Search results for: ring deep beam
2669 Impact of a Novel Technique of S-Shaped Tracheostoma in Pediatric Tracheostomy in Intensive Care Unit on Success and Procedure Related Complications
Authors: Devendra Gupta, Sushilk K. Agarwal, Amit Kesari, P. K. Singh
Abstract:
Objectives: Pediatric patients often may experience persistent respiratory failure that requires tracheostomy placement in Pediatric ICU. We have designed a technique of tracheostomy in pediatric patients with S-shaped incision on the tracheal wall with higher success rate and lower complication rate. Technique: Following general anesthesia and positioning of the patient, the trachea was exposed in midline by a vertical skin incision. In order to make S-shaped tracheostoma, second tracheal ring was identified. The conventional vertical incision was made in second tracheal ring and then extended at both its ends laterally in the inter-cartilaginous space parallel to the tracheal cartilage in the opposite direction to make the incision S-shaped. The trachea was dilated with tracheal dilator and appropriate size of tracheostomy tube was then placed into the trachea. Results: S-shaped tracheostomy was performed in 20 children with mean age of 6.25 years (age range is 2-7) requiring tracheostomy placement. The tracheostomy tubes were successfully placed in all the patients in single attempt. There was no incidence of significant intra-operative bleeding, subcutaneous emphysema, vocal cord palsy or pneumothorax. Two patients developed pneumonia and expired within a year. However, there was no incidence of tracheo-esophageal fistula, suprastomal collapse or difficulty in decannulation on one year of follow up related to our technique. One patient developed late trachietis managed conservatively. Conclusion: S-shaped tracheoplasty was associated with high success rate, reduced risk of the early and late complications in pediatric patients requiring tracheostomy.Keywords: peatrics, tracheostomy, ICU, tracheostoma
Procedia PDF Downloads 2642668 Study Secondary Particle Production in Carbon Ion Beam Radiotherapy
Authors: Shaikah Alsubayae, Gianluigi Casse, Carlos Chavez, Jon Taylor, Alan Taylor, Mohammad Alsulimane
Abstract:
Ensuring accurate radiotherapy with carbon therapy requires precise monitoring of radiation dose distribution within the patient's body. This monitoring is essential for targeted tumor treatment, minimizing harm to healthy tissues, and improving treatment effectiveness while lowering side effects. In our investigation, we employed a methodological approach to monitor secondary proton doses in carbon therapy using Monte Carlo simulations. Initially, Geant4 simulations were utilized to extract the initial positions of secondary particles formed during interactions between carbon ions and water. These particles included protons, gamma rays, alpha particles, neutrons, and tritons. Subsequently, we studied the relationship between the carbon ion beam and these secondary particles. Interaction Vertex Imaging (IVI) is valuable for monitoring dose distribution in carbon therapy. It provides details about the positions and amounts of secondary particles, particularly protons. The IVI method depends on charged particles produced during ion fragmentation to gather information about the range by reconstructing particle trajectories back to their point of origin, referred to as the vertex. In our simulations regarding carbon ion therapy, we observed a strong correlation between some secondary particles and the range of carbon ions. However, challenges arose due to the target's unique elongated geometry, which hindered the straightforward transmission of forward-generated protons. Consequently, the limited protons that emerged mostly originated from points close to the target entrance. The trajectories of fragments (protons) were approximated as straight lines, and a beam back-projection algorithm, using recorded interaction positions in Si detectors, was developed to reconstruct vertices. The analysis revealed a correlation between the reconstructed and actual positions.Keywords: radiotherapy, carbon therapy, monitoring of radiation dose, interaction vertex imaging
Procedia PDF Downloads 842667 Analysis of Moment Rotation Curve for Steel Beam Column Joint
Authors: A. J. Shah, G. R. Vesmawala
Abstract:
Connections perform a fundamental role in the steel structures as global behaviour. In order to evaluate the real influence of the physical and geometrical parameters that control their behaviour, many experimental tests and analysis have been developed but a definitive answer to the problem in question still stands. Here, various configurations of bolts were tried and the resulting moment rotation (M-θ) curves were plotted. The connection configuration is such that two bolts are located above each of the flanges and beside each of the webs. The model considers the combined effects of prying action, the formation of yield lines, and failures due to punching shear and beam section failure. For many types of connections, the stiffness at the service load level falls somewhere in between the fully restrained and simple limits and designers need to account for its behaviour. The (M-θ) curves are generally assumed to be the best characterization of connection behaviour. The moment rotation curves are generally derived from experiments on cantilever type specimens. The moments are calculated directly from the statics of the specimen, while the rotations are measured over a distance typically equal to the point of loading. Thus, this paper establishes the relationship between M-θ behaviour of different types of connections tested and presents the relative strength of various possible arrangements of bolts.Keywords: bolt, moment, rotation, stiffness, connections
Procedia PDF Downloads 3922666 Forward Conditional Restricted Boltzmann Machines for the Generation of Music
Authors: Johan Loeckx, Joeri Bultheel
Abstract:
Recently, the application of deep learning to music has gained popularity. Its true potential, however, has been largely unexplored. In this paper, a new idea for representing the dynamic behavior of music is proposed. A ”forward” conditional RBM takes into account not only preceding but also future samples during training. Though this may sound controversial at first sight, it will be shown that it makes sense from a musical and neuro-cognitive perspective. The model is applied to reconstruct music based upon the first notes and to improvise in the musical style of a composer. Different to expectations, reconstruction accuracy with respect to a regular CRBM with the same order, was not significantly improved. More research is needed to test the performance on unseen data.Keywords: deep learning, restricted boltzmann machine, music generation, conditional restricted boltzmann machine (CRBM)
