Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 687

Search results for: stock repurchase

687 The Effect of Corporate Governance on Earnings Management: When Firms Report Increasing Earnings

Authors: Su-Ping Liu, Yue Tian, Yifan Shen

Abstract:

This study investigates the effect of corporate governance on earnings management when firms have reported a long stream of earnings increases (hereafter referred to as earnings beaters). We expect that good quality of corporate governance decreases the probability of income-increasing earnings management. We employ transparent tools to capture firms’ opportunistic management behavior, specifically, the repurchase of stock. In addition, we use corporate governance proxies to measure the degree of corporate governance, including board size, board independence, CEO duality, and the frequency of meeting. The results hold after the controlling of variables that suggested in prior literature. We expect that the simple technique, that is, firms’ degree of corporate governance, to be used as an inexpensive first step in detecting earnings management.

Keywords: corporate governance, earnings management, earnings patterns, stock repurchase

Procedia PDF Downloads 69
686 The Relationship of Service Marketing Mix and Intention to Repurchase of Thai Dessert

Authors: Siri-Orn Champatong

Abstract:

This research aimed to study the relationship between attitudes toward marketing mix and customers’ repurchase intention of Thai dessert in case of Ekachai Salee Suphan’s shop in Thailand. This study employed by survey and quantitative research and the questionnaire was used to collect the data from 385 sampled of customers who visited at Ekachai Salee Suphan's shop in Thailand. The descriptive statistics and Pearson’s correlation coefficient analysis was used to analyze data. The research found that the customers’ perception on the overall and individual aspects of attitudes toward marketing mix include products, prices, promotions, and physical characteristics were at very good level, but distribution channels, staffs, and management process were at good level. Furthermore, the hypothesis tests found that attitudes toward overall marketing mix had relationship with individual aspects of intention that were the repurchase intention, willingness to recommend others to repurchase, and possibility to repurchase with statistical significance level of 0.01.

Keywords: intention, repurchase, service marketing mix, Thai dessert

Procedia PDF Downloads 173
685 The Impact of Insider Trading on Open Market Share Repurchase: A Study in Indian Context

Authors: Sarthak Kumar Jena, Chandra Sekhar Mishra, Prabina Rajib

Abstract:

Purpose: This paper aims to derive undervaluation signal from the insiders trading of Indian companies where the ownership is complex and concentrated, investors protection is weak, and the insider rules and regulations are not stringent like developed country. This study examines the relationship between insider trading with short term and long term abnormal return. The study also examines the relationship between insider trading and the actual share repurchase by the firm. Methodology: A sample of 78 companies over the period 2008-2013 are analyzed in the study due to not availability of insider data in Indian context. For preliminary analysis T-test and Wilcoxon rank sum test is used to find the difference between the insider trading before and after the share repurchase announcement. Tobit model is used to find out whether insider trading influence shares repurchase decisions or not. Return on the basis of market model and buy hold are calculated in the previous year and the following year of share repurchase announcement. Findings: The paper finds that insider trading around share repurchase is more than control firms and there is positive and significant difference in insider buying between the previous year of share buyback announcement and the following year of buyback announcement. Insider buying before share repurchase announcement has a positive influence on share repurchase decisions. We find insider buying has a positive and significant relationship with announcement return, whereas insider selling has a negative significant relationship with announcement return. Actual share repurchase and program completion also depend on insider trading before share repurchase. Research limitation: The study is constrained by the small sample size, so the results should be viewed by keeping this limitation in mind. Originality: The paper is to our best knowledge the first study based on Indian context to extend the insider trading literature to share repurchase event and examine insider trading to find out undervaluation signal associated with insider buying.

Keywords: insider trading, buyback, open market share repurchase, signalling

Procedia PDF Downloads 113
684 The Impact of Level and Consequence of Service Co-Recovery on Post-Recovery Satisfaction and Repurchase Intent

Authors: Chia-Ching Tsai

Abstract:

In service delivery, interpersonal interaction is the key to customer satisfaction, and apparently, the factor of human is critical in service delivery. Besides, customers quite care about the consequences of co-recovery. Thus, this research focuses on service failure caused by other customers and uses a 2x2 factorial design to investigate the impact of consequence and level of service co-recovery on post-recovery satisfaction and repurchase intent. 150 undergraduates were recruited as participants, and assigned to one of the four cells randomly. Every participant was requested to read the scenario and then rated the post-recovery satisfaction and repurchase intent. The results show that under the condition of failed co-recovery, level of co-recovery has no effect on post-recovery satisfaction, while under the condition of successful co-recovery, high-level co-recovery causes significantly higher post-recovery satisfaction than low-level co-recovery. Moreover, post-recovery satisfaction has significantly positive impact on repurchase intent. In the system of service delivery, customers interact with other customers frequently. Therefore, comparing with the literature, this research focuses on the service failure caused by other customers. This research also supplies a better understanding of customers’ view on consequences of different levels of co-recovery, which is helpful for the practitioners to make use of co-recovery.

Keywords: service failure, service co-recovery, consequence of co-recovery, level of co-recovery, post-recovery satisfaction, repurchase intent

Procedia PDF Downloads 342
683 Analysing the Moderating Effect of Customer Loyalty on Long Run Repurchase Intentions

Authors: John Akpesiri Olotewo

Abstract:

One of the controversies in existing marketing literatures is on how to retain existing and new customers to have repurchase intention in the long-run; however, empirical answer to this question is scanty in existing studies. Thus, this study investigates the moderating effect of consumer loyalty on long-run repurchase intentions in telecommunication industry using Lagos State environs. The study adopted field survey research design using questionnaire to elicit responses from 250 respondents who were selected using random and stratified random sampling techniques from the telecommunication industry in Lagos State, Nigeria. The internal consistency of the research instrument was verified using the Cronbach’s alpha, the result of 0.89 implies the acceptability of the internal consistency of the survey instrument. The test of the research hypotheses were analyzed using Pearson Product Method of Correlation (PPMC), simple regression analysis and inferential statistics with the aid of Statistical Package for Social Science version 20.0 (SPSS). The study confirmed that customer satisfaction has a significant relationship with customer loyalty in the telecommunication industry; also Service quality has a significant relationship with customer loyalty to a brand; loyalty programs have a significant relationship with customer loyalty to a network operator in Nigeria and Customer loyalty has a significant effect on the long run repurchase intentions of the customer. The study concluded that one of the determinants of long term profitability of a business entity is the long run repurchase intentions of its customers which hinges on the level of brand loyalty of the customer. Thus, it was recommended that service providers in Nigeria should improve on factors like customer satisfaction, service quality, and loyalty programs in order to increase the loyalty of their customer to their brands thereby increasing their repurchase intentions.

Keywords: customer loyalty, long run repurchase intentions, brands, service quality and customer satisfaction

Procedia PDF Downloads 169
682 Mean Reversion in Stock Prices: Evidence from Karachi Stock Exchange

Authors: Tabassum Riaz

Abstract:

This study provides a complete examination of the stock prices behavior in the Karachi stock exchange. It examines that whether Karachi stock exchange can be described as mean reversion or not. For this purpose daily, weekly and monthly index data from Karachi stock exchange ranging from period July 1, 1997 to July 2, 2011 was taken. After employing the Multiple variance ratio and unit root tests it is concluded that stock market follow mean reversion behavior and hence have reverting trend which opens the door for the active invest management. Thus technical analysis may be help to identify the potential areas for value creation.

Keywords: mean reversion, random walk, technical analysis, Karachi stock exchange

Procedia PDF Downloads 344
681 The Quality and Management Development for Traditional Community Retailers in Samut Songkhram Province, Thailand

Authors: Suppara Charoenpoom

Abstract:

The purposes of this research were to investigate the level of consumers’ awareness of the traditional community retailers in terms of location, service quality, risk, shopping enjoyment, value for money, shopping satisfaction and intention to repurchase as well as to investigate the factors influenced the consumers’ repurchase in Samut Sonkhram Province, Thailand. The findings revealed that consumers had a high level of awareness in terms of location, and intention to repurchase. The factors influenced the consumers’ level of satisfaction included value for money, shopping enjoyment, and service quality. The factors of consumers’ level of satisfaction had an influence to the intention to repurchase. Moreover, the findings also revealed that the majority of respondents wanted traditional community retailers to continue to operate because of these reasons: close location, convenience, credit, as well as provide a place and time for community social gathering and activities.

