Search results for: hollow reinforced concrete beams
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2982

Search results for: hollow reinforced concrete beams

2202 A Review on Application of Waste Tire in Concrete

Authors: M. A. Yazdi, J. Yang, L. Yihui, H. Su

Abstract:

The application of recycle waste tires into civil engineering practices, namely asphalt paving mixtures and cementbased materials has been gaining ground across the world. This review summarizes and compares the recent achievements in the area of plain rubberized concrete (PRC), in details. Different treatment methods have been discussed to improve the performance of rubberized Portland cement concrete. The review also includes the effects of size and amount of tire rubbers on mechanical and durability properties of PRC. The microstructure behaviour of the rubberized concrete was detailed.

Keywords: waste rubber aggregates, microstructure, treatment methods, size and content effects

Procedia PDF Downloads 329
2201 Evaluating Residual Mechanical and Physical Properties of Concrete at Elevated Temperatures

Authors: S. Hachemi, A. Ounis, S. Chabi

Abstract:

This paper presents the results of an experimental study on the effects of elevated temperature on compressive and flexural strength of Normal Strength Concrete (NSC), High Strength Concrete (HSC) and High Performance Concrete (HPC). In addition, the specimen mass and volume were measured before and after heating in order to determine the loss of mass and volume during the test. In terms of non-destructive measurement, ultrasonic pulse velocity test was proposed as a promising initial inspection method for fire damaged concrete structure. 100 Cube specimens for three grades of concrete were prepared and heated at a rate of 3°C/min up to different temperatures (150, 250, 400, 600, and 900°C). The results show a loss of compressive and flexural strength for all the concretes heated to temperature exceeding 400°C. The results also revealed that mass and density of the specimen significantly reduced with an increase in temperature.

Keywords: high temperature, compressive strength, mass loss, ultrasonic pulse velocity

Procedia PDF Downloads 339
2200 A Review of the Axial Capacity of Circular High Strength Concrete-Filled Steel Tube Columns

Authors: Mustafa Gülen, Eylem Güzel, Soner Guler

Abstract:

The concrete filled steel tube (CFST) columns are commonly used in construction applications such as high-rise buildings and bridges owing to its lots of remarkable benefits. The use of concrete filled steel tube columns provides large areas by reduction in cross-sectional area of columns. The main aim of this study is to examine the axial load capacities of circular high strength concrete filled steel tube columns according to Eurocode 4 (EC4) and Chinese Code (DL/T). The results showed that the predictions of EC4 and Chinese Code DL/T are unsafe for all specimens.

Keywords: concrete-filled steel tube column, axial load capacity, Chinese code, Australian Standard

Procedia PDF Downloads 408
2199 A Simulation Study of E-Glass Reinforced Polyurethane Footbed and Investigation of Parameters Effecting Elastic Behaviour of Footbed Material

Authors: Berkay Ergene, Çağın Bolat

Abstract:

In this study, we mainly focused on a simulation study regarding composite footbed in order to contribute to shoe industry. As a footbed, e-glass fiber reinforced polyurethane was determined since polyurethane based materials are already used for footbed in shoe manufacturing frequently. Flat, elliptical and rectangular grooved shoe soles were modeled and analyzed separately as TPU, 10% glass fiber reinforced, 30% glass fiber reinforced and 50% glass fiber reinforced materials according to their properties under three point bending and compression situations to determine the relationship between model, material type and mechanical behaviours of composite model. ANSYS 14.0 APDL mechanical structural module is utilized in all simulations and analyzed stress and strain distributions for different footbed models and materials. Furthermore, materials constants like young modulus, shear modulus, Poisson ratio and density of the composites were calculated theoretically by using composite mixture rule and interpreted for mechanical aspects.

Keywords: composite, elastic behaviour, footbed, simulation

Procedia PDF Downloads 264
2198 The Efficiency of the Resin for Steel Concrete Adhesion

Authors: Oualid Benyamina Douma

Abstract:

Repair is always the result of the appearance of apparent disorder or aggravation of a mass. Which had hitherto been considered minor if not negligible: The work was not done according to plan. So; the examination of causes can lead to thinking about repair. While the application of the epoxy resin has become a hot topic. In this context, we conducted an experimental campaign (48 specimens are tested beakout) whose objective is based on three points: 1- Highlight the importance and influence of important parameters (compressive strength of concrete anchorage length and diameter of the steel bar) on routes (steel-concrete and steel–concrete epoxy resin) 2- Understanding the influence of the parameters mentioned above on the relationship that may exist between the peel strength and slippage. 3- Faces of cracks and failure modes. This study shows that passage of a compressive strength of 40 MPa to 62 MPa increases the adhesion between the steel bar and concrete and for specimens with or without epoxy resin. The loading force was increased form 40 to 81 kM kN, a rate if increase in loading over 100% In addition, for specimens with and without epoxy resin. increased breakout force through a specimen without a specimen with resin ranging from 20% to 32%.

