Search results for: probability of return
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2182

Search results for: probability of return

1402 The Effect of Market Orientation on Business Performance of Auto Parts Industry

Authors: Vithaya Intraphimol

Abstract:

The purpose of this study is to investigate the relationship between market orientation and business performance through innovations that include product innovation and process innovation. Auto parts and accessories companies in Thailand were used as sample for this investigation. Survey research with structured questionnaire was used as the key instrument in collecting the data. The structural equation modeling (SEM) was assigned test the hypotheses. The sample size in this study requires the minimum sample size of 200. The result found that competitor orientation, and interfunctional coordination has an effect on product innovation. Moreover, interfunctional coordination has an effect on process innovation, and return on asset. This indicates that within- firm coordination has crucial to firms’ performances. The implication for practice, firms should support interfunctional coordination that members of different functional areas of an organization communicate and work together for the creation of value to target buyers they may have better profitability.

Keywords: auto parts industry, business performance, innovations, market orientation

Procedia PDF Downloads 313
1401 Development of Risk Assessment and Occupational Safety Management Model for Building Construction Projects

Authors: Preeda Sansakorn, Min An

Abstract:

In order to be capable of dealing with uncertainties, subjectivities, including vagueness arising in building construction projects, the application of fuzzy reasoning technique based on fuzzy set theory is proposed. This study contributes significantly to the development of a fuzzy reasoning safety risk assessment model for building construction projects that could be employed to assess the risk magnitude of each hazardous event identified during construction, and a third parameter of probability of consequence is incorporated in the model. By using the proposed safety risk analysis methodology, more reliable and less ambiguities, which provide the safety risk management project team for decision-making purposes.

Keywords: safety risk assessment, building construction safety, fuzzy reasoning, construction risk assessment model, building construction projects

Procedia PDF Downloads 496
1400 Texture-Based Image Forensics from Video Frame

Authors: Li Zhou, Yanmei Fang

Abstract:

With current technology, images and videos can be obtained more easily than ever. It is so easy to manipulate these digital multimedia information when obtained, and that the content or source of the image and video could be easily tampered. In this paper, we propose to identify the image and video frame by the texture-based approach, e.g. Markov Transition Probability (MTP), which is in space domain, DCT domain and DWT domain, respectively. In the experiment, image and video frame database is constructed, and is used to train and test the classifier Support Vector Machine (SVM). Experiment results show that the texture-based approach has good performance. In order to verify the experiment result, and testify the universality and robustness of algorithm, we build a random testing dataset, the random testing result is in keeping with above experiment.

Keywords: multimedia forensics, video frame, LBP, MTP, SVM

Procedia PDF Downloads 431
1399 A Low Insertion Loss Variation 10-35 GHz Phase Shifter

Authors: Soroush Rasti Boroujeni, S. Hassan Mousavi, Javad Ebrahimizadeh, Ardeshir Palizban, Mohammad-Reza Nezhad-Ahmadi, Safieddin Safavi-Naeini

Abstract:

This paper presents a wideband True Time Delay (TTD) phase shifter with low insertion loss variation. The circuit benefits from a controllable resistive load shunt with transmission line segments to optimize return loss variations, addressing the unbalanced capacitive nature of the varactor. The phase shifter reduces the complexity of the calibration process because the dependency of insertion loss on voltage controls is improved up to 3 dB. The TTD phase shifter provides a continuous changing delay time of 6.4 ps with low insertion loss (IL) in the 10-35 GHz frequency range. The proposed circuit benefits from lowloss phase shifters with a small footprint. Fabricated using a 65 nm CMOC process, the TTD phase shifter occupies only 388 × 615 μm² of chip area, achieving a 20% improvements compared to conventional TTD phase shifters.

Keywords: millimeter-wave phased-array, true time delay phase shifter, insertion loss variation, compact size

Procedia PDF Downloads 26
1398 Data-Driven Market Segmentation in Hospitality Using Unsupervised Machine Learning

Authors: Rik van Leeuwen, Ger Koole

Abstract:

Within hospitality, marketing departments use segmentation to create tailored strategies to ensure personalized marketing. This study provides a data-driven approach by segmenting guest profiles via hierarchical clustering based on an extensive set of features. The industry requires understandable outcomes that contribute to adaptability for marketing departments to make data-driven decisions and ultimately driving profit. A marketing department specified a business question that guides the unsupervised machine learning algorithm. Features of guests change over time; therefore, there is a probability that guests transition from one segment to another. The purpose of the study is to provide steps in the process from raw data to actionable insights, which serve as a guideline for how hospitality companies can adopt an algorithmic approach.

