Search results for: critical abrasion rate
5203 Quest for Literary Past: A Study of Byatt’s Possession
Authors: Chen Jun
Abstract:
Antonia Susan Byatt’s Possession: A Romance has been misread as a postmodern pastiche novel since its publication because there are epics, epigraphs, lyrics, fairy tales, epistles, and even critical articles swollen in this work. The word ‘pastiche’ suggests messy, disorganized, and chaotic, which buries its artistic excellence while overlooking its subtitle, A Romance. The center of romance is the quest that the hero sets forth to conquer the adversity, hardship, and danger to accomplish a task to prove his identity or social worth. This paper argues that Byatt’s Possession is not a postmodern pastiche novel but rather a postmodern romance in which the characters in the academic world set forth their quest into the Victorian literary past that is nostalgically identified by Byatt as the Golden Age of English literature. In doing so, these five following issues are addressed: first, the origin of the protagonist Roland, and consequently, the nature of his quest; second, the central image of the dragon created by the fictional Victorian poet Henry Ash; third, Melusine as an image of female serpent created by the fictional Victorian poet Christabel LaMotte; fourth, the images of the two ladies; last, the image of water that links the dragon and the serpent. In Possession, the past is reinvented not as an unfortunate fall but as a Golden Age presented in the imaginative academic adventure. The dragon, a stereotypical symbol of evil, becomes the symbol of life in Byatt’s work, which parallels with the image of the mythical phoenix that can resurrect from its own ash. At the same time, the phoenix symbolizes Byatt’s efforts to revive the Victorian poetic art that is supposed to be dead in the post-capitalism society when the novel is the dominating literary genre and poetry becomes the minority. The fictional Victorian poet Ash is in fact Byatt’s own poetic mask through which she breathes life into the lost poetic artistry in the postmodern era.Keywords: Byatt, possession, postmodern romance, literary past
Procedia PDF Downloads 4195202 A Comprehensive Review of Foam Assisted Water Alternating Gas (FAWAG) Technique: Foam Applications and Mechanisms
Authors: A. Shabib-Asl, M. Abdalla Ayoub Mohammed, A. F. Alta’ee, I. Bin Mohd Saaid, P. Paulo Jose Valentim
Abstract:
In the last few decades, much focus has been placed on enhancing oil recovery from existing fields. This is accomplished by the study and application of various methods. As for recent cases, the study of fluid mobility control and sweep efficiency in gas injection process as well as water alternating gas (WAG) method have demonstrated positive results on oil recovery and thus gained wide interest in petroleum industry. WAG injection application results in an increased oil recovery. Its mechanism consists in reduction of gas oil ratio (GOR). However, there are some problems associated with this which includes poor volumetric sweep efficiency due to its low density and high mobility when compared with oil. This has led to the introduction of foam assisted water alternating gas (FAWAG) technique, which in contrast with WAG injection, acts in improving the sweep efficiency and reducing the gas oil ration therefore maximizing the production rate from the producer wells. This paper presents a comprehensive review of FAWAG process from perspective of Snorre field experience. In addition, some comparative results between FAWAG and the other EOR methods are presented including their setbacks. The main aim is to provide a solid background for future laboratory research and successful field application-extend.Keywords: GOR, mobility ratio, sweep efficiency, WAG
Procedia PDF Downloads 4575201 Hybrid Structure Learning Approach for Assessing the Phosphate Laundries Impact
Authors: Emna Benmohamed, Hela Ltifi, Mounir Ben Ayed
Abstract:
Bayesian Network (BN) is one of the most efficient classification methods. It is widely used in several fields (i.e., medical diagnostics, risk analysis, bioinformatics research). The BN is defined as a probabilistic graphical model that represents a formalism for reasoning under uncertainty. This classification method has a high-performance rate in the extraction of new knowledge from data. The construction of this model consists of two phases for structure learning and parameter learning. For solving this problem, the K2 algorithm is one of the representative data-driven algorithms, which is based on score and search approach. In addition, the integration of the expert's knowledge in the structure learning process allows the obtainment of the highest accuracy. In this paper, we propose a hybrid approach combining the improvement of the K2 algorithm called K2 algorithm for Parents and Children search (K2PC) and the expert-driven method for learning the structure of BN. The evaluation of the experimental results, using the well-known benchmarks, proves that our K2PC algorithm has better performance in terms of correct structure detection. The real application of our model shows its efficiency in the analysis of the phosphate laundry effluents' impact on the watershed in the Gafsa area (southwestern Tunisia).Keywords: Bayesian network, classification, expert knowledge, structure learning, surface water analysis
Procedia PDF Downloads 1315200 Exploring Hydrogen Embrittlement and Fatigue Crack Growth in API 5L X52 Steel Pipeline Under Cyclic Internal Pressure
Authors: Omar Bouledroua, Djamel Zelmati, Zahreddine Hafsi, Milos B. Djukic
Abstract:
Transporting hydrogen gas through the existing natural gas pipeline network offers an efficient solution for energy storage and conveyance. Hydrogen generated from excess renewable electricity can be conveyed through the API 5L steel-made pipelines that already exist. In recent years, there has been a growing demand for the transportation of hydrogen through existing gas pipelines. Therefore, numerical and experimental tests are required to verify and ensure the mechanical integrity of the API 5L steel pipelines that will be used for pressurized hydrogen transportation. Internal pressure loading is likely to accelerate hydrogen diffusion through the internal pipe wall and consequently accentuate the hydrogen embrittlement of steel pipelines. Furthermore, pre-cracked pipelines are susceptible to quick failure, mainly under a time-dependent cyclic pressure loading that drives fatigue crack propagation. Meanwhile, after several loading cycles, the initial cracks will propagate to a critical size. At this point, the remaining service life of the pipeline can be estimated, and inspection intervals can be determined. This paper focuses on the hydrogen embrittlement of API 5L steel-made pipeline under cyclic pressure loading. Pressurized hydrogen gas is transported through a network of pipelines where demands at consumption nodes vary periodically. The resulting pressure profile over time is considered a cyclic loading on the internal wall of a pre-cracked pipeline made of API 5L steel-grade material. Numerical modeling has allowed the prediction of fatigue crack evolution and estimation of the remaining service life of the pipeline. The developed methodology in this paper is based on the ASME B31.12 standard, which outlines the guidelines for hydrogen pipelines.Keywords: hydrogen embrittlement, pipelines, transient flow, cyclic pressure, fatigue crack growth