Keywords: epoxy resin, peel strength, anchors, slip diameter steel rod, anchor plain concrete and concrete with moderate resistance

Procedia PDF Downloads 426
2197 Effect of Steel Fibers on M30 Fly Ash Concrete

Authors: Saksham

Abstract:

Concrete's versatility and affordability make it a highly competitive building material capable of meeting diverse requirements. However, the increasing demands placed on structures and the need for enhanced durability and performance have driven the development of distinct cementitious materials and concrete composites. One significant aspect of this advancement is the utilization of waste materials from industries, such as fly ash, to improve concrete's properties. Fly ash, a byproduct of coal combustion can enhance concrete's strength and durability while reducing environmental impact. Additionally, steel fibers can enhance concrete's toughness and crack resistance, contributing to improved structural performance. The experimental study aims to optimize the proportion of ingredients in M30-grade concrete, incorporating fly ash and steel fibers. By varying fly ash content (10% to 30%) and steel fiber dosage (0% to 1.5%), the research seeks to determine the optimal combination for achieving the desired compressive strength. Two sets of experiments are conducted: one focusing on varying fly ash content while keeping steel fiber dosage constant, and the other focusing on varying steel fiber dosage while keeping other parameters fixed. Through systematic testing, molding, curing, and evaluation according to specified standards, the research aims to analyze the impact of fly ash and steel fibers on concrete's compressive strength. The findings have the potential to inform engineers about optimized concrete mix designs that balance performance, cost-effectiveness, and sustainability, advancing toward more resilient and environmentally friendly building practices.

Keywords: concrete, sustainability, durability, compressive strength

Procedia PDF Downloads 47
2196 Petrography and Geochemistry of Basic Dokhan Volcanics from the Eastern Desert of Egypt and their Use as Aggregates in Concrete Mixes

Authors: Ahmed Khalil, Hatem M. El-Desoky

Abstract:

The present paper deals with the petrography and geochemistry of the Basic Dokhan Volcanics, Eastern Desert, Egypt. The basalts from Gabal Wassif, Atalla volcanics and Gabal Esh Mellaha were tested for use as aggregates in concrete mixes. The representative twelve samples were collected from areas. These samples were examined by using a petrographic microscope to evaluate sample texture, degree of alteration and the presence of volcanic glass in the matrix. The results obtained indicate that basalt can be used successfully for preparing concrete, but some attention should be paid to the choice of the suitable types of basalt. A general improvement in concrete mix properties has been found by using basalt aggregates in the mix.

Keywords: basic Dokhan volcanics, petrography, geochemistry, petrogenesis and concrete aggregates

Procedia PDF Downloads 514
2195 Quality Assessment of Hollow Sandcrete Blocks in Minna, Nigeria

Authors: M. Abdullahi, S. Sadiku, Bashar S. Mohammed, J. I. Aguwa

Abstract:

The properties of hollow sandcrete blocks produced in Minna, Nigeria are presented. Sandcrete block is made of cement, water and sand bound together in certain mix proportions. For the purpose of this work, fifty (50) commercial sandcrete block industries were visited in Minna, Nigeria to obtain block samples and aggregates used for the manufacture, and to also take inventory of the mix composition and the production process. Sieve analysis tests were conduction on the soil sample from various block industries to ascertain their quality to be used for block making. The mix ratios were also investigated. Five (5) nine inches (9’’ or 225mm) blocks were obtained from each block industry and tested for dimensional compliance and compressive strength. The result of test shows that the grading of the sand falls within the limit required by BS 882: 1990. The sand particles generally satisfy the grading requirement of overall grading and also fall in at least one of the classification of coarse grading, medium grading or fine grading. This clearly indicates that the quality of the aggregates used for the production of sandcrete blocks in Minna, Nigeria are of good quality in terms of grading and workable mix can easily be achieved to obtain high quality product. Physical examinations of the block sizes show slight deviation from the standard requirement in NIS 87:2000. Compressive strength of hollow sandcrete blocks in range of 0.12 N/mm2 to 0.54 N/mm2 was obtained which is below the recommendable value of 3.45 N/mm2 for load bearing hollow sandcrete blocks. This indicates that these blocks are below the standard for load-bearing sandcrete blocks and cannot be used as load bearing walling units. The mix composition also indicated low cement content resulting in low compressive strength. Most of the commercial block industries visited do not take curing very serious. Water were only sprinkled ones or twice before the blocks were stacked and made readily available for sale. It is recommended that a mix ratio of 1:4 to 1:6 should be used for the production of sandcrete blocks and proper curing practice should be adhered to. Blocks should also be cured for 14 days before making them available for consumers.