Keywords: hierarchical cluster analysis, hospitality, market segmentation

Procedia PDF Downloads 111
1397 The Effect of Corporate Governance on Earnings Management: When Firms Report Increasing Earnings

Authors: Su-Ping Liu, Yue Tian, Yifan Shen

Abstract:

This study investigates the effect of corporate governance on earnings management when firms have reported a long stream of earnings increases (hereafter referred to as earnings beaters). We expect that good quality of corporate governance decreases the probability of income-increasing earnings management. We employ transparent tools to capture firms’ opportunistic management behavior, specifically, the repurchase of stock. In addition, we use corporate governance proxies to measure the degree of corporate governance, including board size, board independence, CEO duality, and the frequency of meeting. The results hold after the controlling of variables that suggested in prior literature. We expect that the simple technique, that is, firms’ degree of corporate governance, to be used as an inexpensive first step in detecting earnings management.

Keywords: corporate governance, earnings management, earnings patterns, stock repurchase

Procedia PDF Downloads 183
1396 Determinants of Long Acting Reversible Contraception Utilization among Women (15-49) in Uganda: Analysis of 2016 PMA2020 Uganda Survey

Authors: Nulu Nanono

Abstract:

Background: The Ugandan national health policy and the national population policy all recognize the need to increase access to quality, affordable, acceptable and sustainable contraceptive services for all people but provision and utilization of quality services remains low. Two contraceptive methods are categorized as long-acting temporary methods: intrauterine contraceptive devices (IUCDs) and implants. Copper-containing IUCDs, generally available in Ministry of Health (MoH) family planning programs and is effective for at least 12 years while Implants, depending on the type, last for up to three to seven years. Uganda’s current policy and political environment are favorable towards achieving national access to quality and safe contraceptives for all people as evidenced by increasing government commitments and innovative family planning programs. Despite the increase of modern contraception use from 14% to 26%, long acting reversible contraceptive (LARC) utilization has relatively remained low with less than 5% using IUDs & Implants which in a way explains Uganda’s persistent high fertility rates. Main question/hypothesis: The purpose of the study was to examine relationship between the demographic, socio-economic characteristics of women, health facility factors and long acting reversible contraception utilization. Methodology: LARC utilization was investigated comprising of the two questions namely are you or your partner currently doing something or using any method to delay or avoid getting pregnant? And which method or methods are you using? Data for the study was sourced from the 2016 Uganda Performance Monitoring and Accountability 2020 Survey comprising of 3816 female respondents aged 15 to 49 years. The analysis was done using the Chi-squared tests and the probit regression at bivariate and multivariate levels respectively. The model was further tested for validity and normality of the residuals using the Sharipo wilks test and test for kurtosis and skewness. Results: The results showed the model the age, parity, marital status, region, knowledge of LARCs, availability of LARCs to be significantly associated with long acting contraceptive utilization with p value of less than 0.05. At the multivariate analysis level, women who had higher parities (0.000) tertiary education (0.013), no knowledge about LARCs (0.006) increases their probability of using LARCs. Furthermore while women age 45-49, those who live in the eastern region reduces their probability of using LARCs. Knowledge contribution: The findings of this study join the debate of prior research in this field and add to the body of knowledge related to long acting reversible contraception. An outstanding and queer finding from the study is the non-utilization of LARCs by women who are aware and have knowledge about them, this may be an opportunity for further research to investigate the attribution to this.

Keywords: contraception, long acting, utilization, women (15-49)

Procedia PDF Downloads 211
1395 A Laser Instrument Rapid-E+ for Real-Time Measurements of Airborne Bioaerosols Such as Bacteria, Fungi, and Pollen

Authors: Minghui Zhang, Sirine Fkaier, Sabri Fernana, Svetlana Kiseleva, Denis Kiselev

Abstract:

The real-time identification of bacteria and fungi is difficult because they emit much weaker signals than pollen. In 2020, Plair developed Rapid-E+, which extends abilities of Rapid-E to detect smaller bioaerosols such as bacteria and fungal spores with diameters down to 0.3 µm, while keeping the similar or even better capability for measurements of large bioaerosols like pollen. Rapid-E+ enables simultaneous measurements of (1) time-resolved, polarization and angle dependent Mie scattering patterns, (2) fluorescence spectra resolved in 16 channels, and (3) fluorescence lifetime of individual particles. Moreover, (4) it provides 2D Mie scattering images which give the full information on particle morphology. The parameters of every single bioaerosol aspired into the instrument are subsequently analysed by machine learning. Firstly, pure species of microbes, e.g., Bacillus subtilis (a species of bacteria), and Penicillium chrysogenum (a species of fungal spores), were aerosolized in a bioaerosol chamber for Rapid-E+ training. Afterwards, we tested microbes under different concentrations. We used several steps of data analysis to classify and identify microbes. All single particles were analysed by the parameters of light scattering and fluorescence in the following steps. (1) They were treated with a smart filter block to get rid of non-microbes. (2) By classification algorithm, we verified the filtered particles were microbes based on the calibration data. (3) The probability threshold (defined by the user) step provides the probability of being microbes ranging from 0 to 100%. We demonstrate how Rapid-E+ identified simultaneously microbes based on the results of Bacillus subtilis (bacteria) and Penicillium chrysogenum (fungal spores). By using machine learning, Rapid-E+ achieved identification precision of 99% against the background. The further classification suggests the precision of 87% and 89% for Bacillus subtilis and Penicillium chrysogenum, respectively. The developed algorithm was subsequently used to evaluate the performance of microbe classification and quantification in real-time. The bacteria and fungi were aerosolized again in the chamber with different concentrations. Rapid-E+ can classify different types of microbes and then quantify them in real-time. Rapid-E+ enables classifying different types of microbes and quantifying them in real-time. Rapid-E+ can identify pollen down to species with similar or even better performance than the previous version (Rapid-E). Therefore, Rapid-E+ is an all-in-one instrument which classifies and quantifies not only pollen, but also bacteria and fungi. Based on the machine learning platform, the user can further develop proprietary algorithms for specific microbes (e.g., virus aerosols) and other aerosols (e.g., combustion-related particles that contain polycyclic aromatic hydrocarbons).