Procedia PDF Downloads 5222665 Reflective Thinking and Experiential Learning – A Quasi-Experimental Quanti-Quali Response to Greater Diversification of Activities, Greater Integration of Student Profiles
Authors: Paulo Sérgio Ribeiro de Araújo Bogas
Abstract:
Although several studies have assumed (at least implicitly) that learners' approaches to learning develop into deeper approaches to higher education, there appears to be no clear theoretical basis for this assumption and no empirical evidence. As a scientific contribution to this discussion, a pedagogical intervention of a quasi-experimental nature was developed, with a mixed methodology, evaluating the intervention within a single curricular unit of Marketing, using cases based on real challenges of brands, business simulation, and customer projects. Primary and secondary experiences were incorporated in the intervention: the primary experiences are the experiential activities themselves; the secondary experiences result from the primary experience, such as reflection and discussion in work teams. A diversified learning relationship was encouraged through the various connections between the different members of the learning community. The present study concludes that in the same context, the student's responses can be described as students who reinforce the initial deep approach, students who maintain the initial deep approach level, and others who change from an emphasis on the deep approach to one closer to superficial. This typology did not always confirm studies reported in the literature, namely, whether the initial level of deep processing would influence the superficial and the opposite. The result of this investigation points to the inclusion of pedagogical and didactic activities that integrate different motivations and initial strategies, leading to the possible adoption of deep approaches to learning since it revealed statistically significant differences in the difference in the scores of the deep/superficial approach and the experiential level. In the case of real challenges, the categories of “attribution of meaning and meaning of studied” and the possibility of “contact with an aspirational context” for their future professional stand out. In this category, the dimensions of autonomy that will be required of them were also revealed when comparing the classroom context of real cases and the future professional context and the impact they may have on the world. Regarding the simulated practice, two categories of response stand out: on the one hand, the motivation associated with the possibility of measuring the results of the decisions taken, an awareness of oneself, and, on the other hand, the additional effort that this practice required for some of the students.Keywords: experiential learning, higher education, mixed methods, reflective learning, marketing
Procedia PDF Downloads 832664 Low Dose In-Line Electron Holography for 3D Atomic Resolution Tomography of Soft Materials
Authors: F. R. Chen, C. Kisielowski, D. Van Dyck
Abstract:
In principle, the latest generation aberration-corrected transmission electron microscopes (TEMs) could achieve sub-Å resolution, but there is bottleneck that hinders the final step towards revealing 3D structure. Firstly, in order to achieve a resolution around 1 Å with single atom sensitivity, the electron dose rate needs to be sufficiently large (10⁴-10⁵eÅ⁻² s⁻¹). With such large dose rate, the electron beam can induce surfaces alterations or even bulk modifications, in particular, for electron beam sensitive (soft) materials such as nm size particles, organic materials, proteins or macro-molecules. We will demonstrate methodology of low dose electron holography for observing 3D structure for soft materials such as single Oleic acid molecules at atomic resolution. The main improvement of this new type of electron holography is based on two concepts. Firstly, the total electron dose is distributed over many images obtained at different defocus values from which the electron hologram is then reconstructed. Secondly, in contrast to the current tomographic methods that require projections from several directions, the 3D structural information of the nano-object is then extracted from this one hologram obtained from only one viewing direction.Keywords: low dose electron microscopy, in-line electron holography, atomic resolution tomography, soft materials
Procedia PDF Downloads 1922663 Wear Map for Cu-Based Friction Materials with Different Contents of Fe Reinforcement
Authors: Haibin Zhou, Pingping Yao, Kunyang Fan
Abstract:
Copper-based sintered friction materials are widely used in the brake system of different applications such as engineering machinery or high-speed train, due to the excellent mechanical, thermal and tribological performance. Considering the diversity of the working conditions of brake system, it is necessary to identify well and understand the tribological performance and wear mechanisms of friction materials for different conditions. Fe has been a preferred reinforcement for copper-based friction materials, due to its ability to improve the wear resistance and mechanical properties of material. Wear map is well accepted as a useful research method for evaluation of wear performances and wear mechanisms over a wider range of working conditions. Therefore, it is significantly important to construct a wear map which can give out the effects of work condition and Fe reinforcement on tribological performance of Cu-based friction materials. In this study, the copper-based sintered friction materials with the different addition of Fe reinforcement (0-20 vol. %) were studied. The tribological tests were performed against stainless steel in a ring-on-ring braking tester with varying braking energy density (0-5000 J/cm2). The linear wear and friction coefficient were measured. The worn surface, cross section and debris were analyzed to determine the dominant wear mechanisms for different testing conditions. On the basis of experimental results, the wear map and wear mechanism map were established, in terms of braking energy density and the addition of Fe. It was found that with low contents of Fe and low braking energy density, adhesive wear was the dominant wear mechanism of friction materials. Oxidative wear and abrasive wear mainly occurred under moderate braking energy density. In the condition of high braking energy density, with both high and low addition of Fe, delamination appeared as the main wear mechanism.Keywords: Cu-based friction materials, Fe reinforcement, wear map, wear mechanism