Procedia PDF Downloads 945199 Convergence and Stability in Federated Learning with Adaptive Differential Privacy Preservation
Authors: Rizwan Rizwan
Abstract:
This paper provides an overview of Federated Learning (FL) and its application in enhancing data security, privacy, and efficiency. FL utilizes three distinct architectures to ensure privacy is never compromised. It involves training individual edge devices and aggregating their models on a server without sharing raw data. This approach not only provides secure models without data sharing but also offers a highly efficient privacy--preserving solution with improved security and data access. Also we discusses various frameworks used in FL and its integration with machine learning, deep learning, and data mining. In order to address the challenges of multi--party collaborative modeling scenarios, a brief review FL scheme combined with an adaptive gradient descent strategy and differential privacy mechanism. The adaptive learning rate algorithm adjusts the gradient descent process to avoid issues such as model overfitting and fluctuations, thereby enhancing modeling efficiency and performance in multi-party computation scenarios. Additionally, to cater to ultra-large-scale distributed secure computing, the research introduces a differential privacy mechanism that defends against various background knowledge attacks.Keywords: federated learning, differential privacy, gradient descent strategy, convergence, stability, threats
Procedia PDF Downloads 385198 Land Use Planning Tool to Achieve Land Degradation Neutrality: Tunisia Case Study
Authors: Rafla Attia, Claudio Zucca, Bao Quang Le, Sana Dridi, Thouraya Sahli, Taoufik Hermassi
Abstract:
In Tunisia, landscape change and land degradation are critical issues for landscape conservation, management, and planning. Landscapes are undergoing crucial environmental problems made evident by soil degradation and desertification. Human improper uses of land resources (e.g., unsuitable land uses, unsustainable crop intensification, and poor rangeland management) and climate change are the main factors leading to the landscape transformation and desertification affecting high proportions of the Tunisian lands. Land use planning (LUP) to achieve Land Degradation Neutrality (LDN) must be supported by methodologies and technologies that help identify best solutions and practices and design context-specific sustainable land management (SLM) strategies. Such strategies must include restoration or rehabilitation efforts in areas with high land degradation, as well as prevention of degradation that could be caused by improper land use (LU) and land management (LM). The geoinformatics Land Use Planning for LDN (LUP4LDN) tool has been designed for this purpose. Its aim is to support national and sub-national planners in i) mapping geographic patterns of current land degradation; ii) anticipating further future land degradation expected in areas that are unsustainably managed; and iii) providing an interactive procedure for developing participatory LU-LM transitional scenarios over selected regions of interest and timeframes, visualizing the related expected levels of impacts on ecosystem services via maps and graphs. The tool has been co-developed and piloted with national stakeholders in Tunisia. The piloting implementation assessed how the LUP4LDN tool fits with existing LUP processes and the benefits achieved by using the tool to support land use planning for LDN.Keywords: land use system, land cover, sustainable land management, land use planning for land degradation neutrality
Procedia PDF Downloads 835197 The Impact of Purpose as a Principal Leadership Skill on the Performance Select Township Schools in South Africa
Authors: Pepe Marais, Krishna Govender
Abstract:
This study aimed to investigate the impact of “purpose” as a principal leadership skill on the performance of two township schools using a quantitative research design and collecting data from the school principals, teachers and matric learners, using the 28-scale Servant Leadership Test as well as Gallup’s Q12 Employee Engagement survey. The questionnaires addressed the key objectives, namely, the extent to which the principals of the participating schools exhibited servant leadership and their understanding of “purpose” as one word in leadership and how teachers and learners perceived the impact of a “one-word” purpose-driven leader on the performance of the selected schools. Although no relationship could be demonstrated between ‘’purpose’’ and the performance of the two township schools, it became evident that a significant increase in Servant Leadership leads to a significant increase in engagement and performance, as measured by the matric pass rate. It is recommended that workshops be facilitated with principals and teachers in order to entrench ‘’purpose’’ deeper throughout the schools. In addition, Servant Leadership training has to be conduced to increase the leadership ability of the school principals. Future research in the area of ‘’purpose as one word’’, as well as Servant Leadership as a principal skillset within South Africa’s public school leadership, is recommended.Keywords: school leadership, servant leadership, one-word purpose, engagement, leadership
Procedia PDF Downloads 1285196 Correlation of the Rate of Imperfect Competition and Profit in Banking Markets
Authors: Jan Cernohorsky
Abstract:
This article aims to assess the evolution of imperfect competition in selected banking markets, in particular in the banking markets of Slovakia, Poland, Hungary, Slovenia and Croatia. Another objective is to assess the evolution of the relationship of imperfect competition and profit development in the banking markets. The article first provides an overview of literature on the topic. It then measures the degree of imperfect competition in individual markets using the Herfindahl-Hirschman Index. The commonly used indicator of total assets was chosen as an indicator. Based on this measurement, the individual banking sectors are categorized into theoretical definitions of the various types of imperfect competition - namely all surveyed banking sectors falling within the theoretical definition of monopolistic competition. Subsequently, using correlation analysis, i.e., the Pearson correlation coefficient, or the Spearman correlation coefficient, the connection between the evolution of imperfect competition and the development of the gross profit on selected banking markets was surveyed. It was found that with the exception of the banking market in Slovenia, where there is a positive correlation; there is no correlation between the evolution of imperfect competition and profit development in the selected markets. This means a recommendation for the regulators that it is not appropriate to rationalize a higher degree of regulation in granting banking licenses on the size of the profits attained in the banking market, as the relationship between the degree of concentration in the banking market and the amount of profit according to our measurements does not exist.Keywords: bank, banking system, imperfect competition, profitability
Procedia PDF Downloads 2865195 A Study of Population Growth Models and Future Population of India
Authors: Sheena K. J., Jyoti Badge, Sayed Mohammed Zeeshan
Abstract:
A Comparative Study of Exponential and Logistic Population Growth Models in India India is the second most populous city in the world, just behind China, and is going to be in the first place by next year. The Indian population has remarkably at higher rate than the other countries from the past 20 years. There were many scientists and demographers who has formulated various models of population growth in order to study and predict the future population. Some of the models are Fibonacci population growth model, Exponential growth model, Logistic growth model, Lotka-Volterra model, etc. These models have been effective in the past to an extent in predicting the population. However, it is essential to have a detailed comparative study between the population models to come out with a more accurate one. Having said that, this research study helps to analyze and compare the two population models under consideration - exponential and logistic growth models, thereby identifying the most effective one. Using the census data of 2011, the approximate population for 2016 to 2031 are calculated for 20 Indian states using both the models, compared and recorded the data with the actual population. On comparing the results of both models, it is found that logistic population model is more accurate than the exponential model, and using this model, we can predict the future population in a more effective way. This will give an insight to the researchers about the effective models of population and how effective these population models are in predicting the future population.Keywords: population growth, population models, exponential model, logistic model, fibonacci model, lotka-volterra model, future population prediction, demographers
Procedia PDF Downloads 1275194 Unraveling the Complexity of Postpartum Distress: Examining the Influence of Alexithymia, Social Support, Partners' Support, and Birth Satisfaction on Postpartum Distress among Bulgarian Mothers
Authors: Stela Doncheva
Abstract:
Postpartum distress, encompassing depressive symptoms, obsessions, and anxiety, remains a subject of significant scientific interest due to its prevalence among individuals giving birth. This critical and transformative period presents a multitude of factors that impact women's health. On the one hand, variables such as social support, satisfaction in romantic relationships, shared newborn care, and birth satisfaction directly affect the mental well-being of new mothers. On the other hand, the interplay of hormonal changes, personality characteristics, emotional difficulties, and the profound life adjustments experienced by mothers can profoundly influence their self-esteem and overall physical and emotional well-being. This paper extensively explores the factors of alexithymia, social support, partners' support, and birth satisfaction to gain deeper insights into their impact on postpartum distress. Utilizing a qualitative survey consisting of six self-reflective questionnaires, this study collects valuable data regarding the individual postpartum experiences of Bulgarian mothers. The primary objective is to enrich our understanding of the complex factors involved in the development of postpartum distress during this crucial period. The results shed light on the intricate nature of the problem and highlight the significant influence of bio-psycho-social elements. By contributing to the existing knowledge in the field, this research provides valuable implications for the development of interventions and support systems tailored to the unique needs of mothers in the postpartum period. Ultimately, this study aims to improve the overall well-being of new mothers and promote optimal maternal health during the postpartum journey.Keywords: maternal mental health, postpartum distress, postpartum depression, postnatal mothers
Procedia PDF Downloads 715193 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue
Authors: Rachel Y. Zhang, Christopher K. Anderson
Abstract:
A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine
Procedia PDF Downloads 1375192 Financial Development, FDI, and Intellectual Property on Economic Growth in Iran
Authors: Fatemeh Fahimifar, Rouhollah Nazari, Seyed Mohammad Reza Hosseini
Abstract:
Achieving an adaptable rate of economic growth has always been at the forefront of Iran development programs. In order to increase welfare level of the people in the society, all economic and social indices should be improved which is possible just in case of country's economic development and growth. While developing countries has realized the gap between developed countries and developing countries in today's world, a massive movement has been emerged in less developed countries to eliminate this economic gap. Hence this study investigates the effect of financial development, foreign direct investment and intellectual property on Iran's economic growth and taking into account other variables on economic growth such as impact of the share of foreign direct investment on GDP, government consumptive expenditure share of GDP has been paid. Period used in this study is related to the years 1974 to 2009. Also, in this research we have used Generalized Method of Moments (GMM) to examine relationship between variables. The results of this study indicate a meaningful and negative impact of financial development, the share of government consumptive expenditure to GDP and similarly, the initial GDP on economic growth. Also, the degree of economy openness, foreign direct investment and intellectual property has a meaningful positive impact on economic growth.Keywords: financial development, FDI, intellectual property, economic growth, Iran
Procedia PDF Downloads 4765191 The First Fungal Identification from Mini-BAL of Critical COVID-19 Patients
Authors: Fatemeh Fallah, Ensieh Lotfali, Leila Azimi, Hannan Khodaei, Maryam Rajabnejad, Nafiseh Abdollahi, Hossein Tayebi, Saham Ansari, Saeedeh Yaghoubi, Abdollah Karimi
Abstract:
Background: Coronavirus disease 2019 (COVID-19) has become a worldwide issue due to its high prevalence and rapid transmission. Fungal infections have been detected in COVID-19 patients, leading to increased morbidity and mortality. Objectives: This study aimed to isolate Aspergillus fumigatus and Mucor spp. on mini-bronchoalveolar lavage samples obtained from children with COVID-19 hospitalized in an Iranian children’s hospital. Methods: A cross-sectional descriptive study was performed on mini-bronchoalveolar lavage samples from children confirmed positive for COVID-19 admitted to ICU with a ventilator from April 2021 to February 2022. Demographic characteristics were recorded, and fungal DNA was extracted from mini-BAL samples taken from children. Nested PCR was made with two primers for Aspergillus fumigatus and Mucor spp. Results: Out of 100 children with COVID-19, all samples were negative for Aspergillus fumigatus; however, 12 cases were positive for BAL PCR for Mucor spp. Among the 12 patients, fever, shortness of breath, cough, and decreased level of consciousness were reported in 8.3% (n: 1), 16.6% (n: 2), 25% (n: 3), and 25% (n: 3), respectively. Most cases (41.7%; n: 5) suffered from heart disease, followed by underlying malignancy (33.4%; n: 4). All positive BAL PCR for Mucor spp. cases had significantly higher chest CT scan scores and spent more time under a ventilator. Conclusions: The identification of COVID-19 with Mucor spp. was observed among 12% (n: 12) of children hospitalized in a COVID-19 ICU. When dealing with pediatric COVID-19 patients, clinicians should consider the differential diagnosis of fungal co-infections and have a low threshold to begin treatment. Moreover, it is highly advisable to take prophylactic measures, such as properly using corticosteroids and shortening the intubation time.Keywords: aspergillosis, COVID-19 identification, mucormycosis, paediatrics
Procedia PDF Downloads 225190 A Shift in the Structure of Economy and Synergy of University: Developing Potential Through Research and Development Center of SMEs in Jember
Authors: Muhamad Nugraha
Abstract:
Economic growth always correlate positively with the magnitude of the unemployment rate. This is caused by labor which one of important variable to keep growth in the real sector of the region. Meanwhile, the economic structure in districts of Jember showed an increase of economic activity began to shift towards the industrial sector and some other economic sectors, so they have an affects to considerations for policy makers to increase economic growth in Jember as an autonomous region in East Java Province. At the fact, SMEs is among the factors driving economic growth in the region. This is shown by the high amount of SMEs. However, employment in the sector grew slightly slowed. It is caused by a lack of productivity in SMEs. Through the analysis of the transformation of economic structure theory, and the theory of Triple Helix using descriptive analytical method Location Quotient and Shift - Share, found that the results of the economic structure in Jember slowly shifting from the agricultural sector to the industrial sector, because it is dominated by trade sector, hotel and restaurant sector. In addition, SMEs is the potential sector of economic growth in Jember. While to maximizing role and functions of the institution's Research and Development Center of SMEs, there are three points to be known, that are Business Landscape, Business Architecture and Value Added.Keywords: economic growth, SMEs, labor, Research and Development Center of SMEs
Procedia PDF Downloads 4535189 A Nonlinear Visco-Hyper Elastic Constitutive Model for Modelling Behavior of Polyurea at Large Deformations
Authors: Shank Kulkarni, Alireza Tabarraei
Abstract:
The fantastic properties of polyurea such as flexibility, durability, and chemical resistance have brought it a wide range of application in various industries. Effective prediction of the response of polyurea under different loading and environmental conditions necessitates the development of an accurate constitutive model. Similar to most polymers, the behavior of polyurea depends on both strain and strain rate. Therefore, the constitutive model should be able to capture both these effects on the response of polyurea. To achieve this objective, in this paper, a nonlinear hyper-viscoelastic constitutive model is developed by the superposition of a hyperelastic and a viscoelastic model. The proposed constitutive model can capture the behavior of polyurea under compressive loading conditions at various strain rates. Four parameter Ogden model and Mooney Rivlin model are used to modeling the hyperelastic behavior of polyurea. The viscoelastic behavior is modeled using both a three-parameter standard linear solid (SLS) model and a K-BKZ model. Comparison of the modeling results with experiments shows that Odgen and SLS model can more accurately predict the behavior of polyurea. The material parameters of the model are found by curve fitting of the proposed model to the uniaxial compression test data. The proposed model can closely reproduce the stress-strain behavior of polyurea for strain rates up to 6500 /s.Keywords: constitutive modelling, ogden model, polyurea, SLS model, uniaxial compression test
Procedia PDF Downloads 2475188 Analysis of the Effect of Increased Self-Awareness on the Amount of Food Thrown Away
Authors: Agnieszka Dubiel, Artur Grabowski, Tomasz Przerywacz, Mateusz Roganowicz, Patrycja Zioty
Abstract:
Food waste is one of the most significant challenges humanity is facing nowadays. Every year, reports from global organizations show the scale of the phenomenon, although society's awareness is still insufficient. One-third of the food produced in the world is wasted at various points in the food supply chain. Wastes are present from the delivery through the food preparation and distribution to the end of the sale and consumption. The first step in understanding and resisting the phenomenon is a thorough analysis of the everyday behaviors of humanity. This concept is understood as finding the correlation between the type of food and the reason for throwing it out and wasting it. Those actions were identified as a critical step in the start of work to develop technology to prevent food waste. In this paper, the problem mentioned above was analyzed by focusing on the inhabitants of Central Europe, especially Poland, aged 20-30. This paper provides an insight into collecting data through dedicated software and an organized database. The proposed database contains information on the amount, type, and reasons for wasting food in households. A literature review supported the work to answer research questions, compare the situation in Poland with the problem analyzed in other countries, and find research gaps. The proposed article examines the cause of food waste and its quantity in detail. This review complements previous reviews by emphasizing social and economic innovation in Poland's food waste management. The paper recommends a course of action for future research on food waste management and prevention related to the handling and disposal of food, emphasizing households, i.e., the last link in the supply chain.Keywords: food waste, food waste reduction, consumer food waste, human-food interaction
Procedia PDF Downloads 1225187 Breast Cancer Diagnosing Based on Online Sequential Extreme Learning Machine Approach
Authors: Musatafa Abbas Abbood Albadr, Masri Ayob, Sabrina Tiun, Fahad Taha Al-Dhief, Mohammad Kamrul Hasan
Abstract:
Breast Cancer (BC) is considered one of the most frequent reasons of cancer death in women between 40 to 55 ages. The BC is diagnosed by using digital images of the FNA (Fine Needle Aspirate) for both benign and malignant tumors of the breast mass. Therefore, this work proposes the Online Sequential Extreme Learning Machine (OSELM) algorithm for diagnosing BC by using the tumor features of the breast mass. The current work has used the Wisconsin Diagnosis Breast Cancer (WDBC) dataset, which contains 569 samples (i.e., 357 samples for benign class and 212 samples for malignant class). Further, numerous measurements of assessment were used in order to evaluate the proposed OSELM algorithm, such as specificity, precision, F-measure, accuracy, G-mean, MCC, and recall. According to the outcomes of the experiment, the highest performance of the proposed OSELM was accomplished with 97.66% accuracy, 98.39% recall, 95.31% precision, 97.25% specificity, 96.83% F-measure, 95.00% MCC, and 96.84% G-Mean. The proposed OSELM algorithm demonstrates promising results in diagnosing BC. Besides, the performance of the proposed OSELM algorithm was superior to all its comparatives with respect to the rate of classification.Keywords: breast cancer, machine learning, online sequential extreme learning machine, artificial intelligence
Procedia PDF Downloads 1185186 Dynamics of the Landscape in the Different Colonization Models Implemented in the Legal Amazon
Authors: Valdir Moura, FranciléIa De Oliveira E. Silva, Erivelto Mercante, Ranieli Dos Anjos De Souza, Jerry Adriani Johann
Abstract:
Several colonization projects were implemented in the Brazilian Legal Amazon in the 1970s and 1980s. Among all of these colonization projects, the most prominent were those with the Fishbone and Topographic models. Within this scope, the projects of settlements known as Anari and Machadinho were created, which stood out because they are contiguous areas with different models and structure of occupation and colonization. The main objective of this work was to evaluate the dynamics of Land-Use and Land-Cover (LULC) in two different colonization models, implanted in the State of Rondonia in the 1980s. The Fishbone and Topographic models were implanted in the Anari and Machadinho settlements respectively. The understanding of these two forms of occupation will help in future colonization programs of the Brazilian Legal Amazon. These settlements are contiguous areas with different occupancy structures. A 32-year Landsat time series (1984-2016) was used to evaluate the rates and trends in the LULC process in the different colonization models. In the different occupation models analyzed, the results showed a rapid loss of primary and secondary forests (deforestation), mainly due to the dynamics of use, established by the Agriculture/Pasture (A/P) relation and, with heavy dependence due to road construction.Keywords: land-cover, deforestation, rate fragments, remote sensing, secondary succession
Procedia PDF Downloads 1405185 Teachers' Disability Disclosure: A Multiple Perspective
Authors: N. Tal-Alon, O. Shapira-Lishchinsky
Abstract:
Disability disclosure is one of the most complicated dilemmas that people with invisible disabilities face. There are only a few research studies that have focused on the difficulties and dilemmas of teachers who have different disabilities. In addition, there are currently no research studies focusing specifically on the different aspects of disability disclosure, which are unique to teachers. This research has, therefore, broadened the knowledge base and understanding of the dilemma of disability disclosure among teachers with invisible physical disabilities. In addition, it has shed light on the ways this issue is perceived by different groups: the perspective of school principals, the perspective of colleagues, and the perspective of teachers with physical disabilities themselves. The study sample included 12 teachers with invisible physical disabilities, 10 school principals who employ at least one teacher with an invisible physical disability, and 10 professional colleagues of at least one teacher with an invisible physical disability. This particular research study was conducted using a qualitative approach through the Narralizer computer program based on a series of in-depth interviews. The data analysis was carried out by grouping major points of interest into specific categories and sub-categories. The findings of this research suggest that teachers with disabilities struggle