Keywords: bioaerosols, laser-induced fluorescence, Mie-scattering, microorganisms

Procedia PDF Downloads 96
1394 Jalal-Ale-Ahmad and ‘Critical Consciousness’: A Comparative Study

Authors: Zohreh Ramin

Abstract:

One of the most important contributions that Edward Said has had in the realm of critical theory is his insistence on the worldliness of the text and the critic. By this, Said meant that the critic and the text must be considered in their ‘material’ contexts. Foregrounding the substantial role of a critic as embodying what he refers to as ‘critical consciousness’, a true critic, Said maintains, is one who can stand between the ‘dominant culture’ and ‘the totalizing forms of critical systems.’ Considered as one of Iran’s major contemporary intellectuals, Jalal Ale Ahmad is responsible for introducing the idea of ‘Westoxication’ in Iran, constructing a social paradigm of the necessity to return to tradition in contemporary Iran. The present paper intends to study Al-Ahmad’s definition of the orient versus the occident, his criticism of the ‘machination’ of contemporary Iranian society, and his solution to the problem of ‘Westoxication’. The objective of this study is to see whether Ale Ahmad can be considered as embodying the spirit of ‘critical consciousness’ as described by Said as the necessary tool in the hands of an intellectual who is simultaneously attached filitavely to his culture but can detach himself affilitavely through employing critical consciousness.

Keywords: Westoxication, filiative, affiliative, machination

Procedia PDF Downloads 190
1393 Distributional and Developmental Analysis of PM2.5 in Beijing, China

Authors: Alexander K. Guo

Abstract:

PM2.5 poses a large threat to people’s health and the environment and is an issue of large concern in Beijing, brought to the attention of the government by the media. In addition, both the United States Embassy in Beijing and the government of China have increased monitoring of PM2.5 in recent years, and have made real-time data available to the public. This report utilizes hourly historical data (2008-2016) from the U.S. Embassy in Beijing for the first time. The first objective was to attempt to fit probability distributions to the data to better predict a number of days exceeding the standard, and the second was to uncover any yearly, seasonal, monthly, daily, and hourly patterns and trends that may arise to better understand of air control policy. In these data, 66,650 hours and 2687 days provided valid data. Lognormal, gamma, and Weibull distributions were fit to the data through an estimation of parameters. The Chi-squared test was employed to compare the actual data with the fitted distributions. The data were used to uncover trends, patterns, and improvements in PM2.5 concentration over the period of time with valid data in addition to specific periods of time that received large amounts of media attention, analyzed to gain a better understanding of causes of air pollution. The data show a clear indication that Beijing’s air quality is unhealthy, with an average of 94.07µg/m3 across all 66,650 hours with valid data. It was found that no distribution fit the entire dataset of all 2687 days well, but each of the three above distribution types was optimal in at least one of the yearly data sets, with the lognormal distribution found to fit recent years better. An improvement in air quality beginning in 2014 was discovered, with the first five months of 2016 reporting an average PM2.5 concentration that is 23.8% lower than the average of the same period in all years, perhaps the result of various new pollution-control policies. It was also found that the winter and fall months contained more days in both good and extremely polluted categories, leading to a higher average but a comparable median in these months. Additionally, the evening hours, especially in the winter, reported much higher PM2.5 concentrations than the afternoon hours, possibly due to the prohibition of trucks in the city in the daytime and the increased use of coal for heating in the colder months when residents are home in the evening. Lastly, through analysis of special intervals that attracted media attention for either unnaturally good or bad air quality, the government’s temporary pollution control measures, such as more intensive road-space rationing and factory closures, are shown to be effective. In summary, air quality in Beijing is improving steadily and do follow standard probability distributions to an extent, but still needs improvement. Analysis will be updated when new data become available.

Keywords: Beijing, distribution, patterns, pm2.5, trends

Procedia PDF Downloads 249
1392 Seismic Fragility for Sliding Failure of Weir Structure Considering the Process of Concrete Aging

Authors: HoYoung Son, Ki Young Kim, Woo Young Jung

Abstract:

This study investigated the change of weir structure performances when durability of concrete, which is the main material of weir structure, decreased due to their aging by mean of seismic fragility analysis. In the analysis, it was assumed that the elastic modulus of concrete was reduced by 10% in order to account for their aged deterioration. Additionally, the analysis of seismic fragility was based on Monte Carlo Simulation method combined with a 2D nonlinear finite element in ABAQUS platform with the consideration of deterioration of concrete. Finally, the comparison of seismic fragility of model pre- and post-deterioration was made to study the performance of weir. Results show that the probability of failure in moderate damage for deteriorated model was found to be larger than pre-deterioration model when peak ground acceleration (PGA) passed 0.4 g.

