Search results for: energy challenges
13043 High-Rise Building with PV Facade
Authors: Jiří Hirš, Jitka Mohelnikova
Abstract:
A photovoltaic system integrated into a high-rise building façade was studied. The high-rise building is located in the Central Europe region with temperate climate and dominant partly cloudy and overcast sky conditions. The PV façade has been monitored since 2013. The three-year monitoring of the façade energy generation shows that the façade has an important impact on the building energy efficiency and sustainable operation.Keywords: buildings, energy, PV façade, solar radiation
Procedia PDF Downloads 30913042 Unravelling Domestic Electricity Demand by Domestic Renewable Energy Supply: A Case Study in Yogyakarta and Central Java, Indonesia
Authors: Diyono Harun
Abstract:
Indonesia aims to reduce carbon emissions from energy generation by reaching 23% and 31% of the national energy supply from renewable energy sources (RES) in 2025 and 2030. The potential for RES in Indonesia is enormous, but not all province has the same potential for RES. Yogyakarta, one of the most travel-destinated provinces in Indonesia, has less potential than its neighbour, Central Java. Consequently, Yogyakarta must meet its electricity demand by importing electricity from Central Java if this province only wants to use electricity from RES. Thus, achieving the objective is balancing the electricity supply between an importer (Yogyakarta) and an exporter province (Central Java). This research aims to explore the RES potential and the current capacity of RES for electricity generation in both provinces. The results show that the present capacity of RES meets the annual domestic electricity demand in both provinces only with an extension of the RES potential. The renewable energy mixes in this research also can lower CO2 emissions compared to gas-fired power plants. This research eventually provides insights into exploring and using the domestic RES potentials between two areas with different RES capacities.Keywords: energy mix, renewable energy sources, domestic electricity, electricity generation
Procedia PDF Downloads 8813041 What Nigeria Education Needs
Authors: Babatunde Joel Todowede
Abstract:
The challenges of nation building and sustainable development have continued to feature prominently in the general reckoning of problems of underdevelopment in the developing countries of the world. Thus, since the attainment of political independence from the British colonial administration in 1960, one of the critical thrusts of central governance in Nigeria has been the particular policy attention of the educational sector. Of course, education is perceived as the logical bridge between the two contrasting worlds of underdevelopment and development, hence, its fundamental importance. The various public policies and practices associated with the Nigerian educational sector are specifically elaborated and critically assessed in this paper. In the final analysis, it is concluded that the educational sector should be better configured and managed in ways that the wider challenges of nation-building and sustainable development are effectively tractable.Keywords: Nigeria education, educational need, educational plans and policies, educational challenges, corrective measures, emerging economy
Procedia PDF Downloads 37713040 Role of Natural Language Processing in Information Retrieval; Challenges and Opportunities
Authors: Khaled M. Alhawiti
Abstract:
This paper aims to analyze the role of natural language processing (NLP). The paper will discuss the role in the context of automated data retrieval, automated question answer, and text structuring. NLP techniques are gaining wider acceptance in real life applications and industrial concerns. There are various complexities involved in processing the text of natural language that could satisfy the need of decision makers. This paper begins with the description of the qualities of NLP practices. The paper then focuses on the challenges in natural language processing. The paper also discusses major techniques of NLP. The last section describes opportunities and challenges for future research.Keywords: data retrieval, information retrieval, natural language processing, text structuring
Procedia PDF Downloads 34113039 The Potentials of Online Learning and the Challenges towards Its Adoption in Nigeria's Higher Institutions of Learning
Authors: Kuliya Muhammed
Abstract:
This paper examines the potentials of online learning and the challenges to its adoption in Nigeria’s higher institutions of learning. The research would assist in tackling the challenges of online learning adoption and enlighten institutions on the numerous benefits of online learning in Nigeria. The researcher used survey method for the study and questionnaires were used to obtain the needed data from 230 respondents cut across 20 higher institutions in the country. The findings revealed that online learning has the prospect to boost access to learning tools, assist students’ to learn from the comfort of their offices or homes, reduce the cost of learning, and enable individuals to gain self-knowledge. The major challenges in the adoption of e-learning are poor Information and Communication Technology infrastructures, poor internet connectivity where available, lack of Information and Communication Technology background, problem of power supply, lack of commitment by institutions, poor maintenance of Information and Communication Technology tools, inadequate facilities, lack of government funding and fraud. Recommendations were also made at the end of the research work.Keywords: electronic, ICT, institution, internet, learning, technology
Procedia PDF Downloads 38813038 A Taxonomy of Professional Engineering Attributes for Tackling Global Humanitarian Challenges
Authors: Georgia Kremmyda, Angelos Georgoulas, Yiannis Koumpouros, James T. Mottram
Abstract:
There is a growing interest in enhancing the creativity and problem-solving ability of engineering students by expanding their engagement to complex, interdisciplinary problems such as environmental issues, resilience to man-made and natural disasters, global health matters, water needs, increased energy demands, and other global humanitarian challenges. Tackling societal challenges requires knowledgeable and erudite engineers who can handle, combine, transform and create innovative, affordable and sustainable solutions. This view simultaneously complements and challenges current conceptions of an emerging educational movement that, almost without exception, are underpinned by calls for competitive economic growth and technological development. This article reveals a taxonomy of humanitarian attributes to be enabled to professional engineers, through reformed curricula and innovative pedagogies, which once implemented and integrated efficiently in higher engineering education, they will provide students and educators with opportunities to explore interdependencies and connections between resources, sustainable design, societal needs, and the natural environment and to critically engage with implicit and explicit facets of disciplinary identity. The research involves carrying out a study on (a) current practices, best practices and barriers in knowledge organisation, content, and hierarchy in graduate engineering programmes, (b) best practices associated with teaching and research in engineering education around the world, (c) opportunities inherent in general reforms of graduate engineering education and inherent in integrating the humanitarian context throughout engineering education programmes, and, (d) an overarching taxonomy of professional attributes for tackling humanitarian challenges. Research methods involve state-of-the-art literature review on engineering education and pedagogy to resource thematic findings on current status in engineering education worldwide, and qualitative research through three practice dialogue workshops, run in Asia (Vietnam, Indonesia and Bangladesh) involving a variety of national, international and local stakeholders (industries; NGOs, governmental organisations). Findings from this study provide evidence on: (a) what are the professional engineering attributes (skills, experience, knowledge) needed for tackling humanitarian challenges; (b) how we can integrate other disciplines and professions to engineering while defining the professional attributes of engineers who are capable of tackling humanitarian challenges. The attributes will be linked to those discipline(s) and profession(s) that are more likely to enforce the attributes (removing the assumption that engineering education as it stands at the moment can provide all attributes), and; (c) how these attributes shall be supplied; what kind of pedagogies or training shall take place beyond current practices. Acknowledgment: The study is currently in progress and is being undertaken in the framework of the project ENHANCE - ENabling Humanitarian Attributes for Nurturing Community-based Engineering (project No: 598502-EEP-1-2018-1-UK-EPPKA2-CBHE-JP (2018-2582/001-001), funded by the Erasmus + KA2 Cooperation for innovation and the exchange of good practices – Capacity building in the field of Higher Education.Keywords: professional engineering attributes, engineering education, taxonomy, humanitarian challenges, humanitarian engineering
Procedia PDF Downloads 19213037 Energy Efficiency Approach to Reduce Costs of Ownership of Air Jet Weaving
Authors: Corrado Grassi, Achim Schröter, Yves Gloy, Thomas Gries
Abstract:
Air jet weaving is the most productive, but also the most energy consuming weaving method. Increasing energy costs and environmental impact are constantly a challenge for the manufacturers of weaving machines. Current technological developments concern with low energy costs, low environmental impact, high productivity, and constant product quality. The high degree of energy consumption of the method can be ascribed to the high need of compressed air. An energy efficiency method is applied to the air jet weaving technology. Such method identifies and classifies the main relevant energy consumers and processes from the exergy point of view and it leads to the identification of energy efficiency potentials during the weft insertion process. Starting from the design phase, energy efficiency is considered as the central requirement to be satisfied. The initial phase of the method consists of an analysis of the state of the art of the main weft insertion components in order to point out a prioritization of the high demanding energy components and processes. The identified major components are investigated to reduce the high demand of energy of the weft insertion process. During the interaction of the flow field coming from the relay nozzles within the profiled reed, only a minor part of the stream is really accelerating the weft yarn, hence resulting in large energy inefficiency. Different tools such as FEM analysis, CFD simulation models and experimental analysis are used in order to design a more energy efficient design of the involved components in the filling insertion. A different concept for the metal strip of the profiled reed is developed. The developed metal strip allows a reduction of the machine energy consumption. Based on a parametric and aerodynamic study, the designed reed transmits higher values of the flow power to the filling yarn. The innovative reed fulfills both the requirement of raising energy efficiency and the compliance with the weaving constraints.Keywords: air jet weaving, aerodynamic simulation, energy efficiency, experimental validation, weft insertion
Procedia PDF Downloads 19713036 Conservation Agriculture in North America
Authors: Ying Chen
Abstract:
Conservation Agriculture in a sustainable way of farming, as it brings many benefits, such as preventing soil from erosion and degradation, improving soil health, conserving energy, and sequestrating carbon. However, adoption of conservation agriculture has been progressing slowly in some part of the world due to some challenges. Among them, seeding in heavy crop residue is challenging, especially in corn production systems. Weed control is also challenging in conservation agriculture. This research aimed to investigate some technologies that can address these challenges. For crop residue management, vertical tillage and vertical seeding have been studied in multiple research projects. Results showed that vertical tillage and seeding were able to deal with crop residue through cutting residue into small segments, which would not plug seeder in the sub-sequent seeding. Vertical tillage is a conservation tillage system, as it leaves more than 30% crop residue on soil surface while incorporating some residue into the shallow soil layer for fast residue decomposition. For weed control, mechanical weeding can reduce chemical inputs in crop production. A tine weeder was studied for weed control during the early growing season of several field crops (corn, soybean, flax, and pea). Detail results of these studies will be shared at the conference.Keywords: tillage, seeding, mechanical weeding, crop residue
Procedia PDF Downloads 7613035 Wind Power Density and Energy Conversion in Al-Adwas Ras-Huwirah Area, Hadhramout, Yemen
Authors: Bawadi M. A., Abbad J. A., Baras E. A.