with the dilemma of whether or not to reveal their disability to the school staff and to their students. It was found that there were considerable differences between the issues that faculty members considered regarding this dilemma and the ones that teachers with disabilities considered. While the principals and professional colleagues focused solely on their own interests, the teachers with a disability emphasized more on the ways that they might have a positive influence on their students, as well as their own individual interests. In addition, school principals on a whole tended to view negatively the option of disclosing the disability to the students and were often critical towards teachers who concealed their disability from the school staff. The importance of this research is in its potential to influence policy decisions that can be implemented by the Ministry of Education regarding the support system for teachers with invisible physical disabilities.Keywords: education, employment, invisible disabilities, teachers
Procedia PDF Downloads 1045184 ECG Based Reliable User Identification Using Deep Learning
Authors: R. N. Begum, Ambalika Sharma, G. K. Singh
Abstract:
Identity theft has serious ramifications beyond data and personal information loss. This necessitates the implementation of robust and efficient user identification systems. Therefore, automatic biometric recognition systems are the need of the hour, and ECG-based systems are unquestionably the best choice due to their appealing inherent characteristics. The CNNs are the recent state-of-the-art techniques for ECG-based user identification systems. However, the results obtained are significantly below standards, and the situation worsens as the number of users and types of heartbeats in the dataset grows. As a result, this study proposes a highly accurate and resilient ECG-based person identification system using CNN's dense learning framework. The proposed research explores explicitly the calibre of dense CNNs in the field of ECG-based human recognition. The study tests four different configurations of dense CNN which are trained on a dataset of recordings collected from eight popular ECG databases. With the highest FAR of 0.04 percent and the highest FRR of 5%, the best performing network achieved an identification accuracy of 99.94 percent. The best network is also tested with various train/test split ratios. The findings show that DenseNets are not only extremely reliable but also highly efficient. Thus, they might also be implemented in real-time ECG-based human recognition systems.Keywords: Biometrics, Dense Networks, Identification Rate, Train/Test split ratio
Procedia PDF Downloads 1675183 Renewable Energy Potential of Diluted Poultry Manure during Ambient Anaerobic Stabilisation
Authors: Cigdem Yangin-Gomec, Aigerim Jaxybayeva, Orhan Ince
Abstract:
In this study, the anaerobic treatability of chicken manure diluted with tap water (with an influent feed ratio of 1 kg of fresh chicken manure to 6 liter of tap water) was investigated in a lab-scale anaerobic sludge bed (ASB) reactor inoculated with the granular sludge already adapted to chicken manure. The raw waste digested in this study was the manure from laying-hens having average total solids (TS) of about 30% with ca. 60% volatile content. The ASB reactor was fed semi-continuously at ambient operating temperature range (17-23◦C) at a HRT of 13 and 26 days for about 6 months, respectively. The respective average total and soluble chemical oxygen demand (COD) removals were ca. 90% and 75%, whereas average biomethane production rate was calculated ca. 180 lt per kg of CODremoved from the ASB reactor at an average HRT of 13 days. Moreover, total suspended solids (TSS) and volatile suspended solids (VSS) in the influent were reduced more than 97%. Hence, high removals of the organic compounds with respective biogas production made anaerobic stabilization of the diluted chicken manure by ASB reactor at ambient operating temperatures viable. By this way, external heating up to 35◦C (i.e. anaerobic processes have been traditionally operated at mesophilic conditions) could be avoided in the scope of this study.Keywords: ambient anaerobic digestion, biogas recovery, poultry manure, renewable energy
Procedia PDF Downloads 4265182 Mixed Traffic Speed–Flow Behavior under Influence of Road Side Friction and Non-Motorized Vehicles: A Comparative Study of Arterial Roads in India
Authors: Chetan R. Patel, G. J. Joshi
Abstract:
The present study is carried out on six lane divided urban arterial road in Patna and Pune city of India. Both the road having distinct differences in terms of the vehicle composition and the road side parking. Arterial road in Patan city has 33% of non-motorized mode, whereas Pune arterial road dominated by 65% of Two wheeler. Also road side parking is observed in Patna city. The field studies using vidiographic techniques are carried out for traffic data collection. Data are extracted for one minute duration for vehicle composition, speed variation and flow rate on selected arterial road of the two cities. Speed flow relationship is developed and capacity is determine. Equivalency factor in terms of dynamic car unit is determine to represent the vehicle is single unit. The variation in the capacity due to side friction, presence of non motorized traffic and effective utilization of lane width is compared at concluding remarks.Keywords: arterial road, capacity, dynamic equivalency factor, effect of non motorized mode, side friction
Procedia PDF Downloads 3515181 Comparative Studies of the Effects of Microstructures on the Corrosion Behavior of Micro-Alloyed Steels in Unbuffered 3.5 Wt% NaCl Saturated with CO2
Authors: Lawrence I. Onyeji, Girish M. Kale, M. Bijan Kermani
Abstract:
Corrosion problem which exists in every stage of oil and gas production has been a great challenge to the operators in the industry. The conventional carbon steel with all its inherent advantages has been adjudged susceptible to the aggressive corrosion environment of oilfield. This has aroused increased interest in the use of micro alloyed steels for oil and gas production and transportation. The corrosion behavior of three commercially supplied micro alloyed steels designated as A, B, and C have been investigated with API 5L X65 as reference samples. Electrochemical corrosion tests were conducted in an unbuffered 3.5 wt% NaCl solution saturated with CO2 at 30 0C for 24 hours. Pre-corrosion analyses revealed that samples A, B and X65 consist of ferrite-pearlite microstructures but with different grain sizes, shapes and distribution whereas sample C has bainitic microstructure with dispersed acicular ferrites. The results of the electrochemical corrosion tests showed that within the experimental conditions, the corrosion rate of the samples can be ranked as CR(A)< CR(X65)< CR(B)< CR(C). These results are attributed to difference in microstructures of the samples as depicted by ASTM grain size number in accordance with ASTM E112-12 Standard and ferrite-pearlite volume fractions determined by ImageJ Fiji grain size analysis software.Keywords: carbon dioxide corrosion, corrosion behaviour, micro-alloyed steel, microstructures