Keywords: weir, FEM, concrete, fragility, aging

Procedia PDF Downloads 428
1391 Study of Energy Dissipation in Shape Memory Alloys: A Comparison between Austenite and Martensite Phase of SMAs

Authors: Amirmozafar Benshams, Khatere Kashmari, Farzad Hatami, Mesbah Saybani

Abstract:

Shape memory alloys with high capability of energy dissipation and large deformation bearing with return ability to their original shape without too much hysteresis strain have opened their place among the other damping systems as smart materials. Ninitol which is the most well-known and most used alloy material from the shape memory alloys family, has high resistance and fatigue and is coverage for large deformations. Shape memory effect and super-elasticity by shape alloys like Nitinol, are the reasons of the high power of these materials in energy depreciation. Thus, these materials are suitable for use in reciprocating dynamic loading conditions. The experiments results showed that Nitinol wires with small diameter have greater energy dissipation capability and by increase of diameter and thickness the damping capability and energy dissipation increase.

Keywords: shape memory alloys, shape memory effect, super elastic effect, nitinol, energy dissipation

Procedia PDF Downloads 522
1390 Survey on Securing the Optimized Link State Routing (OLSR) Protocol in Mobile Ad-hoc Network

Authors: Kimaya Subhash Gaikwad, S. B. Waykar

Abstract:

The mobile ad-hoc network (MANET) is collection of various types of nodes. In MANET various protocols are used for communication. In OLSR protocol, a node is selected as multipoint relay (MPR) node which broadcast the messages. As the MANET is open kind of network any malicious node can easily enter into the network and affect the performance of the network. The performance of network mainly depends on the components which are taking part into the communication. If the proper nodes are not selected for the communication then the probability of network being attacked is more. Therefore, it is important to select the more reliable and secure components in the network. MANET does not have any filtering so that only selected nodes can be used for communication. The openness of the MANET makes it easier to attack the communication. The most of the attack are on the Quality of service (QoS) of the network. This paper gives the overview of the various attacks that are possible on OLSR protocol and some solutions. The papers focus mainly on the OLSR protocol.

Keywords: communication, MANET, OLSR, QoS

Procedia PDF Downloads 452
1389 A Novel Model for Saturation Velocity Region of Graphene Nanoribbon Transistor

Authors: Mohsen Khaledian, Razali Ismail, Mehdi Saeidmanesh, Mahdiar Hosseinghadiry

Abstract:

A semi-analytical model for impact ionization coefficient of graphene nanoribbon (GNR) is presented. The model is derived by calculating probability of electrons reaching ionization threshold energy Et and the distance traveled by electron gaining Et. In addition, ionization threshold energy is semi-analytically modeled for GNR. We justify our assumptions using analytic modeling and comparison with simulation results. Gaussian simulator together with analytical modeling is used in order to calculate ionization threshold energy and Kinetic Monte Carlo is employed to calculate ionization coefficient and verify the analytical results. Finally, the profile of ionization is presented using the proposed models and simulation and the results are compared with that of silicon.

Keywords: nanostructures, electronic transport, semiconductor modeling, systems engineering

Procedia PDF Downloads 477
1388 Secure Optimized Ingress Filtering in Future Internet Communication

Authors: Bander Alzahrani, Mohammed Alreshoodi

Abstract:

Information-centric networking (ICN) using architectures such as the Publish-Subscribe Internet Technology (PURSUIT) has been proposed as a new networking model that aims at replacing the current used end-centric networking model of the Internet. This emerged model focuses on what is being exchanged rather than which network entities are exchanging information, which gives the control plane functions such as routing and host location the ability to be specified according to the content items. The forwarding plane of the PURSUIT ICN architecture uses a simple and light mechanism based on Bloom filter technologies to forward the packets. Although this forwarding scheme solve many problems of the today’s Internet such as the growth of the routing table and the scalability issues, it is vulnerable to brute force attacks which are starting point to distributed- denial-of-service (DDoS) attacks. In this work, we design and analyze a novel source-routing and information delivery technique that keeps the simplicity of using Bloom filter-based forwarding while being able to deter different attacks such as denial of service attacks at the ingress of the network. To achieve this, special forwarding nodes called Edge-FW are directly attached to end user nodes and used to perform a security test for malicious injected random packets at the ingress of the path to prevent any possible attack brute force attacks at early stage. In this technique, a core entity of the PURSUIT ICN architecture called topology manager, that is responsible for finding shortest path and creating a forwarding identifiers (FId), uses a cryptographically secure hash function to create a 64-bit hash, h, over the formed FId for authentication purpose to be included in the packet. Our proposal restricts the attacker from injecting packets carrying random FIds with a high amount of filling factor ρ, by optimizing and reducing the maximum allowed filling factor ρm in the network. We optimize the FId to the minimum possible filling factor where ρ ≤ ρm, while it supports longer delivery trees, so the network scalability is not affected by the chosen ρm. With this scheme, the filling factor of any legitimate FId never exceeds the ρm while the filling factor of illegitimate FIds cannot exceed the chosen small value of ρm. Therefore, injecting a packet containing an FId with a large value of filling factor, to achieve higher attack probability, is not possible anymore. The preliminary analysis of this proposal indicates that with the designed scheme, the forwarding function can detect and prevent malicious activities such DDoS attacks at early stage and with very high probability.