Abstract:
This study was conducted to assess wind energy resources in the area of Al-Adwas Ras-Huwirah Hadhramout Governorate, Yemen, through using statistical calculations, the Weibull model and SPSS program were used in the monthly and the annual to analyze the wind energy resource; the convergence of wind energy; turbine efficiency in the selected area. Wind speed data was obtained from NASA over a period of ten years (2010-2019) and at heights of 50 m above ground level. Probability distributions derived from wind data and their distribution parameters are determined. The density probability function is fitted to the measured probability distributions on an annual basis. This study also involves locating preliminary sites for wind farms using Geographic Information System (GIS) technology. This further leads to maximizing the output energy from the most suitable wind turbines in the proposed site.Keywords: wind speed analysis, Yemen wind energy, wind power density, Weibull distribution model
Procedia PDF Downloads 8413034 Guidelines for the Sustainable Development of Agriphotovoltaics in Orchard Cultivation: An Approach for Their Harmonious Application in the Natural, Landscape and Socio-Cultural Context of South Tyrol
Authors: Fabrizio Albion
Abstract:
In response to the escalating recognition of the need to combat climate change, renewable energy sources (RES), particularly solar energy, have witnessed exponential growth. The intricate nature of agriphotovoltaics, which combines agriculture and solar energy production, demands rapid legislative and technological development, facing various challenges and multifaceted design. This complexity is also represented by its application for orchard cultivation (APVO), which, in the first part of this research, was studied in its environmental, economic, and sociocultural aspects. Insights from literature, case studies, and consultations with experts contributed valuable perspectives, forming a robust foundation for understanding and integrating APVO into rural environments, including those in the South Tyrolean context. For its harmonious integration into the sensitive Alpine landscape, the second part was then dedicated to the development of guidelines, from the identification of the requirements to be defined as APVO to its design flexibilities for being integrated into the context. As a basis for further considerations, the drafting of these guidelines was preceded by a program of interviews conducted to investigate the social perceptions of farmers, citizens and tourists on the potential integration of APVO in the fruit-growing valleys of the province. Conclusive results from the data collected in the first phase are, however, still pending. Due to ongoing experiments and data collection, the current results, although being generally positive, cannot guarantee a definitive exclusion of potential negative impacts on the crop. The guidelines developed should, therefore, be understood as an initial exploration, providing a basis for future updates, also in synergy with the evolution of existing local projects.Keywords: agriphotovoltaics, Alpin agricultural landscapes, landscape impact assessment, renewable energy
Procedia PDF Downloads 2013033 Design and Study of a Wind-Solar Hybrid System for Lighting Application
Authors: Nikhil V. Nayak, P. P. Revankar, M. B. Gorawar
Abstract:
Wind energy has been shown to be one of the most viable sources of renewable energy. With current technology, the low cost of wind energy is competitive with more conventional sources of energy such as coal. Most airfoil blades available for commercial grade wind turbines incorporate a straight span-wise profile and airfoil shaped cross sections. This paper is aimed at studying and designing a wind-solar hybrid system for light load application. The tools like qblade and solidworks are used to model and analyze the wind turbine system, the material used for the blade and hub is balsa wood and the tower a lattice type. The expected power output is 100 W for an average wind speed of 4.5 m/s.Keywords: renewable energy, hybrid, airfoil blades, wind speeds, make-in-india, camber, QBlade, solidworks, balsa wood
Procedia PDF Downloads 31013032 Suitable Models and Methods for the Steady-State Analysis of Multi-Energy Networks
Authors: Juan José Mesas, Luis Sainz
Abstract:
The motivation for the development of this paper lies in the need for energy networks to reduce losses, improve performance, optimize their operation and try to benefit from the interconnection capacity with other networks enabled for other energy carriers. These interconnections generate interdependencies between some energy networks and others, which requires suitable models and methods for their analysis. Traditionally, the modeling and study of energy networks have been carried out independently for each energy carrier. Thus, there are well-established models and methods for the steady-state analysis of electrical networks, gas networks, and thermal networks separately. What is intended is to extend and combine them adequately to be able to face in an integrated way the steady-state analysis of networks with multiple energy carriers. Firstly, the added value of multi-energy networks, their operation, and the basic principles that characterize them are explained. In addition, two current aspects of great relevance are exposed: the storage technologies and the coupling elements used to interconnect one energy network with another. Secondly, the characteristic equations of the different energy networks necessary to carry out the steady-state analysis are detailed. The electrical network, the natural gas network, and the thermal network of heat and cold are considered in this paper. After the presentation of the equations, a particular case of the steady-state analysis