Keywords: compressive strength, dimensions, mix proportions, sandcrete blocks

Procedia PDF Downloads 386
2194 Square Concrete Columns under Axial Compression

Authors: Suniti Suparp, Panuwat Joyklad, Qudeer Hussain

Abstract:

This is a well-known fact that the actual latera forces due to natural disasters, for example, earthquakes, floods and storms are difficult to predict accurately. Among these natural disasters, so far, the highest amount of deaths and injuries have been recorded for the case of earthquakes all around the world. Therefore, there is always an urgent need to establish suitable strengthening methods for existing concrete and steel structures. This paper is investigating the structural performance of square concrete columns strengthened using low cost and easily available steel clamps. The salient features of these steel clamps are comparatively low cost, easy availability and ease of installation. To achieve research objectives, a large-scale experimental program was established in which a total number of 12 square concrete columns were constructed and tested under pure axial compression. Three square concrete columns were tested without any steel lamps to serve as a reference specimen. Whereas, remaining concrete columns were externally strengthened using steel clamps. The steel clamps were installed at a different spacing to investigate the best configuration of the steel clamps. The experimental results indicate that steel clamps are very effective in altering the structural performance of the square concrete columns. The square concrete columns externally strengthened using steel clamps demonstrate higher load carrying capacity and ductility as compared with the control specimens.

Keywords: concrete, strength, ductility, pre-stressed, steel, clamps, axial compression, columns, stress and strain

Procedia PDF Downloads 125
2193 A Soil Stabilization Technique on Apa-Hotamiş Conveyance Channel

Authors: Ali Sinan Soğancı

Abstract:

Apa-Hotamış conveyance channel is located within in the boundaries of Konya Regional Directorate of Water Works. This channel transfers the water to the fount of Apa Dam with 17 km length of Blue Channel. Then the water is transmitted with Apa- Hotamış conveyance channel to Hotamış Water Storage. In some places along the Apa-Hotamış conveyance canal which will be constructed by Directorate of Water Works of Konya, some swelling soils have been seen. The samples taken from these places have 35-95 kPa swelling pressure. To prevent the swelling pressure arising from the penetration of water to the concrete channel, it was proposed to make 10 cm concrete coating by spreading the geomembrane and geotextile between the soil and concrete. In this way, the pressure (35-95 kPa) caused by the swelling and cracking of concrete failure will be blocked.

Keywords: conveyance channel, swelling pressure, geomembrane, geotextile, concrete

Procedia PDF Downloads 407
2192 Concrete Recycling in Egypt for Construction Applications: A Technical and Financial Feasibility Model

Authors: Omar Farahat Hassanein, A. Samer Ezeldin

Abstract:

The construction industry is a very dynamic field. Every day new technologies and methods are developing to fasten the process and increase its efficiency. Hence, if a project uses fewer resources, it will be more efficient. This paper examines the recycling of concrete construction and demolition (C&D) waste to reuse it as aggregates in on-site applications for construction projects in Egypt and possibly in the Middle East. The study focuses on a stationary plant setting. The machinery set-up used in the plant is analyzed technically and financially. The findings are gathered and grouped to obtain a comprehensive cost-benefit financial model to demonstrate the feasibility of establishing and operating a concrete recycling plant. Furthermore, a detailed business plan including the time and hierarchy is proposed.

Keywords: construction wastes, recycling, sustainability, financial model, concrete recycling, concrete life cycle

Procedia PDF Downloads 413
2191 Study on the Dynamic Characteristics Change of Welded Beam Due to Vibration Aging

Authors: S. H. Bae, D. W. Cho, W. B. Jeong, J. R. Cho

Abstract:

Fatigue fracture of an aluminum welded structure is a phenomenon frequently occurring from pores in a weld. In order to grasp the state of the welded structure in operation in real time, the acceleration signal of the structure is measured. At this time, the vibration characteristic of the signal according to the fatigue load is an important parameter of the state diagnosis. This paper was an experimental study on the variation of vibration characteristics of welded beams with vibration aging (especially bending vibration). First simple beams were produced according to welding conditions. Each beam was vibrated and measured beam's PSD (power spectral density) according to the degree of aging. Also, modal testing was conducted to compare the transfer functions of welded beams. Testing result shows that the natural frequencies of the beam changed with the vibration aging due to the change of stiffness in welding part and its stiffness was estimated by the finite element method.

Keywords: modal testing, natural frequency, vibration aging, welded structure

Procedia PDF Downloads 480
2190 A Case Study of Assessment of Fire Affected Concrete Structure by NDT

Authors: Nikhil Gopalkrishnan, Praveen Bhaskaran, Aditya Bhargava, Gyandeep Bhumarkar

Abstract:

The present paper is an attempt to perform various Non-Destructive Tests on concrete structure as NDT is gaining a wide importance in the branch of civil engineering these days. Various tests that are performed under NDT not only enable us to determine the strength of concrete structure, but also provide us in-hand information regarding the durability, in-situ properties of the concrete structure. Keeping these points in our mind, we have focused our views on performing a case study to show the comparison between the NDT test results performed on a particular concrete structure and another structure at the same site which is subjected to a continuous fire of say 48-72 hours. The mix design and concrete grade of both the structures were same before the one was affected by fire. The variations in the compressive strength, concrete quality and in-situ properties of the two structures have been discussed in this paper. NDT tests namely Ultrasonic Pulse Velocity Test, Rebound Hammer Test, Core-Cutter Test was performed at both the sites. The main objective of this research is to analyze the variations in the strength and quality of the concrete structure which is subjected to a high temperature fire and the one which isn’t exposed to it.