Keywords: forwarding identifier, filling factor, information centric network, topology manager

Procedia PDF Downloads 155
1387 A Neural Network Classifier for Identifying Duplicate Image Entries in Real-Estate Databases

Authors: Sergey Ermolin, Olga Ermolin

Abstract:

A Deep Convolution Neural Network with Triplet Loss is used to identify duplicate images in real-estate advertisements in the presence of image artifacts such as watermarking, cropping, hue/brightness adjustment, and others. The effects of batch normalization, spatial dropout, and various convergence methodologies on the resulting detection accuracy are discussed. For comparative Return-on-Investment study (per industry request), end-2-end performance is benchmarked on both Nvidia Titan GPUs and Intel’s Xeon CPUs. A new real-estate dataset from San Francisco Bay Area is used for this work. Sufficient duplicate detection accuracy is achieved to supplement other database-grounded methods of duplicate removal. The implemented method is used in a Proof-of-Concept project in the real-estate industry.

Keywords: visual recognition, convolutional neural networks, triplet loss, spatial batch normalization with dropout, duplicate removal, advertisement technologies, performance benchmarking

Procedia PDF Downloads 342
1386 Hydrology and Hydraulics Analysis of Aremenie Earthen Dam, Ethiopia

Authors: Azazhu Wassie

Abstract:

This study tried to analyze the impact of the hydrologic and hydraulic parameters (catchment area, rainfall intensity, and runoff coefficient) on the referenced study area. The study was conducted in June 2023. The Aremenie River Dam has 30 years of record, which is reasonably sufficient data. It is a matter of common experience that, due to the failure of an instrument or the absence of a gauged river, the rainfall record at quite a number of stations is incomplete. From the analysis, the 50-year return period design flood is 62.685 m³/s at 1.2 hr peak time. This implies that for this watershed, the peak flood rate per km² area of the watershed is about this value, which ensures that high rainfall in the area can generate a higher rate of runoff per km² of the generating catchment. The Aremenie Rivers carry a large amount of sediment along with water. These sediments are deposited in the reservoir upstream of the dam because of the reduction in velocity. Sediment reduces the available capacity of the reservoir with continuous sedimentation; the useful life of the reservoir goes on decreasing.

Keywords: dam design, peak flood, rainfall, reservoir capacity, runoff

Procedia PDF Downloads 40
1385 Assessing Available Power from a Renewable Energy Source in the Southern Hemisphere using Anisotropic Model

Authors: Asowata Osamede, Trudy Sutherland

Abstract:

The purpose of this paper is to assess the available power from a Renewable Energy Source (off-grid photovoltaic (PV) panel) in the Southern Hemisphere using anisotropic model. Direct solar radiation is the driving force in photovoltaics. In a basic PV panels in the Southern Hemisphere, Power conversion is eminent, and this is achieved by the PV cells converting solar energy into electrical energy. In this research, the results was determined for a 6 month period from September 2022 through February 2023. Preliminary results, which include Normal Probability plot, data analysis - R2 value, effective conversion-time per week and work-time per day, indicate a favorably comparison between the empirical results and the simulation results.

Keywords: power-conversion, mathematical model, PV panels, DC-DC converters, direct solar radiation

Procedia PDF Downloads 95
1384 System Survivability in Networks in the Context of Defense/Attack Strategies: The Large Scale

Authors: Asma Ben Yaghlane, Mohamed Naceur Azaiez, Mehdi Mrad

Abstract:

We investigate the large scale of networks in the context of network survivability under attack. We use appropriate techniques to evaluate and the attacker-based- and the defender-based-network survivability. The attacker is unaware of the operated links by the defender. Each attacked link has some pre-specified probability to be disconnected. The defender choice is so that to maximize the chance of successfully sending the flow to the destination node. The attacker however will select the cut-set with the highest chance to be disabled in order to partition the network. Moreover, we extend the problem to the case of selecting the best p paths to operate by the defender and the best k cut-sets to target by the attacker, for arbitrary integers p,k > 1. We investigate some variations of the problem and suggest polynomial-time solutions.