of a specific multi-energy network is studied. This network is represented graphically, the interconnections between the different energy carriers are described, their technical data are exposed and the equations that have previously been presented theoretically are formulated and developed. Finally, the two iterative numerical resolution methods considered in this paper are presented, as well as the resolution procedure and the results obtained. The pros and cons of the application of both methods are explained. It is verified that the results obtained for the electrical network (voltages in modulus and angle), the natural gas network (pressures), and the thermal network (mass flows and temperatures) are correct since they comply with the distribution, operation, consumption and technical characteristics of the multi-energy network under study.Keywords: coupling elements, energy carriers, multi-energy networks, steady-state analysis
Procedia PDF Downloads 8113031 The Current Development and Legislation on the Acquisition and Use of Nuclear Energy in Contemporary International Law
Authors: Uche A. Nnawulezi
Abstract:
Over the past decades, the acquisition and utilization of nuclear energy have remained a standout amongst the most intractable issues which past world leaders have unsuccessfully endeavored to grapple with. This study analyzes the present advancement and enactment on the acquisition and utilization of nuclear energy in contemporary international law. It seeks to address international co-operations in the field of nuclear energy by looking at what nuclear energy is all about and how it came into being. It also seeks to address concerns expressed by a few researchers on the position of nuclear law in the most extensive domain of the law by looking at the authoritative procedure for nuclear law, system of arrangements and traditions. This study also agrees in favour of treaty on non-proliferation of nuclear weapons based on human right and humanitarian principles that are not duly moral, but also legal ones. Specifically, the past development activities on nuclear weapon and the practical system of the nuclear energy institute will be inspected. The study noted among others, former president Obama's remark on nuclear energy and Pakistan nuclear policies and its attendant outcomes. Essentially, we depended on documentary evidence and henceforth scooped a great part of the data from secondary sources. The study emphatically advocates for the adoption of absolute liability principles and setting up of a viability trust fund, all of which will help in sustaining global peace where global best practices in acquisition and use of nuclear energy will be widely accepted in the contemporary international law. Essentially, the fundamental proposals made in this paper if completely adopted, might go far in fortifying the present advancement and enactment on the application and utilization of nuclear energy and accordingly, addressing a portion of the intractable issues under international law.Keywords: nuclear energy, international law, acquisition, development
Procedia PDF Downloads 17813030 Cellular Energy Metabolism Decreases with Age in the Trophocytes and Oenocytes of Honeybees (Apis Mellifera)
Authors: Chin-Yuan Hsu, Yu-Lung Chuang
Abstract:
The expression, concentration, and activity of mitochondrial energy-utilized molecules and cellular energy-regulated molecules decreased with age in the trophocytes and oenocytes of honeybees (Apis mellifera), but those of cellular energy-metabolized molecules is unknown. In this study, the expression, concentration, and activity of cellular energy-metabolized molecules were assayed in the trophocytes and fat cells of young and old worker bees by using the techniques of cell and biochemistry. The results showed that (i) the •-hydroxylacyl-coenzyme A dehydrogenase (HOAD) activity/citrate synthase (CS) activity ratio, non-esterified fatty acids concentrations, the expression of eukaryotic initiation factor 4E, and the expression of phosphorylated eIF4E binding protein 1 decreased with age; (ii) fat and glycogen accumulation increased with age; and (iii) the pyruvate dehydrogenase (PDH) activity/citrate synthase (CS) activity ratio was not correlated with age. These finding indicated that •-oxidation (HOAD/CS) and protein synthsis decreased with age. Glycolysis (PDH/CS) was unchanged with age. The most likely reason is that sugars are the vital food of worker bees. Taken together these data reveal that young workers have higher cellular energy metabolism than old workers and that aging results in a decline in the cellular energy metabolism in worker honeybees.Keywords: aging, energy, honeybee, metabolism
Procedia PDF Downloads 47013029 Harnessing Earth's Electric Field and Transmission of Electricity
Authors: Vaishakh Medikeri
Abstract:
Energy in this Universe is the most basic characteristic of every particle. Since the birth of life on this planet, there has been a quest undertaken by the living beings to analyze, understand and harness the precious natural facts of the nature. In this quest, one of the greatest undertaken is the process of harnessing the naturally available energy. Scientists around the globe have discovered many ways to harness the freely available energy. But even today we speak of “Power Crisis”. Nikola Tesla once said “Nature has stored up in this universe infinite energy”. Energy is everywhere around us in unlimited quantities; all of it waiting to be harnessed by us. Here in this paper a method has been proposed to harness earth's electric field and transmit the stored electric energy using strong magnetic fields and electric fields. In this paper a new technique has been proposed to harness earth's electric field which is everywhere around the world in infinite quantities. Near the