Keywords: quality management, service quality, traditional retailer, consumers’ awareness

Procedia PDF Downloads 308
680 Estimating the Volatilite of Stock Markets in Case of Financial Crisis

Authors: Gultekin Gurcay

Abstract:

In this paper, effects and responses of stock were analyzed. This analysis was done periodically. The dimensions of the financial crisis impact on the stock market were investigated by GARCH model. In this context, S&P 500 stock market is modeled with DAX, NIKKEI and BIST100. In this way, The effects of the changing in S&P 500 stock market were examined on European and Asian stock markets. Conditional variance coefficient will be calculated through garch model. The scope of the crisis period, the conditional covariance coefficient will be analyzed comparatively.

Keywords: conditional variance coefficient, financial crisis, garch model, stock market

Procedia PDF Downloads 208
679 A Case-Based Reasoning-Decision Tree Hybrid System for Stock Selection

Authors: Yaojun Wang, Yaoqing Wang

Abstract:

Stock selection is an important decision-making problem. Many machine learning and data mining technologies are employed to build automatic stock-selection system. A profitable stock-selection system should consider the stock’s investment value and the market timing. In this paper, we present a hybrid system including both engage for stock selection. This system uses a case-based reasoning (CBR) model to execute the stock classification, uses a decision-tree model to help with market timing and stock selection. The experiments show that the performance of this hybrid system is better than that of other techniques regarding to the classification accuracy, the average return and the Sharpe ratio.

Keywords: case-based reasoning, decision tree, stock selection, machine learning

Procedia PDF Downloads 300
678 Stock Price Prediction Using Time Series Algorithms

Authors: Sumit Sen, Sohan Khedekar, Umang Shinde, Shivam Bhargava

Abstract:

This study has been undertaken to investigate whether the deep learning models are able to predict the future stock prices by training the model with the historical stock price data. Since this work required time series analysis, various models are present today to perform time series analysis such as Recurrent Neural Network LSTM, ARIMA and Facebook Prophet. Applying these models the movement of stock price of stocks are predicted and also tried to provide the future prediction of the stock price of a stock. Final product will be a stock price prediction web application that is developed for providing the user the ease of analysis of the stocks and will also provide the predicted stock price for the next seven days.

Keywords: Autoregressive Integrated Moving Average, Deep Learning, Long Short Term Memory, Time-series

Procedia PDF Downloads 56
677 Firm Performance and Stock Price in Nigeria

Authors: Tijjani Bashir Musa

Abstract:

The recent global crisis which suddenly results to Nigerian stock market crash revealed some peculiarities of Nigerian firms. Some firms in Nigeria are performing but their stock prices are not increasing while some firms are at the brink of collapse but their stock prices are increasing. Thus, this study examines the relationship between firm performance and stock price in Nigeria. The study covered the period of 2005 to 2009. This period is the period of stock boom and also marked the period of stock market crash as a result of global financial meltdown. The study is a panel study. A total of 140 firms were sampled from 216 firms listed on the Nigerian Stock Exchange (NSE). Data were collected from secondary source. These data were divided into four strata comprising the most performing stock, the least performing stock, most performing firms and the least performing firms. Each stratum contains 35 firms with characteristic of most performing stock, most performing firms, least performing stock and least performing firms. Multiple linear regression models were used to analyse the data while statistical/econometrics package of Stata 11.0 version was used to run the data. The study found that, relationship exists between selected firm performance parameters (operating efficiency, firm profit, earning per share and working capital) and stock price. As such firm performance gave sufficient information or has predictive power on stock prices movements in Nigeria for all the years under study.. The study recommends among others that Managers of firms in Nigeria should formulate policies and exert effort geared towards improving firm performance that will enhance stock prices movements.

Keywords: firm, Nigeria, performance, stock price

Procedia PDF Downloads 385
676 A Stock Exchange Analysis in Turkish Logistics Sector: Modeling, Forecasting, and Comparison with Logistics Indices

Authors: Eti Mizrahi, Gizem İntepe

Abstract:

The geographical location of Turkey that stretches from Asia to Europe and Russia to Africa makes it an important logistics hub in the region. Although logistics is a developing sector in Turkey, the stock market representation is still low with only two companies listed in Turkey’s stock exchange since 2010. In this paper, we use the daily values of these two listed stocks as a benchmark for the logistics sector. After modeling logistics stock prices, an empirical examination is conducted between the existing logistics indices and these stock prices. The paper investigates whether the measures of logistics stocks are correlated with newly available logistics indices. It also shows the reflection of the economic activity in the logistics sector on the stock exchange market. The results presented in this paper are the first analysis of the behavior of logistics indices and logistics stock prices for Turkey.