Keywords: defense/attack strategies, large scale, networks, partitioning a network

Procedia PDF Downloads 287
1383 Contextual Factors of Innovation for Improving Commercial Banks' Performance in Nigeria

Authors: Tomola Obamuyi

Abstract:

The banking system in Nigeria adopted innovative banking, with the aim of enhancing financial inclusion, and making financial services readily and cheaply available to majority of the people, and to contribute to the efficiency of the financial system. Some of the innovative services include: Automatic Teller Machines (ATMs), National Electronic Fund Transfer (NEFT), Point of Sale (PoS), internet (Web) banking, Mobile Money payment (MMO), Real-Time Gross Settlement (RTGS), agent banking, among others. The introduction of these payment systems is expected to increase bank efficiency and customers' satisfaction, culminating in better performance for the commercial banks. However, opinions differ on the possible effects of the various innovative payment systems on the performance of commercial banks in the country. Thus, this study empirically determines how commercial banks use innovation to gain competitive advantage in the specific context of Nigeria's finance and business. The study also analyses the effects of financial innovation on the performance of commercial banks, when different periods of analysis are considered. The study employed secondary data from 2009 to 2018, the period that witnessed aggressive innovation in the financial sector of the country. The Vector Autoregression (VAR) estimation technique forecasts the relative variance of each random innovation to the variables in the VAR, examine the effect of standard deviation shock to one of the innovations on current and future values of the impulse response and determine the causal relationship between the variables (VAR granger causality test). The study also employed the Multi-Criteria Decision Making (MCDM) to rank the innovations and the performance criteria of Return on Assets (ROA) and Return on Equity (ROE). The entropy method of MCDM was used to determine which of the performance criteria better reflect the contributions of the various innovations in the banking sector. On the other hand, the Range of Values (ROV) method was used to rank the contributions of the seven innovations to performance. The analysis was done based on medium term (five years) and long run (ten years) of innovations in the sector. The impulse response function derived from the VAR system indicated that the response of ROA to the values of cheques transaction, values of NEFT transactions, values of POS transactions was positive and significant in the periods of analysis. The paper also confirmed with entropy and range of value that, in the long run, both the CHEQUE and MMO performed best while NEFT was next in performance. The paper concluded that commercial banks would enhance their performance by continuously improving on the services provided through Cheques, National Electronic Fund Transfer and Point of Sale since these instruments have long run effects on their performance. This will increase the confidence of the populace and encourage more usage/patronage of these services. The banking sector will in turn experience better performance which will improve the economy of the country. Keywords: Bank performance, financial innovation, multi-criteria decision making, vector autoregression,

Keywords: Bank performance, financial innovation, multi-criteria decision making, vector autoregression

Procedia PDF Downloads 124
1382 Socio-Economic Analysis of Water Saving Technologies in Agricultural Sector

Authors: Saeed Yazdani, F. Nekoofar

Abstract:

Considering the importance and scarcity of water resources, the efficient management of water resources is of great importance. In the agriculture sector, farmers are facilitated with various practices and technologies to encounter water insufficiency. This study aims to assess socio-economic factors affecting the application of water-saving technologies. A Logit method was employed to examine the impact of different variables on the use of water-saving technology. The required data was gathered from a sample of 204 farmers in 2021 in Alborz Province in Iran. The results indicate that different variables such as crop price variability, water sources, farm size, income, education, experience, membership in cooperatives have positive effects, and variables such as age and number of plots have negative effects on the probability of applying modern water-saving technologies.

Keywords: socio-economics, water, irrigation, water saving technologies, scarcity

Procedia PDF Downloads 28
1381 Crowdfunding for Saudi Arabia Green Projects

Authors: Saleh Komies, Mona Alharbi, Razan Alhayyani, Mozah Almulhim, Roseanne Khawaja, Ahmed Alradhi

Abstract:

One of the proposed solutions that faces some challenges is encouraging sustainable energy consumption across Saudi Arabia through crowdfunding platforms. To address these challenges, we need to determine the level of awareness of crowdfunding and green projects, as well as the preferences and willingness of Saudis to utilize crowdfunding as an alternative funding source for green projects in Saudi Arabia. In this study, we aim to determine the influence of environmental awareness and concern on the propensity to crowdfund green projects. The survey is being conducted as part of environmental initiatives to assess public perceptions and opinions on crowdfunding green projects in Saudi Arabia. A total of 450 responses to an online questionnaire distributed via convenience and snowball sampling were utilized for data analysis. The survey reveals that Saudis have a low understanding of crowdfunding concepts and a relatively high understanding of implementing green projects. The public is interested in crowdfunding green projects if there is a return on investment.