Keywords: core-cutter test, non-destructive test, rebound hammer test, ultrasonic pulse velocity test

Procedia PDF Downloads 346
2189 Investigation the Effect of Partial Replacement of Fine Aggregates with Ceramic

Authors: Yared Assefa Demessie

Abstract:

This study may help to establish the appropriateness of ceramic waste aggregate for concrete production since it is obviously understood that the rising from continuous urbanization and industrialization development leads depletion of natural construction resource and the disposal of waste material. It can be used as base to conduct a study on the alternative readily available materials like ceramic industrial waste aggregates can lead to environmental concrete. The study assessed the fresh and hardened properties of the concrete produced by replacing part of the natural fine aggregate with an aggregate produced from ceramic industrial waste. In the study, experimental investigation was employed which involved two major tasks: material specifications and experimental evaluation of concrete were done in the laboratory. Experimental investigations such that workability, unit weight, compressive strength test, tensile strength test and flexural strength test for C-25 concrete mixes with different percentages of ceramic industrial waste aggregate after a curing period of 7 and 28 days has done and interpreted the result statically using mean, standard deviation and coefficient of variance.

Keywords: ceramic industrial waste, fresh concrete, hardened concrete, fine aggregate

Procedia PDF Downloads 62
2188 Topology Optimisation for Reduction in Material Use for Precast Concrete Elements: A Case Study of a 3D-Printed Staircase

Authors: Dengyu You, Alireza Kashani

Abstract:

This study explores the potential of 3D concrete printing in manufacturing prefabricated staircases. The applications of 3D concrete printing in large-scale construction could enhance the industry’s implementation of the Industry 4.0 concept. In addition, the current global challenge is to achieve Net Zero Emissions by 2050. Innovation in the construction industry could potentially speed up achieving this target. The 3D printing technology offers a possible solution that reduces cement usage, minimises framework wastes, and is capable of manufacturing complex structures. The performance of the 3D concrete printed lightweight staircase needs to be evaluated. In this study, the staircase is designed using computer-aided technologies, fabricated by 3D concrete printing technologies, and tested with Australian Standard (AS 1657-2018 Fixed platforms, walkways, stairways, and ladders – design, construction, and installation) under a laboratory environment. The experiment results will be further compared with the FEM analysis. The results indicate that 3D concrete printing is capable of fast production, reducing material usage, and is highly automotive, which meets the industry’s future development goal.

Keywords: concrete 3D printing, staircase, sustainability, automation

Procedia PDF Downloads 101
2187 Numerical Modeling of a Retaining Wall in Soil Reinforced by Layers of Geogrids

Authors: M. Mellas, S. Baaziz, A. Mabrouki, D. Benmeddour

Abstract:

The reinforcement of massifs of backfill with horizontal layers of geosynthetics is an interesting economic solution, which ensures the stability of retaining walls. The mechanical behavior of reinforced soil by geosynthetic is complex, and requires studies and research to understand the mechanisms of rupture. The behavior of reinforcements in the soil and the behavior of the main elements of the system: reinforcement-wall-soil. The present study is interested in numerical modeling of a retaining wall in soil reinforced by horizontal layers of geogrids. This modeling makes use of the software FLAC3D. This work aims to analyze the effect of the length of the geogrid "L" where the soil massif is supporting a uniformly distributed surcharge "Q", taking into account the fixing elements rather than the layers of geogrids to the wall.

Keywords: retaining wall, geogrid, reinforced soil, numerical modeling, FLAC3D

Procedia PDF Downloads 481
2186 Developing a Self-Healing Concrete Filler Using Poly(Methyl Methacrylate) Based Two-Part Adhesive

Authors: Shima Taheri, Simon Clark

Abstract:

Concrete is an essential building material used in the majority of structures. Degradation of concrete over time increases the life-cycle cost of an asset with an estimated annual cost of billions of dollars to national economies. Most of the concrete failure occurs due to cracks, which propagate through a structure and cause weakening leading to failure. Stopping crack propagation is thus the key to protecting concrete structures from failure and is the best way to prevent inconveniences and catastrophes. Furthermore, the majority of cracks occur deep within the concrete in inaccessible areas and are invisible to normal inspection. Few materials intrinsically possess self-healing ability, but one that does is concrete. However, self-healing in concrete is limited to small dormant cracks in a moist environment and is difficult to control. In this project, we developed a method for self-healing of nascent fractures in concrete components through the automatic release of self-curing healing agents encapsulated in breakable nano- and micro-structures. The Poly(methyl methacrylate) (PMMA) based two-part adhesive is encapsulated in core-shell structures with brittle/weak inert shell, synthesized via miniemulsion/solvent evaporation polymerization. Stress fields associated with propagating cracks can break these capsules releasing the healing agents at the point where they are needed. The shell thickness is playing an important role in preserving the content until the final setting of concrete. The capsules can also be surface functionalized with carboxyl groups to overcome the homogenous mixing issues. Currently, this formulated self-healing system can replace up to 1% of cement in a concrete formulation. Increasing this amount to 5-7% in the concrete formulation without compromising compression strength and shrinkage properties, is still under investigation. This self-healing system will not only increase the durability of structures by stopping crack propagation but also allow the use of less cement in concrete construction, thereby adding to the global effort for CO2 emission reduction.