Keywords: forecasting, logistic stock exchange, modeling, Africa

Procedia PDF Downloads 452
675 Stock Movement Prediction Using Price Factor and Deep Learning

Authors: Hy Dang, Bo Mei

Abstract:

The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.

Keywords: classification, machine learning, time representation, stock prediction

Procedia PDF Downloads 50
674 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia

Authors: Carol Anne Hargreaves

Abstract:

A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.

Keywords: machine learning, stock market trading, logistic regression, cluster analysis, factor analysis, decision trees, neural networks, automated stock investment system

Procedia PDF Downloads 88
673 Antecedents of Regret and Satisfaction in Electronic Commerce

Authors: Chechen Liao, Pui-Lai To, Chuang-Chun Liu

Abstract:

Online shopping has become very popular recently. In today’s highly competitive online retail environment, retaining existing customers is a necessity for online retailers. This study focuses on the antecedents and consequences of Internet buyer regret and satisfaction in the online consumer purchasing process. This study examines the roles that online consumer’s purchasing process evaluations (i.e., search experience difficulty, service-attribute evaluations, product-attribute evaluations and post-purchase price perceptions) and alternative evaluation (i.e., alternative attractiveness) play in determining buyer regret and satisfaction in e-commerce. The study also examines the consequences of regret, satisfaction and habit in regard to repurchase intention. In addition, this study attempts to investigate the moderating role of habit in attaining a better understanding of the relationship between repurchase intention and its antecedents. Survey data collected from 431 online customers are analyzed using structural equation modeling (SEM) with partial least squares (PLS) and support provided for the hypothesized links. These results indicate that online consumer’s purchasing process evaluations (i.e., search experience difficulty, service-attribute evaluations, product-attribute evaluations and post-purchase price perceptions) have significant influences on regret and satisfaction, which in turn influences repurchase intention. In addition, alternative evaluation (i.e., alternative attractiveness) has a significant positive influence on regret. The research model can provide a richer understanding of online customers’ repurchase behavior and contribute to both research and practice.

Keywords: online shopping, purchase evaluation, regret, satisfaction

Procedia PDF Downloads 207
672 Using Deep Learning Neural Networks and Candlestick Chart Representation to Predict Stock Market

Authors: Rosdyana Mangir Irawan Kusuma, Wei-Chun Kao, Ho-Thi Trang, Yu-Yen Ou, Kai-Lung Hua

Abstract:

Stock market prediction is still a challenging problem because there are many factors that affect the stock market price such as company news and performance, industry performance, investor sentiment, social media sentiment, and economic factors. This work explores the predictability in the stock market using deep convolutional network and candlestick charts. The outcome is utilized to design a decision support framework that can be used by traders to provide suggested indications of future stock price direction. We perform this work using various types of neural networks like convolutional neural network, residual network and visual geometry group network. From stock market historical data, we converted it to candlestick charts. Finally, these candlestick charts will be feed as input for training a convolutional neural network model. This convolutional neural network model will help us to analyze the patterns inside the candlestick chart and predict the future movements of the stock market. The effectiveness of our method is evaluated in stock market prediction with promising results; 92.2% and 92.1 % accuracy for Taiwan and Indonesian stock market dataset respectively.

Keywords: candlestick chart, deep learning, neural network, stock market prediction

Procedia PDF Downloads 73
671 Analyzing the Impact of Global Financial Crisis on Interconnectedness of Asian Stock Markets Using Network Science

Authors: Jitendra Aswani

Abstract:

In the first section of this study, impact of Global Financial Crisis (GFC) on the synchronization of fourteen Asian Stock Markets (ASM’s) of countries like Hong Kong, India, Thailand, Singapore, Taiwan, Pakistan, Bangladesh, South Korea, Malaysia, Indonesia, Japan, China, Philippines and Sri Lanka, has been analysed using the network science and its metrics like degree of node, clustering coefficient and network density. Then in the second section of this study by introducing the US stock market in existing network and developing a Minimum Spanning Tree (MST) spread of crisis from the US stock market to Asian Stock Markets (ASM) has been explained. Data used for this study is adjusted the closing price of these indices from 6th January, 2000 to 15th September, 2013 which further divided into three sub-periods: Pre, during and post-crisis. Using network analysis, it is found that Asian stock markets become more interdependent during the crisis than pre and post crisis, and also Hong Kong, India, South Korea and Japan are systemic important stock markets in the Asian region. Therefore, failure or shock to any of these systemic important stock markets can cause contagion to another stock market of this region. This study is useful for global investors’ in portfolio management especially during the crisis period and also for policy makers in formulating the financial regulation norms by knowing the connections between the stock markets and how the system of these stock markets changes in crisis period and after that.