Keywords: crowdfunding, green projects, awareness, Saudi Arabia, energy, solar, wind

Procedia PDF Downloads 103
1380 Stock Prediction and Portfolio Optimization Thesis

Authors: Deniz Peksen

Abstract:

This thesis aims to predict trend movement of closing price of stock and to maximize portfolio by utilizing the predictions. In this context, the study aims to define a stock portfolio strategy from models created by using Logistic Regression, Gradient Boosting and Random Forest. Recently, predicting the trend of stock price has gained a significance role in making buy and sell decisions and generating returns with investment strategies formed by machine learning basis decisions. There are plenty of studies in the literature on the prediction of stock prices in capital markets using machine learning methods but most of them focus on closing prices instead of the direction of price trend. Our study differs from literature in terms of target definition. Ours is a classification problem which is focusing on the market trend in next 20 trading days. To predict trend direction, fourteen years of data were used for training. Following three years were used for validation. Finally, last three years were used for testing. Training data are between 2002-06-18 and 2016-12-30 Validation data are between 2017-01-02 and 2019-12-31 Testing data are between 2020-01-02 and 2022-03-17 We determine Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate as benchmarks which we should outperform. We compared our machine learning basis portfolio return on test data with return of Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate. We assessed our model performance with the help of roc-auc score and lift charts. We use logistic regression, Gradient Boosting and Random Forest with grid search approach to fine-tune hyper-parameters. As a result of the empirical study, the existence of uptrend and downtrend of five stocks could not be predicted by the models. When we use these predictions to define buy and sell decisions in order to generate model-based-portfolio, model-based-portfolio fails in test dataset. It was found that Model-based buy and sell decisions generated a stock portfolio strategy whose returns can not outperform non-model portfolio strategies on test dataset. We found that any effort for predicting the trend which is formulated on stock price is a challenge. We found same results as Random Walk Theory claims which says that stock price or price changes are unpredictable. Our model iterations failed on test dataset. Although, we built up several good models on validation dataset, we failed on test dataset. We implemented Random Forest, Gradient Boosting and Logistic Regression. We discovered that complex models did not provide advantage or additional performance while comparing them with Logistic Regression. More complexity did not lead us to reach better performance. Using a complex model is not an answer to figure out the stock-related prediction problem. Our approach was to predict the trend instead of the price. This approach converted our problem into classification. However, this label approach does not lead us to solve the stock prediction problem and deny or refute the accuracy of the Random Walk Theory for the stock price.

Keywords: stock prediction, portfolio optimization, data science, machine learning

Procedia PDF Downloads 85
1379 On Confidence Intervals for the Difference between Inverse of Normal Means with Known Coefficients of Variation

Authors: Arunee Wongkhao, Suparat Niwitpong, Sa-aat Niwitpong

Abstract:

In this paper, we propose two new confidence intervals for the difference between the inverse of normal means with known coefficients of variation. One of these two confidence intervals for this problem is constructed based on the generalized confidence interval and the other confidence interval is constructed based on the closed form method of variance estimation. We examine the performance of these confidence intervals in terms of coverage probabilities and expected lengths via Monte Carlo simulation.

Keywords: coverage probability, expected length, inverse of normal mean, coefficient of variation, generalized confidence interval, closed form method of variance estimation

Procedia PDF Downloads 312
1378 Towards Resilient Cloud Computing through Cyber Risk Assessment

Authors: Hilalah Alturkistani, Alaa AlFaadhel, Nora AlJahani, Fatiha Djebbar

Abstract:

Cloud computing is one of the most widely used technology which provides opportunities and services to government entities, large companies, and standard users. However, cybersecurity risk management studies of cloud computing and resiliency approaches are lacking. This paper proposes resilient cloud cybersecurity risk assessment and management tailored specifically, to Dropbox with two approaches:1) technical-based solution motivated by a cybersecurity risk assessment of cloud services, and 2)a target personnel-based solution guided by cybersecurity-related survey among employees to identify their knowledge that qualifies them withstand to any cyberattack. The proposed work attempts to identify cloud vulnerabilities, assess threats and detect high risk components, to finally propose appropriate safeguards such as failure predicting and removing, redundancy or load balancing techniques for quick recovery and return to pre-attack state if failure happens.

Keywords: cybersecurity risk management plan, resilient cloud computing, cyberattacks, cybersecurity risk assessment

Procedia PDF Downloads 145
1377 Design and Simulation of Step Structure RF MEMS Switch for K Band Applications

Authors: G. K. S. Prakash, Rao K. Srinivasa

Abstract:

MEMS plays an important role in wide range of applications like biological, automobiles, military and communication engineering. This paper mainly investigates on capacitive shunt RF MEMS switch with low actuation voltage and low insertion losses. To trim the pull-in voltage, a step structure has introduced to trim air gap between the beam and the dielectric layer with that pull in voltage is trim to 2.9 V. The switching time of the proposed switch is 39.1μs, and capacitance ratio is 67. To get more isolation, we have used aluminum nitride as dielectric material instead of silicon nitride (Si₃N₄) and silicon dioxide (SiO₂) because aluminum nitride has high dielectric constant (εᵣ = 9.5) increases the OFF capacitance and eventually increases the isolation of the switch. The results show that the switch is ON state involves return loss (S₁₁) less than -25 dB up to 40 GHz and insertion loss (S₂₁) is more than -1 dB up to 35 GHz. In OFF state switch shows maximum isolation (S₂₁) of -38 dB occurs at a frequency of 25-27 GHz for K band applications.