surface of the earth there is an electric field of about 120V/m. This electric field is used to charge a capacitor with high capacitance. Later the energy stored is allowed to pass through a device which converts the DC stored into AC. The AC so produced is then passed through a step down transformer to magnify the incoming current. Later the current passes through the RLC circuit. Later the current can be transmitted wirelessly using the principle of resonant inductive coupling. The proposed apparatus can be placed in most of the required places and any circuit tuned to the frequency of the transmitted current can receive the energy. The new source of renewable energy is of great importance if implemented since the apparatus is not costly and can be situated in most of the required places. And also the receiver which receives the transmitted energy is just an RLC circuit tuned to the resonant frequency of the transmitted energy. By using the proposed apparatus the energy losses can be reduced to a very large extent.Keywords: capacitor, inductive resonant coupling, RLC circuit, transmission of electricity
Procedia PDF Downloads 37313028 Performance of Nakagami Fading Channel over Energy Detection Based Spectrum Sensing
Authors: M. Ranjeeth, S. Anuradha
Abstract:
Spectrum sensing is the main feature of cognitive radio technology. Spectrum sensing gives an idea of detecting the presence of the primary users in a licensed spectrum. In this paper we compare the theoretical results of detection probability of different fading environments like Rayleigh, Rician, Nakagami-m fading channels with the simulation results using energy detection based spectrum sensing. The numerical results are plotted as P_f Vs P_d for different SNR values, fading parameters. It is observed that Nakagami fading channel performance is better than other fading channels by using energy detection in spectrum sensing. A MATLAB simulation test bench has been implemented to know the performance of energy detection in different fading channel environment.Keywords: spectrum sensing, energy detection, fading channels, probability of detection, probability of false alarm
Procedia PDF Downloads 53213027 Retrofitting Measures for Existing Housing Stock in Kazakhstan
Authors: S. Yessengabulov, A. Uyzbayeva
Abstract:
Residential buildings fund of Kazakhstan was built in the Soviet time about 35-60 years ago without considering energy efficiency measures. Currently, most of these buildings are in a rundown condition and fail to meet the minimum of hygienic, sanitary and comfortable living requirements. The paper aims to examine the reports of recent building energy survey activities in the country and provide a possible solution for retrofitting existing housing stock built before 1989 which could be applicable for building envelope in cold climate. Methodology also includes two-dimensional modeling of possible practical solutions and further recommendations.Keywords: energy audit, energy efficient buildings in Kazakhstan, retrofit, two-dimensional conduction heat transfer analysis
Procedia PDF Downloads 24713026 Risk Assessment Results in Biogas Production from Agriculture Biomass
Authors: Sandija Zeverte-Rivza, Irina Pilvere, Baiba Rivza
Abstract:
The use of renewable energy sources incl. biogas has become topical in accordance with the increasing demand for energy, decrease of fossil energy resources and the efforts to reduce greenhouse gas emissions as well as to increase energy independence from the territories where fossil energy resources are available. As the technologies of biogas production from agricultural biomass develop, risk assessment and risk management become necessary for farms producing such a renewable energy. The need for risk assessments has become particularly topical when discussions on changing the biogas policy in the EU take place, which may influence the development of the sector in the future, as well as the operation of existing biogas facilities and their income level. The current article describes results of the risk assessment for farms producing biomass from agriculture biomass in Latvia, the risk assessment system included 24 risks, that affect the whole biogas production process and the obtained results showed the high significance of political and production risks.Keywords: biogas production, risks, risk assessment, biosystems engineering
Procedia PDF Downloads 41713025 An Electrode Material for Ultracapacitors: Hydrothermal Synthesis of Neodymium Oxide/Manganese Oxide/Nitrogen Doped Reduced Graphene Oxide Ternary Nanocomposites
Authors: K. Saravanan, K. A.Rameshkumar, P. Maadeswaran
Abstract:
The depletion of fossil resources and the rise in global temperatures are two of the most important concerns we confront today. There are numerous renewable energy sources like solar power, tidal power, wind energy, radiant energy, hydroelectricity, geothermal energy, and biomass available to generate the needed energy demand. Engineers and scientists around the world are facing a massive barrier in the development of storage technologies for the energy developed from renewable energy sources. The development of electrochemical capacitors as a future energy storage technology is at the forefront of current research and development. This is due to the fact that the electrochemical capacitors have a significantly higher energy density, a faster charging-discharging rate, and a longer life span than capacitors, and they also have a higher power density than batteries, making them superior to both. In this research, electrochemical capacitors using the Nd2O3/Mn3O4/ N-rGO electrode material is chosen since the of hexagonal and tetragonal crystal structures of Nd2O3 and Mn3O4 and also has cycling stability of 68% over a long time at 50mVs-1 and a high coulombic efficiency of 99.64% at 5 Ag-1. This approach may also be used to create novel electrode materials with improved electrochemical and cyclic stability for high-performance supercapacitors.Keywords: Nd2O3/Mn3O4/N-rGO, nanocomposites, hydrothermal method, electrode material, specific capacitance, use of supercapacitors