Keywords: self-healing concrete, concrete crack, concrete deterioration, durability

Procedia PDF Downloads 114
2185 Evaluation on Effective Size and Hysteresis Characteristics of CHS Damper

Authors: Daniel Y. Abebe, Jaehyouk Choi

Abstract:

This study aims to evaluate the effective size and hysteresis characteristics of Circular Hollow Steel (CHS) damper. CHS damper is among steel dampers which are used widely for seismic energy dissipation because they are easy to install, maintain and are low cost. CHS damper dissipates seismic energy through metallic deformation due to the geometrical elasticity of circular shape and fatigue resistance around connection part. After calculating the effective size, which is found to be height to diameter ratio of √ ("3”), nonlinear FE analyses were conducted to evaluate the hysteresis characteristics. To verify the analysis simulation quasi static loading was carried out and the result was compared and satisfactory result was obtained.

Keywords: SS400 steel, circular hollow steel damper, effective size, quasi static loading, FE analysis

Procedia PDF Downloads 426
2184 Damage-Based Seismic Design and Evaluation of Reinforced Concrete Bridges

Authors: Ping-Hsiung Wang, Kuo-Chun Chang

Abstract:

There has been a common trend worldwide in the seismic design and evaluation of bridges towards the performance-based method where the lateral displacement or the displacement ductility of bridge column is regarded as an important indicator for performance assessment. However, the seismic response of a bridge to an earthquake is a combined result of cyclic displacements and accumulated energy dissipation, causing damage to the bridge, and hence the lateral displacement (ductility) alone is insufficient to tell its actual seismic performance. This study aims to propose a damage-based seismic design and evaluation method for reinforced concrete bridges on the basis of the newly developed capacity-based inelastic displacement spectra. The capacity-based inelastic displacement spectra that comprise an inelastic displacement ratio spectrum and a corresponding damage state spectrum was constructed by using a series of nonlinear time history analyses and a versatile, smooth hysteresis model. The smooth model could take into account the effects of various design parameters of RC bridge columns and correlates the column’s strength deterioration with the Park and Ang’s damage index. It was proved that the damage index not only can be used to accurately predict the onset of strength deterioration, but also can be a good indicator for assessing the actual visible damage condition of column regardless of its loading history (i.e., similar damage index corresponds to similar actual damage condition for the same designed columns subjected to very different cyclic loading protocols as well as earthquake loading), providing a better insight into the seismic performance of bridges. Besides, the computed spectra show that the inelastic displacement ratio for far-field ground motions approximately conforms to the equal displacement rule when structural period is larger than around 0.8 s, but that for near-fault ground motions departs from the rule in the whole considered spectral regions. Furthermore, the near-fault ground motions would lead to significantly greater inelastic displacement ratio and damage index than far-field ground motions and most of the practical design scenarios cannot survive the considered near-fault ground motion when the strength reduction factor of bridge is not less than 5.0. Finally, the spectrum formula is presented as a function of structural period, strength reduction factor, and various column design parameters for far-field and near-fault ground motions by means of the regression analysis of the computed spectra. And based on the developed spectrum formula, a design example of a bridge is presented to illustrate the proposed damage-based seismic design and evaluation method where the damage state of the bridge is used as the performance objective.

Keywords: damage index, far-field, near-fault, reinforced concrete bridge, seismic design and evaluation

Procedia PDF Downloads 123
2183 Free Vibration Analysis of Timoshenko Beams at Higher Modes with Central Concentrated Mass Using Coupled Displacement Field Method

Authors: K. Meera Saheb, K. Krishna Bhaskar

Abstract:

Complex structures used in many fields of engineering are made up of simple structural elements like beams, plates etc. These structural elements, sometimes carry concentrated masses at discrete points, and when subjected to severe dynamic environment tend to vibrate with large amplitudes. The frequency amplitude relationship is very much essential in determining the response of these structural elements subjected to the dynamic loads. For Timoshenko beams, the effects of shear deformation and rotary inertia are to be considered to evaluate the fundamental linear and nonlinear frequencies. A commonly used method for solving vibration problem is energy method, or a finite element analogue of the same. In the present Coupled Displacement Field method the number of undetermined coefficients is reduced to half when compared to the famous Rayleigh Ritz method, which significantly simplifies the procedure to solve the vibration problem. This is accomplished by using a coupling equation derived from the static equilibrium of the shear flexible structural element. The prime objective of the present paper here is to study, in detail, the effect of a central concentrated mass on the large amplitude free vibrations of uniform shear flexible beams. Accurate closed form expressions for linear frequency parameter for uniform shear flexible beams with a central concentrated mass was developed and the results are presented in digital form.