Procedia PDF Downloads 3535180 Heavy Vehicle Traffic Estimation Using Automatic Traffic Recorders/Weigh-In-Motion Data: Current Practice and Proposed Methods
Authors: Muhammad Faizan Rehman Qureshi, Ahmed Al-Kaisy
Abstract:
Accurate estimation of traffic loads is critical for pavement and bridge design, among other transportation applications. Given the disproportional impact of heavier axle loads on pavement and bridge structures, truck and heavy vehicle traffic is expected to be a major determinant of traffic load estimation. Further, heavy vehicle traffic is also a major input in transportation planning and economic studies. The traditional method for estimating heavy vehicle traffic primarily relies on AADT estimation using Monthly Day of the Week (MDOW) adjustment factors as well as the percent heavy vehicles observed using statewide data collection programs. The MDOW factors are developed using daily and seasonal (or monthly) variation patterns for total traffic, consisting predominantly of passenger cars and other smaller vehicles. Therefore, while using these factors may yield reasonable estimates for total traffic (AADT), such estimates may involve a great deal of approximation when applied to heavy vehicle traffic. This research aims at assessing the approximation involved in estimating heavy vehicle traffic using MDOW adjustment factors for total traffic (conventional approach) along with three other methods of using MDOW adjustment factors for total trucks (class 5-13), combination-unit trucks (class 8-13), as well as adjustment factors for each vehicle class separately. Results clearly indicate that the conventional method was outperformed by the other three methods by a large margin. Further, using the most detailed and data intensive method (class-specific adjustment factors) does not necessarily yield a more accurate estimation of heavy vehicle traffic.Keywords: traffic loads, heavy vehicles, truck traffic, adjustment factors, traffic data collection
Procedia PDF Downloads 295179 Structural and Magnetic Properties of Calcium Mixed Ferrites Prepared by Co-Precipitation Method
Authors: Sijo S. Thomas, S. Hridya, Manoj Mohan, Bibin Jacob, Hysen Thomas
Abstract:
Ferrites are iron based oxides with technologically significant magnetic properties and have widespread applications in medicine, technology, and industry. There has been a growing interest in the study of magnetic, electrical and structural properties of mixed ferrites. In the present work, structural and magnetic properties of Nickel and Calcium substituted Fe₃O₄ nanoparticles were investigated. NiₓCa₁₋ₓFe₂O₄ nanoparticles (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9) were synthesized by chemical co-precipitation method and the samples were subsequently sintered at 900°C. The magnetic and structural properties of NiₓCa₁₋ₓFe₂O₄ were investigated using Vibrating Sample Magnetometer and X-Ray diffraction. The XRD results revealed that the synthesized particles have nanometer size and it varies from 46-72 nm as the calcium concentration diminishes. The variation is explained based on the increase in the reaction rate with Ni concentration which favors the formation of ultrafine particles of mixed ferrites. VSM results show pure CaFe₂O₄ exhibit paramagnetic behavior with low saturation value. As the concentration of Ca decreases, a transition occurs from paramagnetic state to ferromagnetic state. When the concentration of Ni becomes dominant, magnetic saturation, coercivity, and retentivity become high, indicating near ferromagnetic behavior of the compound.Keywords: co-precipitation, ferrites, magnetic behavior, structure
Procedia PDF Downloads 2515178 Non-Contact Measurement of Soil Deformation in a Cyclic Triaxial Test
Authors: Erica Elice Uy, Toshihiro Noda, Kentaro Nakai, Jonathan Dungca
Abstract:
Deformation in a conventional cyclic triaxial test is normally measured by using point-wise measuring device. In this study, non-contact measurement technique was applied to be able to monitor and measure the occurrence of non-homogeneous behavior of the soil under cyclic loading. Non-contact measurement is executed through image processing. Two-dimensional measurements were performed using Lucas and Kanade optical flow algorithm and it was implemented Labview. In this technique, the non-homogeneous deformation was monitored using a mirrorless camera. A mirrorless camera was used because it is economical and it has the capacity to take pictures at a fast rate. The camera was first calibrated to remove the distortion brought about the lens and the testing environment as well. Calibration was divided into 2 phases. The first phase was the calibration of the camera parameters and distortion caused by the lens. The second phase was to for eliminating the distortion brought about the triaxial plexiglass. A correction factor was established from this phase. A series of consolidated undrained cyclic triaxial test was performed using a coarse soil. The results from the non-contact measurement technique were compared to the measured deformation from the linear variable displacement transducer. It was observed that deformation was higher at the area where failure occurs.Keywords: cyclic loading, non-contact measurement, non-homogeneous, optical flow
Procedia PDF Downloads 3065177 Study of Structural Behavior and Proton Conductivity of Inorganic Gel Paste Electrolyte at Various Phosphorous to Silicon Ratio by Multiscale Modelling
Authors: P. Haldar, P. Ghosh, S. Ghoshdastidar, K. Kargupta
Abstract:
In polymer electrolyte membrane fuel cells (PEMFC), the membrane electrode assembly (MEA) is consisting of two platinum coated carbon electrodes, sandwiched with one proton conducting phosphoric acid doped polymeric membrane. Due to low mechanical stability, flooding and fuel cell crossover, application of phosphoric acid in polymeric membrane is very critical. Phosphorous and silica based 3D inorganic gel gains the attention in the field of supercapacitors, fuel cells and metal hydrate batteries due to its thermally stable highly proton conductive behavior. Also as a large amount of water molecule and phosphoric acid can easily get trapped in Si-O-Si network cavities, it causes a prevention in the leaching out. In this study, we have performed molecular dynamics (MD) simulation and first principle calculations to understand the structural, electronics and electrochemical and morphological behavior of this inorganic gel at various P to Si ratios. We have used dipole-dipole interactions, H bonding, and van der Waals forces to study the main interactions between the molecules. A 'structure property-performance' mapping is initiated to determine optimum P to Si ratio for best proton conductivity. We have performed the MD simulations at various temperature to understand the temperature dependency on proton conductivity. The observed results will propose a model which fits well with experimental data and other literature values. We have also studied the mechanism behind proton conductivity. And finally we have proposed a structure for the gel paste with optimum P to Si ratio.Keywords: first principle calculation, molecular dynamics simulation, phosphorous and silica based 3D inorganic gel, polymer electrolyte membrane fuel cells, proton conductivity
Procedia PDF Downloads 1325176 Numerical Analysis of Bearing Capacity of Caissons Subjected to Inclined Loads
Authors: Hooman Dabirmanesh, Mahmoud Ghazavi, Kazem Barkhordari
Abstract:
A finite element modeling for determination of the bearing capacity of caissons subjected to inclined loads is presented in this paper. The model investigates the uplift capacity of the caisson with varying cross sectional area. To this aim, the behavior of the soil is assumed to be elasto-plastic, and its failure is controlled by Modified Cam-Clay failure criterion. The simulation takes into account the couple analysis. The approach is verified using available data from other research work especially centrifuge data. Parametric studies are subsequently performed to investigate the effect of contributing parameters such as aspect ratio of the caisson, the loading rate, the loading direction angle, and points where the external load is applied. In addition, the influence of the caisson geometry is taken into account. The results show the bearing capacity of the caisson increases with increasing the taper angle. Hence, the pullout capacity will increase using the same material. In addition, the bearing capacity of caissons strongly depends on the suction that is generated at tip and in sealed surface on top of caisson. Other results concerning the influencing factors will be presented.Keywords: aspect ratio, finite element method, inclined load, modified Cam clay, taper angle, undrained condition
Procedia PDF Downloads 2685175 The Science of Successful Intimate Relationship in China: A Discourse Analytic Examination of Sex and Relationships Advice in Ayawawa’s Book
Authors: Hanlei Yang
Abstract:
As a kind of popular culture in modern China, advice book on intimate relationship is turning into an important and controversial site with conflicts among neoliberalism, authoritative socialism, market-oriented principles, the science of successful sex and relationship, cosmopolitan notions of nuclear families, and the revitalization of Confucian conservatism and patriarchy. Accelerated modernization and marketization has contributed to great changes in China’s culture and social relations, which accordingly reconceptualizes and reconstructs family structures and moral ethics, particularly urban middle-class nuclear families. To comprehend the meaning of advice book fad in moral and social order, this research proposes to (i) understand the implication of Ayawawa through discourse analysis and how she mobilizes rhetorical devices and cultural resources to present a persuasive and scientific method of managing intimate relationship, (ii) examine the critical role of neoliberalism, post-feminism, and Confucian patriarchy assumed by Ayawawa in her books, (iii) explore how Ayawawa and her fans engage in establishing a model of intimate relationship and sexual subjectivity ordered by neoliberalism, class identity and authoritative socialism. Finally, this research argues that such new fad of a cultural phenomenon is gradually completed in the process of cooperation and negotiation of the state, commercial institutions, and intellectual elite agents. It helps to further learn about (i) the routine life under the influence of neoliberalism and modern hegemony, (ii) the perplexing relationship between China's indigenous cultural forms, global socio-economic and cultural influences in the late modern era.Keywords: cultural study, intimate relationship, culture sociology, gender study
Procedia PDF Downloads 1445174 Monitoring Blood Pressure Using Regression Techniques
Authors: Qasem Qananwah, Ahmad Dagamseh, Hiam AlQuran, Khalid Shaker Ibrahim
Abstract:
Blood pressure helps the physicians greatly to have a deep insight into the cardiovascular system. The determination of individual blood pressure is a standard clinical procedure considered for cardiovascular system problems. The conventional techniques to measure blood pressure (e.g. cuff method) allows a limited number of readings for a certain period (e.g. every 5-10 minutes). Additionally, these systems cause turbulence to blood flow; impeding continuous blood pressure monitoring, especially in emergency cases or critically ill persons. In this paper, the most important statistical features in the photoplethysmogram (PPG) signals were extracted to estimate the blood pressure noninvasively. PPG signals from more than 40 subjects were measured and analyzed and 12 features were extracted. The features were fed to principal component analysis (PCA) to find the most important independent features that have the highest correlation with blood pressure. The results show that the stiffness index means and standard deviation for the beat-to-beat heart rate were the most important features. A model representing both features for Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP) was obtained using a statistical regression technique. Surface fitting is used to best fit the series of data and the results show that the error value in estimating the SBP is 4.95% and in estimating the DBP is 3.99%.Keywords: blood pressure, noninvasive optical system, principal component analysis, PCA, continuous monitoring
Procedia PDF Downloads 164