Keywords: RF MEMS, actuation voltage, isolation loss, switches

Procedia PDF Downloads 366
1376 Effect of CuO, Al₂O₃ and ZnO Nanoparticles on the Response Time for Natural Convection

Authors: Mefteh Bouhalleb

Abstract:

With the recent progress in nanotechnology, nanofluids have excellent potentiality in many modern engineering processes, particularly for solar systems such as concentrated solar power plants (CSP). In this context, a numerical simulation is performed to investigate laminar natural convection nanofluids in an inclined rectangular enclosure. Mass conservation, momentum, and energy equations are numerically solved by the finite volume element method using the SIMPLER algorithm for pressure-velocity coupling. In this work, we tested the acting factors on the system response time, such as the particle volume fraction of nanoparticles, particle material, particle size, an inclination angle of enclosure and Rayleigh number. The results show that the diameter of solid particles and Rayleigh number plays an important role in the system response time. The orientation angle of the cavity affects the system response time. A phenomenon of hysteresis appears when the system does not return to its initial state.

Keywords: nanofluid, nanoparticles, heat transfer, time response

Procedia PDF Downloads 95
1375 Stochastic Nuisance Flood Risk for Coastal Areas

Authors: Eva L. Suarez, Daniel E. Meeroff, Yan Yong

Abstract:

The U.S. Federal Emergency Management Agency (FEMA) developed flood maps based on experts’ experience and estimates of the probability of flooding. Current flood-risk models evaluate flood risk with regional and subjective measures without impact from torrential rain and nuisance flooding at the neighborhood level. Nuisance flooding occurs in small areas in the community, where a few streets or blocks are routinely impacted. This type of flooding event occurs when torrential rainstorm combined with high tide and sea level rise temporarily exceeds a given threshold. In South Florida, this threshold is 1.7 ft above Mean Higher High Water (MHHW). The National Weather Service defines torrential rain as rain deposition at a rate greater than 0.3-inches per hour or three inches in a single day. Data from the Florida Climate Center, 1970 to 2020, shows 371 events with more than 3-inches of rain in a day in 612 months. The purpose of this research is to develop a data-driven method to determine comprehensive analytical damage-avoidance criteria that account for nuisance flood events at the single-family home level. The method developed uses the Failure Mode and Effect Analysis (FMEA) method from the American Society of Quality (ASQ) to estimate the Damage Avoidance (DA) preparation for a 1-day 100-year storm. The Consequence of Nuisance Flooding (CoNF) is estimated from community mitigation efforts to prevent nuisance flooding damage. The Probability of Nuisance Flooding (PoNF) is derived from the frequency and duration of torrential rainfall causing delays and community disruptions to daily transportation, human illnesses, and property damage. Urbanization and population changes are related to the U.S. Census Bureau's annual population estimates. Data collected by the United States Department of Agriculture (USDA) Natural Resources Conservation Service’s National Resources Inventory (NRI) and locally by the South Florida Water Management District (SFWMD) track the development and land use/land cover changes with time. The intent is to include temporal trends in population density growth and the impact on land development. Results from this investigation provide the risk of nuisance flooding as a function of CoNF and PoNF for coastal areas of South Florida. The data-based criterion provides awareness to local municipalities on their flood-risk assessment and gives insight into flood management actions and watershed development.

Keywords: flood risk, nuisance flooding, urban flooding, FMEA

Procedia PDF Downloads 102
1374 Black-Box-Base Generic Perturbation Generation Method under Salient Graphs

Authors: Dingyang Hu, Dan Liu

Abstract:

DNN (Deep Neural Network) deep learning models are widely used in classification, prediction, and other task scenarios. To address the difficulties of generic adversarial perturbation generation for deep learning models under black-box conditions, a generic adversarial ingestion generation method based on a saliency map (CJsp) is proposed to obtain salient image regions by counting the factors that influence the input features of an image on the output results. This method can be understood as a saliency map attack algorithm to obtain false classification results by reducing the weights of salient feature points. Experiments also demonstrate that this method can obtain a high success rate of migration attacks and is a batch adversarial sample generation method.

Keywords: adversarial sample, gradient, probability, black box

Procedia PDF Downloads 109
1373 Optimal Cropping Pattern in an Irrigation Project: A Hybrid Model of Artificial Neural Network and Modified Simplex Algorithm

Authors: Safayat Ali Shaikh

Abstract:

Software has been developed for optimal cropping pattern in an irrigation project considering land constraint, water availability constraint and pick up flow constraint using modified Simplex Algorithm. Artificial Neural Network Models (ANN) have been developed to predict rainfall. AR (1) model used to generate 1000 years rainfall data to train the ANN. Simulation has been done with expected rainfall data. Eight number crops and three types of soil class have been considered for optimization model. Area under each crop and each soil class have been quantified using Modified Simplex Algorithm to get optimum net return. Efficacy of the software has been tested using data of large irrigation project in India.

Keywords: artificial neural network, large irrigation project, modified simplex algorithm, optimal cropping pattern

Procedia PDF Downloads 207