Procedia PDF Downloads 2792662 Quantification and Thermal Behavior of Rice Bran Oil, Sunflower Oil and Their Model Blends
Authors: Harish Kumar Sharma, Garima Sengar
Abstract:
Rice bran oil is considered comparatively nutritionally superior than different fats/oils. Therefore, model blends prepared from pure rice bran oil (RBO) and sunflower oil (SFO) were explored for changes in the different physicochemical parameters. Repeated deep fat frying process was carried out by using dried potato in order to study the thermal behaviour of pure rice bran oil, sunflower oil and their model blends. Pure rice bran oil and sunflower oil had shown good thermal stability during the repeated deep fat frying cycles. Although, the model blends constituting 60% RBO + 40% SFO showed better suitability during repeated deep fat frying than the remaining blended oils. The quantification of pure rice bran oil in the blended oils, physically refined rice bran oil (PRBO): SnF (sunflower oil) was carried by different methods. The study revealed that regression equations based on the oryzanol content, palmitic acid composition and iodine value can be used for the quantification. The rice bran oil can easily be quantified in the blended oils based on the oryzanol content by HPLC even at 1% level. The palmitic acid content in blended oils can also be used as an indicator to quantify rice bran oil at or above 20% level in blended oils whereas the method based on ultrasonic velocity, acoustic impedance and relative association showed initial promise in the quantification.Keywords: rice bran oil, sunflower oil, frying, quantification
Procedia PDF Downloads 3082661 Deep Learning-Based Liver 3D Slicer for Image-Guided Therapy: Segmentation and Needle Aspiration
Authors: Ahmedou Moulaye Idriss, Tfeil Yahya, Tamas Ungi, Gabor Fichtinger
Abstract:
Image-guided therapy (IGT) plays a crucial role in minimally invasive procedures for liver interventions. Accurate segmentation of the liver and precise needle placement is essential for successful interventions such as needle aspiration. In this study, we propose a deep learning-based liver 3D slicer designed to enhance segmentation accuracy and facilitate needle aspiration procedures. The developed 3D slicer leverages state-of-the-art convolutional neural networks (CNNs) for automatic liver segmentation in medical images. The CNN model is trained on a diverse dataset of liver images obtained from various imaging modalities, including computed tomography (CT) and magnetic resonance imaging (MRI). The trained model demonstrates robust performance in accurately delineating liver boundaries, even in cases with anatomical variations and pathological conditions. Furthermore, the 3D slicer integrates advanced image registration techniques to ensure accurate alignment of preoperative images with real-time interventional imaging. This alignment enhances the precision of needle placement during aspiration procedures, minimizing the risk of complications and improving overall intervention outcomes. To validate the efficacy of the proposed deep learning-based 3D slicer, a comprehensive evaluation is conducted using a dataset of clinical cases. Quantitative metrics, including the Dice similarity coefficient and Hausdorff distance, are employed to assess the accuracy of liver segmentation. Additionally, the performance of the 3D slicer in guiding needle aspiration procedures is evaluated through simulated and clinical interventions. Preliminary results demonstrate the effectiveness of the developed 3D slicer in achieving accurate liver segmentation and guiding needle aspiration procedures with high precision. The integration of deep learning techniques into the IGT workflow shows great promise for enhancing the efficiency and safety of liver interventions, ultimately contributing to improved patient outcomes.Keywords: deep learning, liver segmentation, 3D slicer, image guided therapy, needle aspiration
Procedia PDF Downloads 482660 Gender Recognition with Deep Belief Networks
Authors: Xiaoqi Jia, Qing Zhu, Hao Zhang, Su Yang
Abstract:
A gender recognition system is able to tell the gender of the given person through a few of frontal facial images. An effective gender recognition approach enables to improve the performance of many other applications, including security monitoring, human-computer interaction, image or video retrieval and so on. In this paper, we present an effective method for gender classification task in frontal facial images based on deep belief networks (DBNs), which can pre-train model and improve accuracy a little bit. Our experiments have shown that the pre-training method with DBNs for gender classification task is feasible and achieves a little improvement of accuracy on FERET and CAS-PEAL-R1 facial datasets.Keywords: gender recognition, beep belief net-works, semi-supervised learning, greedy-layer wise RBMs
Procedia PDF Downloads 4532659 Flexural Properties of RC Beams Strengthened with A Composite Reinforcement Layer: FRP Grid and ECC
Authors: Yu-Zhou Zheng, Wen-Wei Wang
Abstract:
In this paper, a new strengthening technique for reinforced concrete (RC) beams is proposed by combining Basalt Fibre Reinforced Polymer (BFRP) grid and Engineered Cementitious Composites (ECC) as a composite reinforcement layer (CRL). Five RC beams externally bonded with the CRL at the soffit and one control RC beam was tested to investigate their flexural behaviour. The thickness of BFRP grids (i.e., 1mm, 3mm and 5mm) and the sizes of CRL in test program were selected as the test parameters, while the thickness of CRL was fixed approximately at 30mm. The test results showed that there is no debonding of CRL to occur obviously in the strengthened beams. The final failure modes were the concrete crushing or the rupture of BFRP grids, indicating that the proposed technique is effective in suppressing the debonding of externally bonded materials and fully utilizing the material strengths. Compared with the non-strengthened beam, the increments of crack loading for strengthened beams were 58%~97%, 15%~35% for yield loading and 4%~33% for the ultimate loading, respectively. An analytical model is also presented to predict the full-range load-deflection responses of the strengthened beams and validated through comparisons with the test results.Keywords: basalt fiber-reinforced polymer (BFRP) grid, ECC, RC beams, strengthening