Keywords: global financial crisis, Asian stock markets, network science, Kruskal algorithm

Procedia PDF Downloads 330
670 Application of Benford's Law in Analysis of Frankfurt Stock Exchange Index (DAX) Percentage Changes

Authors: Mario Zgela

Abstract:

Application of Benford’s Law is very rarely covered in the field of stock market analysis, especially in percentage change of stock market indices. Deutscher Aktien IndeX (DAX) is very important stock market index of Frankfurt Deutsche Börse which serves as underlying basis for large number of financial instruments. It is calculated for selected 30 German blue chips stocks. In this paper, Benford's Law first digit test is applied on 10 year DAX daily percentage changes in order to check compliance. Deviations of 10 year DAX percentage changes set as well as distortions of certain subsets from Benford's Law distribution are detected. It is possible that deviations are the outcome of speculations; and psychological influence should not be eliminated.

Keywords: Benford's Law, DAX, index percentage changes, stock market

Procedia PDF Downloads 207
669 Volatility Transmission between Oil Price and Stock Return of Emerging and Developed Countries

Authors: Algia Hammami, Abdelfatteh Bouri

Abstract:

In this work, our objective is to study the transmission of volatility between oil and stock markets in developed (USA, Germany, Italy, France and Japan) and emerging countries (Tunisia, Thailand, Brazil, Argentina, and Jordan) for the period 1998-2015. Our methodology consists of analyzing the monthly data by the GARCH-BEKK model to capture the effect in terms of volatility in the variation of the oil price on the different stock market. The empirical results in the emerging countries indicate that the relationships are unidirectional from the stock market to the oil market. For the developed countries, we find that the transmission of volatility is unidirectional from the oil market to stock market. For the USA and Italy, we find no transmission between the two markets. The transmission is bi-directional only in Thailand. Following our estimates, we also noticed that the emerging countries influence almost the same extent as the developed countries, while at the transmission of volatility there a bid difference. The GARCH-BEKK model is more effective than the others versions to minimize the risk of an oil-stock portfolio.

Keywords: GARCH, oil prices, stock market, volatility transmission

Procedia PDF Downloads 339
668 The Effect of the Enterprises Being Classified as Socially Responsible on Their Stock Returns

Authors: Chih-Hsiang Chang, Chia-Ching Tsai

Abstract:

The aim of this study is to examine the stock price effect of the enterprises being classified as socially responsible. We explore the stock price response to the announcement that an enterprise is selected for the Taiwan Corporate Sustainability Awards. Empirical results indicate that the announcements of the Taiwan Corporate Sustainability Awards provide useful informational content to stock market. We find the evidence of insignificantly positive short-term and significantly positive long-term price reaction to the enterprises being classified as socially responsible. This study concludes that investors in the Taiwan stock market tend to view an enterprise being selected for the Taiwan Corporate Sustainability Awards as one with superior quality and long-term price potential.

Keywords: corporate social responsibility, stock price effect, Taiwan stock market, investments

Procedia PDF Downloads 82
667 Forecasting Stock Indexes Using Bayesian Additive Regression Tree

Authors: Darren Zou

Abstract:

Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods.

Keywords: BART, Bayesian, predict, stock

Procedia PDF Downloads 49
666 The Influence of the Company's Financial Performance and Macroeconomic Factors to Stock Return

Authors: Angrita Denziana, Haninun, Hepiana Patmarina, Ferdinan Fatah

Abstract:

The aims of the study are to determine the effect of the company's financial performance with Return on Asset (ROA) and Return on Equity (ROE) indicators. The macroeconomic factors with the indicators of Indonesia interest rate (SBI) and exchange rate on stock returns of non-financial companies listed in IDX. The results of this study indicate that the variable of ROA has negative effect on stock returns, ROE has a positive effect on stock returns, and the variable interest rate and exchange rate of SBI has positive effect on stock returns. From the analysis data by using regression model, independent variables ROA, ROE, SBI interest rate and the exchange rate very significant (p value < 0.01). Thus, all the above variable can be used as the basis for investment decision making for investment in Indonesia Stock Exchange (IDX) mainly for shares in the non- financial companies.

