon and bay. These can enhance the existence of the seaweeds community due to variations of the habitat. Eighteen seaweed species were selected and screened for the capability presence of fungal endophyte; Sargassum polycystum marked having the highest number of fungal endophyte compared to the other species. These evidence has proved the seaweed have capable of accommodating a lot of species of fungal endophytes. Thus, these evidence leads to positive consequences where further research should be employed.

Keywords: diversity, fungal endophyte, macroalgae, screening, seaweed

Procedia PDF Downloads 229
6820 Comparision of Statistical Variables for Vaccinated and Unvaccinated Children in Measles Cases in Khyber Pukhtun Khwa

Authors: Inayatullah Khan, Afzal Khan, Hamzullah Khan, Afzal Khan

Abstract:

Objectives: The objective of this study was to compare different statistical variables for vaccinated and unvaccinated children in measles cases. Material and Methods: This cross sectional comparative study was conducted at Isolation ward, Department of Paediatrics, Lady Reading Hospital (LRH), Peshawar, from April 2012 to March 2013. A total of 566 admitted cases of measles were enrolled. Data regarding age, sex, address, vaccination status, measles contact, hospital stay and outcome was collected and recorded on a proforma. History of measles vaccination was ascertained either by checking the vaccination cards or on parental recall. Result: In 566 cases of measles, 211(39%) were vaccinated and 345 (61%) were unvaccinated. Three hundred and ten (54.80%) patients were males and 256 (45.20%) were females with a male to female ratio of 1.2:1.The age range was from 1 year to 14 years with mean age with SD of 3.2 +2 years. Majority (371, 65.5%) of the patients were 1-3 years old. Mean hospital stay was 3.08 days with a range of 1-10 days and a standard deviation of ± 1.15. History of measles contact was present in 393 (69.4%) cases. Fourty eight patients were expired with a mortality rate of 8.5%. Conclusion: Majority of the children in Khyber Pukhtunkhwa are unvaccinated and unprotected against measles. Among vaccinated children, 39% of children attracted measles which indicate measles vaccine failure. This figure is clearly higher than that accepted for measles vaccine (2-10%).

Keywords: measles, vaccination, immunity, population

Procedia PDF Downloads 444
6819 Transformation of Health Communication Literacy in Information Technology during Pandemic in 2019-2022

Authors: K. Y. S. Putri, Heri Fathurahman, Yuki Surisita, Widi Sagita, Kiki Dwi Arviani

Abstract:

Society needs the assistance of academics in understanding and being skilled in health communication literacy. Information technology runs very fast while health communication literacy skills in getting health communication information during the pandemic are not as fast as the development of information technology. The research question is whether there is an influence of health communication on information technology in health information during the pandemic in Indonesia. The purpose of the study is to find out the influence of health communication on information technology in health information during the pandemic in Indonesia. The concepts of health communication literacy and information technology are used this study. Previous research is in support of this study. Quantitative research methods by disseminating questionnaires in this study. The validity and reliability test of this study is positive, so it can proceed to the next statistical analysis. Descriptive results of variable health communication literacy are of positive value in all dimensions. All dimensions of information technology are of positive value. Statistical tests of the influence of health communication literacy on information technology are of great value. Discussion of both variables in the influence of health communication literacy and high-value information technology because health communication literacy has a high effect in information technology. Respondents to this study have high information technology skills. So that health communication literacy in obtaining health information during the 2019-2022 pandemic is needed. Research advice is that academics are still very much needed by the community in the development of society during the pandemic.

Keywords: health information, health information needs, literacy health communication, information technology

Procedia PDF Downloads 139
6818 Mathematics Bridging Theory and Applications for a Data-Driven World

Authors: Zahid Ullah, Atlas Khan

Abstract:

In today's data-driven world, the role of mathematics in bridging the gap between theory and applications is becoming increasingly vital. This abstract highlights the significance of mathematics as a powerful tool for analyzing, interpreting, and extracting meaningful insights from vast amounts of data. By integrating mathematical principles with real-world applications, researchers can unlock the full potential of data-driven decision-making processes. This abstract delves into the various ways mathematics acts as a bridge connecting theoretical frameworks to practical applications. It explores the utilization of mathematical models, algorithms, and statistical techniques to uncover hidden patterns, trends, and correlations within complex datasets. Furthermore, it investigates the role of mathematics in enhancing predictive modeling, optimization, and risk assessment methodologies for improved decision-making in diverse fields such as finance, healthcare, engineering, and social sciences. The abstract also emphasizes the need for interdisciplinary collaboration between mathematicians, statisticians, computer scientists, and domain experts to tackle the challenges posed by the data-driven landscape. By fostering synergies between these disciplines, novel approaches can be developed to address complex problems and make data-driven insights accessible and actionable. Moreover, this abstract underscores the importance of robust mathematical foundations for ensuring the reliability and validity of data analysis. Rigorous mathematical frameworks not only provide a solid basis for understanding and interpreting results but also contribute to the development of innovative methodologies and techniques. In summary, this abstract advocates for the pivotal role of mathematics in bridging theory and applications in a data-driven world. By harnessing mathematical principles, researchers can unlock the transformative potential of data analysis, paving the way for evidence-based decision-making, optimized processes, and innovative solutions to the challenges of our rapidly evolving society.

Keywords: mathematics, bridging theory and applications, data-driven world, mathematical models

Procedia PDF Downloads 75
6817 The Impact of Dog-Assisted Wellbeing Intervention on Student Motivation and Affective Engagement in the Primary and Secondary School Setting

Authors: Yvonne Howard

Abstract:

This project currently under development is centered around current learning processes, including a thorough literature review and ongoing practical experiences gained as a deputy head in a school. These daily experiences with students engaging in animal-assisted interventions and the school therapy dog form a strong base for this research. The primary objective of this research is to comprehensively explore the impact of dog-assisted well-being interventions on student motivation and affective engagement within primary and secondary school settings. The educational domain currently encounters a significant challenge due to the lack of substantial research in this area. Despite the perceived positive outcomes of such interventions being acknowledged and shared in various settings, the evidence supporting their effectiveness in an educational context remains limited. This study aims to bridge the gap in the research and shed light on the potential benefits of dog-assisted well-being interventions in promoting student motivation and affective engagement. The significance of this topic recognizes that education is not solely confined to academic achievement but encompasses the overall well-being and emotional development of students. Over recent years, there has been a growing interest in animal-assisted interventions, particularly in healthcare settings. This interest has extended to the educational context. While the effectiveness of these interventions in these areas has been explored in other fields, the educational sector lacks comprehensive research in this regard. Through a systematic and thorough research methodology, this study seeks to contribute valuable empirical data to the field, providing evidence to support informed decision-making regarding the implementation of dog-assisted well-being interventions in schools. This research will utilize a mixed-methods design, combining qualitative and quantitative measures to assess the research objectives. The quantitative phase will include surveys and standardized scales to measure student motivation and affective engagement, while the qualitative phase will involve interviews and observations to gain in-depth insights from students, teachers, and other stakeholders. The findings will contribute evidence-based insights, best practices, and practical guidelines for schools seeking to incorporate dog-assisted interventions, ultimately enhancing student well-being and improving educational outcomes.

Keywords: therapy dog, wellbeing, engagement, motivation, AAI, intervention, school

Procedia PDF Downloads 78
6816 Examining the Attitudes of Pre-School Teachers towards Values Education in Terms of Gender, School Type, Professional Seniority and Location

Authors: Hatice Karakoyun, Mustafa Akdag

Abstract:

This study has been made to examine the attitudes of pre-school teachers towards values education. The study has been made as a general scanning model. The study’s working group contains 108 pre-school teachers who worked in Diyarbakır, Turkey. In this study Values Education Attitude Scale (VEAS), which developed by Yaşaroğlu (2014), was used. In order to analyze the data for sociodemographic structure, percentage and frequency values were examined. The Kolmogorov-Smirnov method was used in determination of the normal distribution of data. During analyzing the data, KolmogorovSimirnov test and the normal curved histograms were examined to determine which statistical analyzes would be applied on the scale and it was found that the distribution was not normal. Thus, the Mann Whitney U analysis technique which is one of the nonparametric statistical analysis techniques were used to test the difference of the scores obtained from the scale in terms of independent variables. According to the analyses, it seems that pre-school teachers’ attitudes toward values education are positive. According to the scale with the highest average, it points out that pre-school teachers think that values education is very important for students’ and children’s future. The variables included in the scale (gender, seniority, age group, education, school type, school place) seem to have no effect on the pre-school teachers’ attitude grades which joined to the study.

Keywords: attitude scale, pedagogy, pre-school teacher, values education

Procedia PDF Downloads 247