Procedia PDF Downloads 9613024 The Ideal Memory Substitute for Computer Memory Hierarchy
Authors: Kayode A. Olaniyi, Olabanji F. Omotoye, Adeola A. Ogunleye
Abstract:
Computer system components such as the CPU, the Controllers, and the operating system, work together as a team, and storage or memory is the essential parts of this team apart from the processor. The memory and storage system including processor caches, main memory, and storage, form basic storage component of a computer system. The characteristics of the different types of storage are inherent in the design and the technology employed in the manufacturing. These memory characteristics define the speed, compatibility, cost, volatility, and density of the various storage types. Most computers rely on a hierarchy of storage devices for performance. The effective and efficient use of the memory hierarchy of the computer system therefore is the single most important aspect of computer system design and use. The memory hierarchy is becoming a fundamental performance and energy bottleneck, due to the widening gap between the increasing demands of modern computer applications and the limited performance and energy efficiency provided by traditional memory technologies. With the dramatic development in the computers systems, computer storage has had a difficult time keeping up with the processor speed. Computer architects are therefore facing constant challenges in developing high-speed computer storage with high-performance which is energy-efficient, cost-effective and reliable, to intercept processor requests. It is very clear that substantial advancements in redesigning the existing memory physical and logical structures to meet up with the latest processor potential is crucial. This research work investigates the importance of computer memory (storage) hierarchy in the design of computer systems. The constituent storage types of the hierarchy today were investigated looking at the design technologies and how the technologies affect memory characteristics: speed, density, stability and cost. The investigation considered how these characteristics could best be harnessed for overall efficiency of the computer system. The research revealed that the best single type of storage, which we refer to as ideal memory is that logical single physical memory which would combine the best attributes of each memory type that make up the memory hierarchy. It is a single memory with access speed as high as one found in CPU registers, combined with the highest storage capacity, offering excellent stability in the presence or absence of power as found in the magnetic and optical disks as against volatile DRAM, and yet offers a cost-effective attribute that is far away from the expensive SRAM. The research work suggests that to overcome these barriers it may then mean that memory manufacturing will take a total deviation from the present technologies and adopt one that overcomes the associated challenges with the traditional memory technologies.Keywords: cache, memory-hierarchy, memory, registers, storage
Procedia PDF Downloads 16713023 Theoretical and Numerical Investigation of a Tri-Stable Nonlinear Energy Harvesting System in Rotational Motion for Low Frequency Environment
Authors: Mei Xutao, Nakano Kimihiko
Abstract:
In order to enhance the energy harvesting efficiency, this paper presents a novel tri-stable energy harvesting system (TEHS), which is realized by the effect of magnetic force, in rotational motion to scavenge vibration energy. The device is meant to provide the power supply for wireless autonomous systems in low-frequency environment. The nonlinear TEHS is composed of the cantilever beam which is mounted on a rotating hub and partially covered by piezoelectric patch, a tip mass magnet in the end and two fixed magnets. A theoretical investigation using the Lagrangian formulation is derived to describe the motion of the energy harvesting system and the output voltage. Additionally, several numerical simulations were carried out to characterize the system under different external excitations and to validate its performance. The results demonstrated that TEHS owns a wide range of frequency of snap-through and high output voltage compared with the bi-stable energy harvesting system (BEHS). Moreover, some sets of experimental validations will be performed in the future work because the experimental setup is in the configuration now.Keywords: piezoelectric beam, rotational motion, snap-through, tri-stable energy harvester
Procedia PDF Downloads 29713022 Importance of Infrastucture Delivery and Management in South Africa
Authors: Onyeka Nkwonta, Theo Haupt, Karana Padayachee
Abstract:
This study aims primarily to identify potential causes of the bottlenecks in the public sector that affect delivery and formulate evidence-based interventions to improve delivery and management of infrastructure projects. An initial literature review was carried out on infrastructural development and delivery in South Africa, with the aim to formulate evidence-based interventions to improve delivery within the sector. The infrastructure delivery management model was developed to map out best practice delivery processes. These will become the backbone on which improvement initiatives that will be developed within participating stakeholders. The model will, in turn, support a range of methodologies, including the risk system and a knowledge management framework. It will also look at key challenges facing departments with the ability to ensure knowledge and skills transfer at various sectors. The research is limited because the findings were based on existing literature. This study adopted an indirect approach for infrastructure management by focussing on the challenges faced and approaches adopted to overcome these challenges. This may narrow the consideration of some of the viewpoints, thereby limiting the richness of experience available to this research.Keywords: infrastructure, management, challenges, South Africa