Keywords: coupled displacement field, coupling equation, large amplitude vibrations, moderately thick plates

Procedia PDF Downloads 222
2182 Kinetic Study of Thermal Degradation of a Lignin Nanoparticle-Reinforced Phenolic Foam

Authors: Juan C. Domínguez, Belén Del Saz-Orozco, María V. Alonso, Mercedes Oliet, Francisco Rodríguez

Abstract:

In the present study, the kinetics of thermal degradation of a phenolic and lignin reinforced phenolic foams, and the lignin used as reinforcement were studied and the activation energies of their degradation processes were obtained by a DAEM model. The average values for five heating rates of the mean activation energies obtained were: 99.1, 128.2, and 144.0 kJ.mol-1 for the phenolic foam, 109.5, 113.3, and 153.0 kJ.mol-1 for the lignin reinforcement, and 82.1, 106.9, and 124.4 kJ. mol-1 for the lignin reinforced phenolic foam. The standard deviation ranges calculated for each sample were 1.27-8.85, 2.22-12.82, and 3.17-8.11 kJ.mol-1 for the phenolic foam, lignin and the reinforced foam, respectively. The DAEM model showed low mean square errors (< 1x10-5), proving that is a suitable model to study the kinetics of thermal degradation of the foams and the reinforcement.

Keywords: kinetics, lignin, phenolic foam, thermal degradation

Procedia PDF Downloads 482
2181 Constitutive Modeling of Different Types of Concrete under Uniaxial Compression

Authors: Mostafa Jafarian Abyaneh, Khashayar Jafari, Vahab Toufigh

Abstract:

The cost of experiments on different types of concrete has raised the demand for prediction of their behavior with numerical analysis. In this research, an advanced numerical model has been presented to predict the complete elastic-plastic behavior of polymer concrete (PC), high-strength concrete (HSC), high performance concrete (HPC) along with different steel fiber contents under uniaxial compression. The accuracy of the numerical response was satisfactory as compared to other conventional simple models such as Mohr-Coulomb and Drucker-Prager. In order to predict the complete elastic-plastic behavior of specimens including softening behavior, disturbed state concept (DSC) was implemented by nonlinear finite element analysis (NFEA) and hierarchical single surface (HISS) failure criterion, which is a failure surface without any singularity.

Keywords: disturbed state concept (DSC), hierarchical single surface (HISS) failure criterion, high performance concrete (HPC), high-strength concrete (HSC), nonlinear finite element analysis (NFEA), polymer concrete (PC), steel fibers, uniaxial compression test

Procedia PDF Downloads 310
2180 Modal Analysis of Small Frames using High Order Timoshenko Beams

Authors: Chadi Azoury, Assad Kallassy, Pierre Rahme

Abstract:

In this paper, we consider the modal analysis of small frames. Firstly, we construct the 3D model using H8 elements and find the natural frequencies of the frame focusing our attention on the modes in the XY plane. Secondly, we construct the 2D model (plane stress model) using Q4 elements. We concluded that the results of both models are very close to each other’s. Then we formulate the stiffness matrix and the mass matrix of the 3-noded Timoshenko beam that is well suited for thick and short beams like in our case. Finally, we model the corners where the horizontal and vertical bar meet with a special matrix. The results of our new model (3-noded Timoshenko beam for the horizontal and vertical bars and a special element for the corners based on the Q4 elements) are very satisfying when performing the modal analysis.

Keywords: corner element, high-order Timoshenko beam, Guyan reduction, modal analysis of frames, rigid link, shear locking, and short beams

Procedia PDF Downloads 313
2179 Acid Fuchsin Dye Based PMMA Film for Holographic Investigations

Authors: G. Vinitha, A. Ramalingam

Abstract:

In view of a possible application in optical data storage devices, diffraction grating efficiency of an organic dye, Acid Fuchsin doped in PMMA matrix was studied under excitation with CW diode pumped Nd: YAG laser at 532 nm. The open aperture Z-scan of dye doped polymer displayed saturable absorption and the closed aperture Z-scan of the samples exhibited negative nonlinearity. The diffraction efficiency of the grating is the ratio of the intensity of the first order diffracted power to the incident read beam power. The dye doped polymer films were found to be good media for recording. It is observed that the formation of gratings strongly depend on the concentration of dye in the polymer film, the intensity ratios of the writing beams and the angle between the writing beams. It has been found that efficient writing can be made at an angle of 20° and when the intensity ratio of the writing beams is unity.