Keywords: ROA, ROE, interest rate, exchange rate, stock return

Procedia PDF Downloads 316
665 Stock Price Informativeness and Profit Warnings: Empirical Analysis

Authors: Adel Almasarwah

Abstract:

This study investigates the nature of association between profit warnings and stock price informativeness in the context of Jordan as an emerging country. The analysis is based on the response of stock price synchronicity to profit warnings percentages that have been published in Jordanian firms throughout the period spanning 2005–2016 in the Amman Stock Exchange. The standard of profit warnings indicators have related negatively to stock price synchronicity in Jordanian firms, meaning that firms with a high portion of profit warnings integrate with more firm-specific information into stock price. Robust regression was used rather than OLS as a parametric test to overcome the variances inflation factor (VIF) and heteroscedasticity issues recognised as having occurred during running the OLS regression; this enabled us to obtained stronger results that fall in line with our prediction that higher profit warning encourages firm investors to collect and process more firm-specific information than common market information.

Keywords: Profit Warnings, Jordanian Firms, Stock Price Informativeness, Synchronicity

Procedia PDF Downloads 70
664 The Impact of Bitcoin on Stock Market Performance

Authors: Oliver Takawira, Thembi Hope

Abstract:

This study will analyse the relationship between Bitcoin price movements and the Johannesburg stock exchange (JSE). The aim is to determine whether Bitcoin price movements affect the stock market performance. As crypto currencies continue to gain prominence as a safe asset during periods of economic distress, this raises the question of whether Bitcoin’s prosperity could affect investment in the stock market. To identify the existence of a short run and long run linear relationship, the study will apply the Autoregressive Distributed Lag Model (ARDL) bounds test and a Vector Error Correction Model (VECM) after testing the data for unit roots and cointegration using the Augmented Dicker Fuller (ADF) and Phillips-Perron (PP). The Non-Linear Auto Regressive Distributed Lag (NARDL) will then be used to check if there is a non-linear relationship between bitcoin prices and stock market prices.

Keywords: bitcoin, stock market, interest rates, ARDL

Procedia PDF Downloads 16
663 The Effect of Behavioral and Risk Factors of Investment Growth on Stock Returns

Authors: Majid Lotfi Ghahroud, Seyed Jalal Tabatabaei, Ebrahim Karami, AmirArsalan Ghergherechi, Amir Ali Saeidi

Abstract:

In this study, the relationship between investment growth and stock returns of companies listed in Tehran Stock Exchange and whether their relationship -behavioral or risk factors- are discussed. Generally, there are two perspectives; risk-based approach and behavioral approach. According to the risk-based approach due to increase investment, systemic risk and consequently the stock returns are reduced. But due to the second approach, an excessive optimism or pessimism leads to assuming stock price with high investment growth in the past, higher than its intrinsic value and the price of stocks with lower investment growth, less than its intrinsic value. The investigation period is eight years from 2007 to 2014. The sample consisted of all companies listed on the Tehran Stock Exchange. The method is a portfolio test, and the analysis is based on the t-student test (t-test). The results indicate that there is a negative relationship between investment growth and stock returns of companies and this negative correlation is stronger for firms with higher cash flow. Also, the negative relationship between asset growth and stock returns is due to behavioral factors.

Keywords: behavioral theory, investment growth, risk-based theory, stock returns

Procedia PDF Downloads 70
662 Corporate Governance and Share Prices: Firm Level Review in Turkey

Authors: Raif Parlakkaya, Ahmet Diken, Erkan Kara

Abstract:

This paper examines the relationship between corporate governance rating and stock prices of 26 Turkish firms listed in Turkish stock exchange (Borsa Istanbul) by using panel data analysis over five-year period. The paper also investigates the stock performance of firms with governance rating with regards to the market portfolio (i.e. BIST 100 Index) both prior and after governance scoring began. The empirical results show that there is no relation between corporate governance rating and stock prices when using panel data for annual variation in both rating score and stock prices. Further analysis indicates surprising results that while the selected firms outperform the market significantly prior to rating, the same performance does not continue afterwards.