Procedia PDF Downloads 3472658 Hyper Parameter Optimization of Deep Convolutional Neural Networks for Pavement Distress Classification
Authors: Oumaima Khlifati, Khadija Baba
Abstract:
Pavement distress is the main factor responsible for the deterioration of road structure durability, damage vehicles, and driver comfort. Transportation agencies spend a high proportion of their funds on pavement monitoring and maintenance. The auscultation of pavement distress was based on the manual survey, which was extremely time consuming, labor intensive, and required domain expertise. Therefore, the automatic distress detection is needed to reduce the cost of manual inspection and avoid more serious damage by implementing the appropriate remediation actions at the right time. Inspired by recent deep learning applications, this paper proposes an algorithm for automatic road distress detection and classification using on the Deep Convolutional Neural Network (DCNN). In this study, the types of pavement distress are classified as transverse or longitudinal cracking, alligator, pothole, and intact pavement. The dataset used in this work is composed of public asphalt pavement images. In order to learn the structure of the different type of distress, the DCNN models are trained and tested as a multi-label classification task. In addition, to get the highest accuracy for our model, we adjust the structural optimization hyper parameters such as the number of convolutions and max pooling, filers, size of filters, loss functions, activation functions, and optimizer and fine-tuning hyper parameters that conclude batch size and learning rate. The optimization of the model is executed by checking all feasible combinations and selecting the best performing one. The model, after being optimized, performance metrics is calculated, which describe the training and validation accuracies, precision, recall, and F1 score.Keywords: distress pavement, hyperparameters, automatic classification, deep learning
Procedia PDF Downloads 932657 Performance Evaluation and Plugging Characteristics of Controllable Self-Aggregating Colloidal Particle Profile Control Agent
Authors: Zhiguo Yang, Xiangan Yue, Minglu Shao, Yue Yang, Rongjie Yan
Abstract:
It is difficult to realize deep profile control because of the small pore-throats and easy water channeling in low-permeability heterogeneous reservoir, and the traditional polymer microspheres have the contradiction between injection and plugging. In order to solve this contradiction, the controllable self-aggregating colloidal particles (CSA) containing amide groups on the surface of microspheres was prepared based on emulsion polymerization of styrene and acrylamide. The dispersed solution of CSA colloidal particles, whose particle size is much smaller than the diameter of pore-throats, was injected into the reservoir. When the microspheres migrated to the deep part of reservoir, , these CSA colloidal particles could automatically self-aggregate into large particle clusters under the action of the shielding agent and the control agent, so as to realize the plugging of the water channels. In this paper, the morphology, temperature resistance and self-aggregation properties of CSA microspheres were studied by transmission electron microscopy (TEM) and bottle test. The results showed that CSA microspheres exhibited heterogeneous core-shell structure, good dispersion, and outstanding thermal stability. The microspheres remain regular and uniform spheres at 100℃ after aging for 35 days. With the increase of the concentration of the cations, the self-aggregation time of CSA was gradually shortened, and the influence of bivalent cations was greater than that of monovalent cations. Core flooding experiments showed that CSA polymer microspheres have good injection properties, CSA particle clusters can effective plug the water channels and migrate to the deep part of the reservoir for profile control.Keywords: heterogeneous reservoir, deep profile control, emulsion polymerization, colloidal particles, plugging characteristic
Procedia PDF Downloads 2412656 Deep Reinforcement Learning Approach for Trading Automation in The Stock Market
Authors: Taylan Kabbani, Ekrem Duman
Abstract:
The design of adaptive systems that take advantage of financial markets while reducing the risk can bring more stagnant wealth into the global market. However, most efforts made to generate successful deals in trading financial assets rely on Supervised Learning (SL), which suffered from various limitations. Deep Reinforcement Learning (DRL) offers to solve these drawbacks of SL approaches by combining the financial assets price "prediction" step and the "allocation" step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. In this paper, a continuous action space approach is adopted to give the trading agent the ability to gradually adjust the portfolio's positions with each time step (dynamically re-allocate investments), resulting in better agent-environment interaction and faster convergence of the learning process. In addition, the approach supports the managing of a portfolio with several assets instead of a single one. This work represents a novel DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem, or what is referred to as The Agent Environment as Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. More specifically, we design an environment that simulates the real-world trading process by augmenting the state representation with ten different technical indicators and sentiment analysis of news articles for each stock. We then solve the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm, which can learn policies in high-dimensional and continuous action spaces like those typically found in the stock market environment. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of deep reinforcement learning in financial markets over other types of machine learning such as supervised learning and proves its credibility and advantages of strategic decision-making.Keywords: the stock market, deep reinforcement learning, MDP, twin delayed deep deterministic policy gradient, sentiment analysis, technical indicators, autonomous agent
Procedia PDF Downloads 1782655 Polymerization of Epsilon-Caprolactone Using Lipase Enzyme for Medical Applications
Authors: Sukanya Devi Ramachandran, Vaishnavi Muralidharan, Kavya Chandrasekaran
Abstract:
Polycaprolactone is polymer belonging to the polyester family that has noticeable characteristics of biodegradability and biocompatibility which is essential for medical applications. Polycaprolactone is produced by the ring opening polymerization of the monomer epsilon-Caprolactone (ε-CL) which is a closed ester, comprising of seven-membered ring. This process is normally catalysed by metallic components such as stannous octoate. It is difficult to remove the catalysts after the reaction, and they are also toxic to the human body. An alternate route of using enzymes as catalysts is being employed to reduce the toxicity. Lipase enzyme is a subclass of esterase that can easily attack the ester bonds of ε-CL. This research paper throws light on the extraction of lipase from germinating sunflower seeds and the activity of the biocatalyst in the polymerization of ε-CL. Germinating Sunflower seeds were crushed with fine sand in phosphate buffer of pH 6.5 into a fine paste which was centrifuged at 5000rpm for 10 minutes. The clear solution of the enzyme was tested for activity at various pH ranging from 5 to 7 and temperature ranging from 40oC to 70oC. The enzyme was active at pH6.0 and at 600C temperature. Polymerization of ε-CL was done using toluene as solvent with the catalysis of lipase enzyme, after which chloroform was added to terminate the reaction and was washed in cold methanol to obtain the polymer. The polymerization was done by varying the time from 72 hours to 6 days and tested for the molecular weight and the conversion of the monomer. The molecular weight obtained at 6 days is comparably higher. This method will be very effective, economical and eco-friendly to produce as the enzyme used can be regenerated as such at the end of the reaction and can be reused. The obtained polymers can be used for drug delivery and other medical applications.Keywords: lipase, monomer, polycaprolactone, polymerization
Procedia PDF Downloads 2962654 Classification of Generative Adversarial Network Generated Multivariate Time Series Data Featuring Transformer-Based Deep Learning Architecture
Authors: Thrivikraman Aswathi, S. Advaith
Abstract:
As there can be cases where the use of real data is somehow limited, such as when it is hard to get access to a large volume of real data, we need to go for synthetic data generation. This produces high-quality synthetic data while maintaining the statistical properties of a specific dataset. In the present work, a generative adversarial network (GAN) is trained to produce multivariate time series (MTS) data since the MTS is now being gathered more often in various real-world systems. Furthermore, the GAN-generated MTS data is fed into a transformer-based deep learning architecture that carries out the data categorization into predefined classes. Further, the model is evaluated across various distinct domains by generating corresponding MTS data.Keywords: GAN, transformer, classification, multivariate time series
Procedia PDF Downloads 1302653 Estimating Algae Concentration Based on Deep Learning from Satellite Observation in Korea
Authors: Heewon Jeong, Seongpyo Kim, Joon Ha Kim
Abstract:
Over the last few tens of years, the coastal regions of Korea have experienced red tide algal blooms, which are harmful and toxic to both humans and marine organisms due to their potential threat. It was accelerated owing to eutrophication by human activities, certain oceanic processes, and climate change. Previous studies have tried to monitoring and predicting the algae concentration of the ocean with the bio-optical algorithms applied to color images of the satellite. However, the accurate estimation of algal blooms remains problems to challenges because of the complexity of coastal waters. Therefore, this study suggests a new method to identify the concentration of red tide algal bloom from images of geostationary ocean color imager (GOCI) which are representing the water environment of the sea in Korea. The method employed GOCI images, which took the water leaving radiances centered at 443nm, 490nm and 660nm respectively, as well as observed weather data (i.e., humidity, temperature and atmospheric pressure) for the database to apply optical characteristics of algae and train deep learning algorithm. Convolution neural network (CNN) was used to extract the significant features from the images. And then artificial neural network (ANN) was used to estimate the concentration of algae from the extracted features. For training of the deep learning model, backpropagation learning strategy is developed. The established methods were tested and compared with the performances of GOCI data processing system (GDPS), which is based on standard image processing algorithms and optical algorithms. The model had better performance to estimate algae concentration than the GDPS which is impossible to estimate greater than 5mg/m³. Thus, deep learning model trained successfully to assess algae concentration in spite of the complexity of water environment. Furthermore, the results of this system and methodology can be used to improve the performances of remote sensing. Acknowledgement: This work was supported by the 'Climate Technology Development and Application' research project (#K07731) through a grant provided by GIST in 2017.Keywords: deep learning, algae concentration, remote sensing, satellite
Procedia PDF Downloads 1832652 Effects of Different Drying Methods on the Properties of Viscose Single Jersey Fabrics
Authors: Merve Kucukali Ozturk, Yesim Beceren, Banu Nergis
Abstract:
The study discussed in this paper was conducted in an attempt to investigate effects of different drying methods (line dry and tumble dry) on viscose single jersey fabrics knitted with ring yarn.Keywords: color change, dimensional properties, drying method, fabric tightness, physical properties
Procedia PDF Downloads 2902651 Signal Integrity Performance Analysis in Capacitive and Inductively Coupled Very Large Scale Integration Interconnect Models
Authors: Mudavath Raju, Bhaskar Gugulothu, B. Rajendra Naik
Abstract:
The rapid advances in Very Large Scale Integration (VLSI) technology has resulted in the reduction of minimum feature size to sub-quarter microns and switching time in tens of picoseconds or even less. As a result, the degradation of high-speed digital circuits due to signal integrity issues such as coupling effects, clock feedthrough, crosstalk noise and delay uncertainty noise. Crosstalk noise in VLSI interconnects is a major concern and reduction in VLSI interconnect has become more important for high-speed digital circuits. It is the most effectively considered in Deep Sub Micron (DSM) and Ultra Deep Sub Micron (UDSM) technology. Increasing spacing in-between aggressor and victim line is one of the technique to reduce the crosstalk. Guard trace or shield insertion in-between aggressor and victim is also one of the prominent options for the minimization of crosstalk. In this paper, far end crosstalk noise is estimated with mutual inductance and capacitance RLC interconnect model. Also investigated the extent of crosstalk in capacitive and inductively coupled interconnects to minimizes the same through shield insertion technique.Keywords: VLSI, interconnects, signal integrity, crosstalk, shield insertion, guard trace, deep sub micron