Keywords: diffraction efficiency, nonlinear optical material, saturable absorption, surface-relief-gratings

Procedia PDF Downloads 295
2178 Characterization of Cement Concrete Pavement

Authors: T. B. Anil Kumar, Mallikarjun Hiremath, V. Ramachandra

Abstract:

The present experimental investigation deals with the quality performance analysis of cement concrete with 0, 15 and 25% fly ash and 0, 0.2, 0.4 and 0.6% of polypropylene fibers by weight of cement. The various test parameters like workability, unit weight, compressive strength, flexural strength, split tensile strength and abrasion resistance are detailed in the analysis. The compressive strength of M40 grade concrete attains higher value by the replacement of cement by 15% fly ash and at 0.4% PP after 28 and 56 days of curing. Higher flexural strength of concrete was observed by the replacement of cement by 15% fly ash with 0.2% PP after 28 and 56 days of curing. Similarly, split tensile strength value also increases and attains higher value by the replacement of cement by 15% fly ash with 0.4% PP after 28 and 56 days of curing. The percentage of wear gets reduced to 30 to 33% by the addition of fibers at 0.2%, 0.4% and 0.6% in cement concrete replaced by 15 and 25% fly ash. Hence, it is found that the pavement thickness gets reduced up to 20% when compared with plain concrete slab by the 15% fly ash treated with 0.2% PP fibers and also reduced up to 27% of surface course cost.

Keywords: cement, fly ash, polypropylene fiber, pavement design, cost analysis

Procedia PDF Downloads 395
2177 Early Age Behavior of Wind Turbine Gravity Foundations

Authors: Janet Modu, Jean-Francois Georgin, Laurent Briancon, Eric Antoinet

Abstract:

The current practice during the repowering phase of wind turbines is deconstruction of existing foundations and construction of new foundations to accept larger wind loads or once the foundations have reached the end of their service lives. The ongoing research project FUI25 FEDRE (Fondations d’Eoliennes Durables et REpowering) therefore serves to propose scalable wind turbine foundation designs to allow reuse of the existing foundations. To undertake this research, numerical models and laboratory-scale models are currently being utilized and implemented in the GEOMAS laboratory at INSA Lyon following instrumentation of a reference wind turbine situated in the Northern part of France. Sensors placed within both the foundation and the underlying soil monitor the evolution of stresses from the foundation’s early age to stresses during service. The results from the instrumentation form the basis of validation for both the laboratory and numerical works conducted throughout the project duration. The study currently focuses on the effect of coupled mechanisms (Thermal-Hydro-Mechanical-Chemical) that induce stress during the early age of the reinforced concrete foundation, and scale factor considerations in the replication of the reference wind turbine foundation at laboratory-scale. Using THMC 3D models on COMSOL Multi-physics software, the numerical analysis performed on both the laboratory-scale and the full-scale foundations simulate the thermal deformation, hydration, shrinkage (desiccation and autogenous) and creep so as to predict the initial damage caused by internal processes during concrete setting and hardening. Results show a prominent effect of early age properties on the damage potential in full-scale wind turbine foundations. However, a prediction of the damage potential at laboratory scale shows significant differences in early age stresses in comparison to the full-scale model depending on the spatial position in the foundation. In addition to the well-known size effect phenomenon, these differences may contribute to inaccuracies encountered when predicting ultimate deformations of the on-site foundation using laboratory scale models.

Keywords: cement hydration, early age behavior, reinforced concrete, shrinkage, THMC 3D models, wind turbines

Procedia PDF Downloads 171
2176 Concrete-Wall-Climbing Testing Robot

Authors: S. Tokuomi, K. Mori, Y. Tsuruzono

Abstract:

A concrete-wall-climbing testing robot, has been developed. This robot adheres and climbs concrete walls using two sets of suction cups, as well as being able to rotate by the use of the alternating motion of the suction cups. The maximum climbing speed is about 60 cm/min. Each suction cup has a pressure sensor, which monitors the adhesion of each suction cup. The impact acoustic method is used in testing concrete walls. This robot has an impact acoustic device and four microphones for the acquisition of the impact sound. The effectiveness of the impact acoustic system was tested by applying it to an inspection of specimens with artificial circular void defects. A circular void defect with a diameter of 200 mm at a depth of 50 mm was able to be detected. The weight and the dimensions of the robot are about 17 kg and 1.0 m by 1.3 m, respectively. The upper limit of testing is about 10 m above the ground due to the length of the power cable.