Procedia PDF Downloads 14013021 Reducing Energy Consumption in Architectural Spaces by Optimizing Natural Light Transmission
Authors: Parisa Javid
Abstract:
In architecture, daylight contributes to humans' mental and physical well-being and reduces the consumption of fossil fuels. Accordingly, Iran's rich architecture has valuable achievements and experiences that should be recognized and introduced to the Iranian and international architecture communities. There are many ways to reduce energy consumption in buildings, but electricity accounts for a large part of that consumption. Lighting up spaces with natural light is a significant factor in reducing energy consumption and preventing electricity dissipation. Aside from being expensive, electric lighting systems cause excessive heat and physical injury (eyes). This study is based on library records and documents. Modern lighting systems are used to reduce energy consumption in the interior of a building to allow for optimal transmission of natural light. It discusses how to use natural light in architecture and the benefits of natural light in buildings. Solar energy can be used more efficiently, and electrical power can be saved in residential, administrative, commercial, and educational buildings by using new methods such as light tubes and mirror directors. Modern lighting systems, natural light, and reduced energy consumption are keywords for these systems, which quickly return their investment.Keywords: modern lighting systems, natural light, reduced energy consumption
Procedia PDF Downloads 10113020 Efficient Use of Energy through Incorporation of a Gas Turbine in Methanol Plant
Authors: M. Azadi, N. Tahouni, M. H. Panjeshahi
Abstract:
A techno-economic evaluation for efficient use of energy in a large scale industrial plant of methanol is carried out. This assessment is based on integration of a gas turbine with an existing plant of methanol in which the outlet gas products of exothermic reactor is expanded to power generation. Also, it is decided that methanol production rate is constant through addition of power generation system to the existing methanol plant. Having incorporated a gas turbine with the existing plant, the economic results showed total investment of MUSD 16.9, energy saving of 3.6 MUSD/yr with payback period of approximately 4.7 years.Keywords: energy saving, methanol, gas turbine, power generation
Procedia PDF Downloads 46913019 A Survey on the Sun Tracking Systems and Its Principle for Getting Maximum Sun Radiation
Authors: Talha Ali Khan
Abstract:
Discovering different energy resources to fulfill the world's growing demand is now one of the society’s bigger challenges for the next half-century. The main task is to convert the sun radiation into electricity via photovoltaic solar cells which is suddenly decreasing $/watt of delivered solar electricity. Therefore, in this context the sun trackers are those devices that can be used to ameliorate efficiency. In this paper, a variety of the sun tracking systems are evaluated and their merits and demerits are highlighted. The most adept and proficient sun-tracking devices are polar axis and azimuth-elevation types.Keywords: dual axis, fixed axis, sun tracker, sun radiation
Procedia PDF Downloads 45513018 Design, Control and Implementation of 3.5 kW Bi-Directional Energy Harvester for Intelligent Green Energy Management System
Authors: P. Ramesh, Aby Joseph, Arya G. Lal, U. S. Aji
Abstract:
Integration of distributed green renewable energy sources in addition with battery energy storage is an inevitable requirement in a smart grid environment. To achieve this, an Intelligent Green Energy Management System (i-GEMS) needs to be incorporated to ensure coordinated operation between supply and load demand based on the hierarchy of Renewable Energy Sources (RES), battery energy storage and distribution grid. A bi-directional energy harvester is an integral component facilitating Intelligent Green Energy Management System (i-GEMS) and it is required to meet the technical challenges mentioned as follows: (1) capability for bi-directional mode of operation (buck/boost) (2) reduction of circuit parasitic to suppress voltage spikes (3) converter startup problem (4) high frequency magnetics (5) higher power density (6) mode transition issues during battery charging and discharging. This paper is focused to address the above mentioned issues and targeted to design, develop and implement a bi-directional energy harvester with galvanic isolation. In this work, the hardware architecture for bi-directional energy harvester rated 3.5 kW is developed with Isolated Full Bridge Boost Converter (IFBBC) as well as Dual Active Bridge (DAB) Converter configuration using modular power electronics hardware which is identical for both solar PV array and battery energy storage. In IFBBC converter, the current fed full bridge circuit is enabled and voltage fed full bridge circuit is disabled through Pulse Width Modulation (PWM) pulses for boost mode of operation and vice-versa for buck mode of operation. In DAB converter, all the switches are in active state so as to adjust the phase shift angle between primary full bridge and secondary full bridge which in turn decides the power flow directions depending on modes (boost/buck) of operation. Here, the control