Procedia PDF Downloads 1862650 Hydrothermal Energy Application Technology Using Dam Deep Water
Authors: Yooseo Pang, Jongwoong Choi, Yong Cho, Yongchae Jeong
Abstract:
Climate crisis, such as environmental problems related to energy supply, is getting emerged issues, so the use of renewable energy is essentially required to solve these problems, which are mainly managed by the Paris Agreement, the international treaty on climate change. The government of the Republic of Korea announced that the key long-term goal for a low-carbon strategy is “Carbon neutrality by 2050”. It is focused on the role of the internet data centers (IDC) in which large amounts of data, such as artificial intelligence (AI) and big data as an impact of the 4th industrial revolution, are managed. The demand for the cooling system market for IDC was about 9 billion US dollars in 2020, and 15.6% growth a year is expected in Korea. It is important to control the temperature in IDC with an efficient air conditioning system, so hydrothermal energy is one of the best options for saving energy in the cooling system. In order to save energy and optimize the operating conditions, it has been considered to apply ‘the dam deep water air conditioning system. Deep water at a specific level from the dam can supply constant water temperature year-round. It will be tested & analyzed the amount of energy saving with a pilot plant that has 100RT cooling capacity. Also, a target of this project is 1.2 PUE (Power Usage Effectiveness) which is the key parameter to check the efficiency of the cooling system.Keywords: hydrothermal energy, HVAC, internet data center, free-cooling
Procedia PDF Downloads 812649 Electrochemical/Electro-Catalytic Applications of Novel Alcohol Substituted Metallophthalocyanines
Authors: Ipek Gunay, Efe B. Orman, Metin Ozer, Bekir Salih, Ali R. Ozkaya
Abstract:
Phthalocyanines with macrocyclic ring containing at least three heteroatoms have nine or more membered structures. Metal-free phthalocyanines react with metal salts to obtain chelate complexes. This is one of the most important features of metal-free phthalocyanine as ligand structure. Although phthalocyanines have very similar properties with porphyrins, they have some advantages such as lower cost, easy to prepare, and chemical and thermal stability. It’s known that Pc compounds have shown one-electron metal-and/or ligand-based reversible or quasi-reversible reduction and oxidation processes. The redox properties of phthalocyanines are critically related to the desirable properties of these compounds in their technological applications. Thus, Pc complexes have also been receiving increasing interest in the area of fuel cells due to their high electrocatalytic activity in dioxygen reduction and fuel cell applications. In this study, novel phthalocyanine complexes coordinated with Fe(II) and Co (II) to be used as catalyst were synthesized. Aiming this goal, a new nitrile ligand was synthesized starting from 4-hydroxy-3,5-dimethoxy benzyl alcohol and 4-nitrophthalonitrile in the presence of K2CO3 as catalyst. After the isolation of the new type of nitrile and metal complexes, the characterization of mentioned compounds was achieved by IR, H-NMR and UV-vis methods. In addition, the electrochemical behaviour of Pc complexes was identified by cyclic voltammetry, square wave voltammetry and in situ spectroelectrochemical measurements. Furthermore, the catalytic performances of Pc complexes for oxygen reduction were tested by dynamic voltammetry measurements, carried out by the combined system of rotating ring-disk electrode and potentiostat, in a medium similar to fuel-cell working conditions.Keywords: phthalocyanine, electrocatalysis, electrochemistry, in-situ spectroelectrochemistry
Procedia PDF Downloads 3162648 Deep Groundwater Potential and Chemical Analysis Based on Well Logging Analysis at Kapuk-Cengkareng, West Jakarta, DKI Jakarta, Indonesia
Authors: Josua Sihotang
Abstract:
Jakarta Capital Special Region is the province that densely populated with rapidly growing infrastructure but less attention for the environmental condition. This makes some social problem happened like lack of clean water supply. Shallow groundwater and river water condition that has contaminated make the layer of deep water carrier (aquifer) should be done. This research aims to provide the people insight about deep groundwater potential and to determine the depth, location, and quality where the aquifer can be found in Jakarta’s area, particularly Kapuk-Cengkareng’s people. This research was conducted by geophysical method namely Well Logging Analysis. Well Logging is the geophysical method to know the subsurface lithology with the physical characteristic. The observation in this research area was conducted with several well devices that is Spontaneous Potential Log (SP Log), Resistivity Log, and Gamma Ray Log (GR Log). The first devices well is SP log which is work by comprising the electrical potential difference between the electrodes on the surface with the electrodes that is contained in the borehole and rock formations. The second is Resistivity Log, used to determine both the hydrocarbon and water zone based on their porosity and permeability properties. The last is GR Log, work by identifying radioactivity levels of rocks which is containing elements of thorium, uranium, or potassium. The observation result is curve-shaped which describes the type of lithological coating in subsurface. The result from the research can be interpreted that there are four of the deep groundwater layer zone with different quality. The good groundwater layer can be found in layers with good porosity and permeability. By analyzing the curves, it can be known that most of the layers which were found in this wellbore are clay stone with low resistivity and high gamma radiation. The resistivity value of the clay stone layers is about 2-4 ohm-meter with 65-80 Cps gamma radiation. There are several layers with high resistivity value and low gamma radiation (sand stone) that can be potential for being an aquifer. This is reinforced by the sand layer with a right-leaning SP log curve proving that this layer is permeable. These layers have 4-9 ohm-meter resistivity value with 40-65 Cps gamma radiation. These are mostly found as fresh water aquifer.Keywords: aquifer, deep groundwater potential, well devices, well logging analysis