Keywords: concrete wall, nondestructive testing, climbing robot, impact acoustic method

Procedia PDF Downloads 655
2175 Seismic Analysis of Vertical Expansion Hybrid Structure by Response Spectrum Method Concern with Disaster Management and Solving the Problems of Urbanization

Authors: Gautam, Gurcharan Singh, Mandeep Kaur, Yogesh Aggarwal, Sanjeev Naval

Abstract:

The present ground reality scenario of suffering of humanity shows the evidence of failure to take wrong decisions to shape the civilization with Irresponsibilities in the history. A strong positive will of right responsibilities make the right civilization structure which affects itself and the whole world. Present suffering of humanity shows and reflect the failure of past decisions taken to shape the true culture with right social structure of society, due to unplanned system of Indian civilization and its rapid disaster of population make the failure to face all kind of problems which make the society sufferer. Our India is still suffering from disaster like earthquake, floods, droughts, tsunamis etc. and we face the uncountable disaster of deaths from the beginning of humanity at the present time. In this research paper our focus is to make a Disaster Resistance Structure having the solution of dense populated urban cities area by high vertical expansion HYBRID STRUCTURE. Our efforts are to analyse the Reinforced Concrete Hybrid Structure at different seismic zones, these concrete frames were analyzed using the response spectrum method to calculate and compare the different seismic displacement and drift. Seismic analysis by this method generally is based on dynamic analysis of building. Analysis results shows that the Reinforced Concrete Building at seismic Zone V having maximum peak story shear, base shear, drift and node displacement as compare to the analytical results of Reinforced Concrete Building at seismic Zone III and Zone IV. This analysis results indicating to focus on structural drawings strictly at construction site to make a HYBRID STRUCTURE. The study case is deal with the 10 story height of a vertical expansion Hybrid frame structure at different zones i.e. zone III, zone IV and zone V having the column 0.45x0.36mt and beam 0.6x0.36mt. with total height of 30mt, to make the structure more stable bracing techniques shell be applied like mage bracing and V shape bracing. If this kind of efforts or structure drawings are followed by the builders and contractors then we save the lives during earthquake disaster at Bhuj (Gujarat State, India) on 26th January, 2001 which resulted in more than 19,000 deaths. This kind of Disaster Resistance Structure having the capabilities to solve the problems of densely populated area of cities by the utilization of area in vertical expansion hybrid structure. We request to Government of India to make new plans and implementing it to save the lives from future disasters instead of unnecessary wants of development plans like Bullet Trains.

Keywords: history, irresponsibilities, unplanned social structure, humanity, hybrid structure, response spectrum analysis, DRIFT, and NODE displacement

Procedia PDF Downloads 206
2174 Study of the Buckling of Sandwich Beams Consider Stretching Effect

Authors: R. Bennai, H. Ait Atmane, H. Fourne, B. Ayache

Abstract:

In this work, an analytical approach using a refined theory of hyperbolic shear deformation of a beam was developed to study the buckling of graduated sandwiches beams under different boundary conditions. The effects of transverse shear strains and the transverse normal deformation are considered. The constituent materials of the beam are supposed gradually variable depending on the height direction based on a simple power distribution law in terms of the volume fractions of the constituents; the two materials with which we worked are metals and ceramics. The core layer is taken homogeneous and made of an isotropic material; while the banks layers consist of functionally graded materials with a homogeneous fraction compared to the middle layer. In the end, illustrative examples are presented to show the effects of changes in different parameters such as (material graduation, the stretching effect of the thickness, boundary conditions and thickness ratio-length) on the vibration free of an FGM sandwich beams.

Keywords: FGM materials, refined shear deformation theory, stretching effect, buckling

Procedia PDF Downloads 173
2173 Recycled Aggregates from Construction and Demolition Waste in the Production of Concrete Blocks

Authors: Juan A. Ferriz-Papi, Simon Thomas

Abstract:

The construction industry generates large amounts of waste, usually mixed, which can be composed of different origin materials, most of them catalogued as non-hazardous. The European Union targets for this waste for 2020 have been already achieved by the UK, but it is mainly developed in downcycling processes (backfilling) whereas upcycling (such as recycle in new concrete batches) still keeps at a low percentage. The aim of this paper is to explore further in the use of recycled aggregates from construction and demolition waste (CDW) in concrete mixes so as to improve upcycling. A review of most recent research and legislation applied in the UK is developed regarding the production of concrete blocks. As a case study, initial tests were developed with a CDW recycled aggregate sample from a CDW plant in Swansea. Composition by visual inspection and sieving tests of two samples were developed and compared to original aggregates. More than 70% was formed by soil waste from excavation, and the rest was a mix of waste from mortar, concrete, and ceramics with small traces of plaster, glass and organic matter. Two concrete mixes were made with 80% replacement of recycled aggregates and different water/cement ratio. Tests were carried out for slump, absorption, density and compression strength. The results were compared to a reference sample and showed a substantial reduction of quality in both mixes. Despite that, the discussion brings to identify different aspects to solve, such as heterogeneity or composition, and analyze them for the successful use of these recycled aggregates in the production of concrete blocks. The conclusions obtained can help increase upcycling processes ratio with mixed CDW as recycled aggregates in concrete mixes.

Keywords: aggregates, concrete, concrete block, construction and demolition waste, recycling

Procedia PDF Downloads 296