algorithm is developed to ensure the regulation of the common DC link voltage and maximum power extraction from the renewable energy sources depending on the selected mode (buck/boost) of operation. The circuit analysis and simulation study are conducted using PSIM 9.0 in three scenarios which are - 1.IFBBC with passive clamp, 2. IFBBC with active clamp, 3. DAB converter. In this work, a common hardware prototype for bi-directional energy harvester with 3.5 kW rating is built for IFBBC and DAB converter configurations. The power circuit is equipped with right choice of MOSFETs, gate drivers with galvanic isolation, high frequency transformer, filter capacitors, and filter boost inductor. The experiment was conducted for IFBBC converter with passive clamp under boost mode and the prototype confirmed the simulation results showing the measured efficiency as 88% at 2.5 kW output power. The digital controller hardware platform is developed using floating point microcontroller TMS320F2806x from Texas Instruments. The firmware governing the operation of the bi-directional energy harvester is written in C language and developed using code composer studio. The comprehensive analyses of the power circuit design, control strategy for battery charging/discharging under buck/boost modes and comparative performance evaluation using simulation and experimental results will be presented.Keywords: bi-directional energy harvester, dual active bridge, isolated full bridge boost converter, intelligent green energy management system, maximum power point tracking, renewable energy sources
Procedia PDF Downloads 14413017 Multisource (RF and Solar) Energy Harvesting for Internet of Things (IoT)
Authors: Emmanuel Ekwueme, Anwar Ali
Abstract:
As the Internet of Things (IoT) continues to expand, the demand for battery-free devices is increasing, which is crucial for the efficiency of 5G networks and eco-friendly industrial systems. The solution is a device that operates indefinitely, requires no maintenance, and has no negative impact on the ambient environment. One promising approach to achieve this is energy harvesting, which involves capturing energy from the ambient environment and transferring it to power devices. This method can revolutionize industries. Such as manufacturing, agriculture, and healthcare by enabling real-time data collection and analysis, reducing maintenance costs, improving efficiency, and contributing to a future with lower carbon emissions. This research explores various energy harvesting techniques, focusing on radio frequencies (RF) and multiple energy sources. It examines RF-based and solar methods for powering battery-free sensors, low-power circuits, and IoT devices. The study investigates a hybrid RF-solar harvesting circuit designed for remote sensing devices. The proposed system includes distinct RF and solar energy harvester circuits, with the RF harvester operating at 2.45GHz and the solar harvester utilizing a maximum power point tracking (MPPT) algorithm to maximize efficiency.Keywords: radio frequency, energy harvesting, Internet of Things (IoT), multisource, solar energy
Procedia PDF Downloads 1713016 Energy Calculation for Excited Lithium Atom in Position Space
Authors: Khalil H. Al-Bayati, Khalid Omar Al-Baiti
Abstract:
The energy expectation valueKeywords: energy expectation value, atomic systems, ground and excited states, Hartree-Fock approximation
Procedia PDF Downloads 61813015 Teaching Prosthetic and Orthotics in Palestine: Between Reality and Challenges
Authors: Ahmad Dawabsheh
Abstract:
The science of prosthetics is a renewable science that serves all humanity, regardless of gender, religion and race, and its causes are many: wars, conflicts, traffic accidents, and others. The researcher believes that there are challenges facing the specialization, including that society views a negative view of the amputee, especially if it is a female. This research aims to focus on the reality of teaching prosthetics in Palestine, especially in the Arab American University, as it is the only major. As well as the challenges facing this major: financial, human, academic, laboratories, and others. The researcher used the descriptive and analytical approach, which is the closest approach to studying the subject. The researcher believes that there is a failure on the part of the state and the Ministry of Health in this matter. In addition to the lack of societal culture, as well as the large quantities of prosthetic fittings.Keywords: prothetics, orthotics, Arab American University, Palestine
Procedia PDF Downloads 14413014 Research of the Activation Energy of Conductivity in P-I-N SiC Structures Fabricated by Doping with Aluminum Using the Low-Temperature Diffusion Method
Authors: Ilkham Gafurovich Atabaev, Khimmatali Nomozovich Juraev
Abstract:
The activation energy of conductivity in p-i-n SiC structures fabricated by doping with Aluminum using the new low-temperature diffusion method is investigated. In this method, diffusion is stimulated by the flux of carbon and silicon vacancies created by surface oxidation. The activation energy of conductivity in the p - layer is 0.25 eV and it is close to the ionization energy of Aluminum in 4H-SiC from 0.21 to 0.27 eV for the hexagonal and cubic positions of aluminum in the silicon sublattice for weakly doped crystals. The conductivity of the i-layer (measured in the reverse biased diode) shows 2 activation energies: 0.02 eV and 0.62 eV. Apparently, the 0.62 eV level is a deep trap level and it is a complex of Aluminum with a vacancy. According to the published data, an analogous level system (with activation energies of 0.05, 0.07, 0.09 and 0.67 eV) was observed in the ion Aluminum doped 4H-SiC samples.Keywords: activation energy, aluminum, low temperature diffusion, SiC
Procedia PDF Downloads 280