Procedia PDF Downloads 2522647 Classification of Cochannel Signals Using Cyclostationary Signal Processing and Deep Learning
Authors: Bryan Crompton, Daniel Giger, Tanay Mehta, Apurva Mody
Abstract:
The task of classifying radio frequency (RF) signals has seen recent success in employing deep neural network models. In this work, we present a combined signal processing and machine learning approach to signal classification for cochannel anomalous signals. The power spectral density and cyclostationary signal processing features of a captured signal are computed and fed into a neural net to produce a classification decision. Our combined signal preprocessing and machine learning approach allows for simpler neural networks with fast training times and small computational resource requirements for inference with longer preprocessing time.Keywords: signal processing, machine learning, cyclostationary signal processing, signal classification
Procedia PDF Downloads 1072646 Deep Eutectic Solvent/ Polyimide Blended Membranes for Anaerobic Digestion Gas Separation
Authors: Glemarie C. Hermosa, Sheng-Jie You, Chien Chih Hu
Abstract:
Efficient separation technologies are required for the removal of carbon dioxide from natural gas streams. Membrane-based natural gas separation has emerged as one of the fastest growing technologies, due to the compactness, higher energy efficiency and economic advantages which can be reaped. The removal of Carbon dioxide from gas streams using membrane technology will also give the advantage like environmental friendly process compared to the other technologies used in gas separation. In this study, Polyimide membranes, which are mostly used in the separation of gases, are blended with a new kind of solvent: Deep Eutectic Solvents or simply DES. The three types of DES are used are choline chloride based mixed with three different hydrogen bond donors: Lactic acid, N-methylurea and Urea. The blending of the DESs to Polyimide gave out high permeability performance. The Gas Separation performance for all the membranes involving CO2/CH4 showed low performance while for CO2/N2 surpassed the performance of some studies. Among the three types of DES used the solvent Choline Chloride/Lactic acid exhibited the highest performance for both Gas Separation applications. The values are 10.5 for CO2/CH4 selectivity and 60.5 for CO2/N2. The separation results for CO2/CH4 may be due to the viscosity of the DESs affecting the morphology of the fabricated membrane thus also impacts the performance. DES/blended Polyimide membranes fabricated are novel and have the potential of a low-cost and environmental friendly application for gas separation.Keywords: deep eutectic solvents, gas separation, polyimide blends, polyimide membranes
Procedia PDF Downloads 3102645 Bulk Transport in Strongly Correlated Topological Insulator Samarium Hexaboride Using Hall Effect and Inverted Resistance Methods
Authors: Alexa Rakoski, Yun Suk Eo, Cagliyan Kurdak, Priscila F. S. Rosa, Zachary Fisk, Monica Ciomaga Hatnean, Geetha Balakrishnan, Boyoun Kang, Myungsuk Song, Byungki Cho
Abstract:
Samarium hexaboride (SmB6) is a strongly correlated mixed valence material and Kondo insulator. In the resistance-temperature curve, SmB6 exhibits activated behavior from 4-40 K after the Kondo gap forms. However, below 4 K, the resistivity is temperature independent or weakly temperature dependent due to the appearance of a topologically protected surface state. Current research suggests that the surface of SmB6 is conductive while the bulk is truly insulating, different from conventional 3D TIs (Topological Insulators) like Bi₂Se₃ which are plagued by bulk conduction due to impurities. To better understand why the bulk of SmB6 is so different from conventional TIs, this study employed a new method, called inverted resistance, to explore the lowest temperatures, as well as standard Hall measurements for the rest of the temperature range. In the inverted resistance method, current flows from an inner contact to an outer ring, and voltage is measured outside of this outer ring. This geometry confines the surface current and allows for measurement of the bulk resistivity even when the conductive surface dominates transport (below 4 K). The results confirm that the bulk of SmB6 is truly insulating down to 2 K. Hall measurements on a number of samples show consistent bulk behavior from 4-40 K, but widely varying behavior among samples above 40 K. This is attributed to a combination of the growth process and purity of the starting material, and the relationship between the high and low temperature behaviors is still being explored.Keywords: bulk transport, Hall effect, inverted resistance, Kondo insulator, samarium hexaboride, topological insulator
Procedia PDF Downloads 1602644 Shear Buckling of a Large Pultruded Composite I-Section under Asymmetric Loading
Authors: Jin Y. Park, Jeong Wan Lee
Abstract:
An experimental and analytical research on shear buckling of a comparably large polymer composite I-section is presented. It is known that shear buckling load of a large span composite beam is difficult to determine experimentally. In order to sensitively detect shear buckling of the tested I-section, twenty strain rosettes and eight displacement sensors were applied and attached on the web and flange surfaces. The tested specimen was a pultruded composite beam made of vinylester resin, E-glass, carbon fibers and micro-fillers. Various coupon tests were performed before the shear buckling test to obtain fundamental material properties of the I-section. An asymmetric four-point bending loading scheme was utilized for the shear test. The loading scheme resulted a high shear and almost zeros moment condition at the center of the web panel. The shear buckling load was successfully determined after analyzing the obtained test data from strain rosettes and displacement sensors. An analytical approach was also performed to verify the experimental results and to support the discussed experimental program.Keywords: strain sensor, displacement sensor, shear buckling, polymer composite I-section, asymmetric loading
Procedia PDF Downloads 4522643 Generic Polynomial of Integers and Applications
Authors: Nidal Ali
Abstract:
Consider an algebraic number field K of degree n, A0 K is its ring of integers and a prime number p inert in K. Let F(u1, . . . , un, x) be the generic polynomial of integers of K. We will study in advance the stability of this polynomial and then, we will apply it in order to obtain all the monic irreducible polynomials in Fp[x] of degree d dividing n.Keywords: generic polynomial, irreducibility, iteration, stability, inert prime, totally ramified
Procedia PDF Downloads 3462642 Application of Supervised Deep Learning-based Machine Learning to Manage Smart Homes
Authors: Ahmed Al-Adaileh
Abstract:
Renewable energy sources, domestic storage systems, controllable loads and machine learning technologies will be key components of future smart homes management systems. An energy management scheme that uses a Deep Learning (DL) approach to support the smart home management systems, which consist of a standalone photovoltaic system, storage unit, heating ventilation air-conditioning system and a set of conventional and smart appliances, is presented. The objective of the proposed scheme is to apply DL-based machine learning to predict various running parameters within a smart home's environment to achieve maximum comfort levels for occupants, reduced electricity bills, and less dependency on the public grid. The problem is using Reinforcement learning, where decisions are taken based on applying the Continuous-time Markov Decision Process. The main contribution of this research is the proposed framework that applies DL to enhance the system's supervised dataset to offer unlimited chances to effectively support smart home systems. A case study involving a set of conventional and smart appliances with dedicated processing units in an inhabited building can demonstrate the validity of the proposed framework. A visualization graph can show "before" and "after" results.Keywords: smart homes systems, machine learning, deep learning, Markov Decision Process
Procedia PDF Downloads 2022641 Analysis of Correlation Between Manufacturing Parameters and Mechanical Strength Followed by Uncertainty Propagation of Geometric Defects in Lattice Structures
Authors: Chetra Mang, Ahmadali Tahmasebimoradi, Xavier Lorang
Abstract:
Lattice structures are widely used in various applications, especially in aeronautic, aerospace, and medical applications because of their high performance properties. Thanks to advancement of the additive manufacturing technology, the lattice structures can be manufactured by different methods such as laser beam melting technology. However, the presence of geometric defects in the lattice structures is inevitable due to the manufacturing process. The geometric defects may have high impact on the mechanical strength of the structures. This work analyzes the correlation between the manufacturing parameters and the mechanical strengths of the lattice structures. To do that, two types of the lattice structures; body-centered cubic with z-struts (BCCZ) structures made of Inconel718, and body-centered cubic (BCC) structures made of Scalmalloy, are manufactured by laser melting beam machine using Taguchi design of experiment. Each structure is placed on the substrate with a specific position and orientation regarding the roller direction of deposed metal powder. The position and orientation are considered as the manufacturing parameters. The geometric defects of each beam in the lattice are characterized and used to build the geometric model in order to perform simulations. Then, the mechanical strengths are defined by the homogeneous response as Young's modulus and yield strength. The distribution of mechanical strengths is observed as a function of manufacturing parameters. The mechanical response of the BCCZ structure is stretch-dominated, i.e., the mechanical strengths are directly dependent on the strengths of the vertical beams. As the geometric defects of vertical beams are slightly changed based on their position/orientation on the manufacturing substrate, the mechanical strengths are less dispersed. The manufacturing parameters are less influenced on the mechanical strengths of the structure BCCZ. The mechanical response of the BCC structure is bending-dominated. The geometric defects of inclined beam are highly dispersed within a structure and also based on their position/orientation on the manufacturing substrate. For different position/orientation on the substrate, the mechanical responses are highly dispersed as well. This shows that the mechanical strengths are directly impacted by manufacturing parameters. In addition, this work is carried out to study the uncertainty propagation of the geometric defects on the mechanical strength of the BCC lattice structure made of Scalmalloy. To do that, we observe the distribution of mechanical strengths of the lattice according to the distribution of the geometric defects. A probability density law is determined based on a statistical hypothesis corresponding to the geometric defects of the inclined beams. The samples of inclined beams are then randomly drawn from the density law to build the lattice structure samples. The lattice samples are then used for simulation to characterize the mechanical strengths. The results reveal that the distribution of mechanical strengths of the structures with the same manufacturing parameters is less dispersed than one of the structures with different manufacturing parameters. Nevertheless, the dispersion of mechanical strengths due to the structures with the same manufacturing parameters are unneglectable.Keywords: geometric defects, lattice structure, mechanical strength, uncertainty propagation
Procedia PDF Downloads 1232640 Review on Rainfall Prediction Using Machine Learning Technique
Authors: Prachi Desai, Ankita Gandhi, Mitali Acharya
Abstract:
Rainfall forecast is mainly used for predictions of rainfall in a specified area and determining their future rainfall conditions. Rainfall is always a global issue as it affects all major aspects of one's life. Agricultural, fisheries, forestry, tourism industry and other industries are widely affected by these conditions. The studies have resulted in insufficient availability of water resources and an increase in water demand in the near future. We already have a new forecast system that uses the deep Convolutional Neural Network (CNN) to forecast monthly rainfall and climate changes. We have also compared CNN against Artificial Neural Networks (ANN). Machine Learning techniques that are used in rainfall predictions include ARIMA Model, ANN, LR, SVM etc. The dataset on which we are experimenting is gathered online over the year 1901 to 20118. Test results have suggested more realistic improvements than conventional rainfall forecasts.Keywords: ANN, CNN, supervised learning, machine learning, deep learning
Procedia PDF Downloads 201