Keywords: corporate governance, stock price, performance, panel data analysis

Procedia PDF Downloads 294
661 Testing the Weak Form Efficiency of Islamic Stock Market: Empirical Evidence from Indonesia

Authors: Herjuno Bagus Wicaksono, Emma Almira Fauni, Salma Amelia Dina

Abstract:

The Efficient Market Hypothesis (EMH) states that, in an efficient capital market, price fully reflects the information available in the market. This theory has influenced many investors behavior in trading in the stock market. Advanced researches have been conducted to test the efficiency of the stock market in particular countries. Indonesia, as one of the emerging countries, has performed substantial growth in the past years. Hence, this paper aims to examine the efficiency of Islamic stock market in Indonesia in its weak form. The daily stock price data from Indonesia Sharia Stock Index (ISSI) for the period October 2015 to October 2016 were used to do the statistical tests: Run Test and Serial Correlation Test. The results show that there is no serial correlation between the current price with the past prices and the market follows the random walk. This research concludes that Indonesia Islamic stock market is weak form efficient.

Keywords: efficient market hypothesis, Indonesia sharia stock index, random walk, weak form efficiency

Procedia PDF Downloads 264
660 A Mathematical Equation to Calculate Stock Price of Different Growth Model

Authors: Weiping Liu

Abstract:

This paper presents an equation to calculate stock prices of different growth model. This equation is mathematically derived by using discounted cash flow method. It has the advantages of being very easy to use and very accurate. It can still be used even when the first stage is lengthy. This equation is more generalized because it can be used for all the three popular stock price models. It can be programmed into financial calculator or electronic spreadsheets. In addition, it can be extended to a multistage model. It is more versatile and efficient than the traditional methods.

Keywords: stock price, multistage model, different growth model, discounted cash flow method

Procedia PDF Downloads 305
659 On the Influence of the Covid-19 Pandemic on Tunisian Stock Market: By Sector Analysis

Authors: Nadia Sghaier

Abstract:

In this paper, we examine the influence of the COVID-19 pandemic on the performance of the Tunisian stock market and 12 sectors over a recent period from 23 March 2020 to 18 August 2021, including several waves and the introduction of vaccination. The empirical study is conducted using cointegration techniques which allows for long and short-run relationships. The obtained results indicate that both daily growth in confirmed cases and deaths have a negative and significant effect on the stock market returns. In particular, this effect differs across sectors. It seems more pronounced in financial, consumer goods and industrials sectors. These findings have important implications for investors to predict the behavior of the stock market or sectors returns and to implement hedging strategies during the COVID-19 pandemic.

Keywords: Tunisian stock market, sectors, COVID-19 pandemic, cointegration techniques

Procedia PDF Downloads 116
658 Long-Run Relationship among Tehran Stock Exchange and the GCC Countries Financial Markets, Before and After 2007/2008 Financial Crisis

Authors: Mohammad Hossein Ranjbar, Mahdi Bagheri, B. Shivaraj

Abstract:

This study attempts to investigate the relationship between stock market of Iran and GCC countries stock exchanges. Eight markets were included: the stock market of Iran, Kuwait, Bahrain, Qatar, Saudi Arabia, Dubai, Abu Dhabi and Oman. Daily country market indices were collected from January 2005 to December 2010. The potential time-varying behaviors of long-run stock market relationship among selected markets are tested applying correlation test, Augmented Dick Fuller test (ADF), Bilateral and Multilateral Cointegration (Johansen), and the Granger Causality test. The findings suggest that stock market of Iran is negatively correlated with most of the selected markets in the whole duration. But contemporaneous correlations among the eight selected markets are increased positively in period of financial crises. Bilateral Cointegration between selected markets suggests that there is no integration between Tehran stock exchange and other selected markets. Among other markets, except the stock market of Dubai and Abu Dhabi as a one pair, are not cointegrated in whole, but in duration of financial crises integration between selected markets are increased. Finally, investigation of the casual relationship among eight financial markets suggests there are unidirectional and bidirectional causal relationship among some of stock market indices.

Keywords: financial crises, Middle East, stock market integration, Granger Causality test, ARDL test

Procedia PDF Downloads 307