Search results for: adiabatic surface temperature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11950

Search results for: adiabatic surface temperature

4090 Rice Husk Silica as an Alternative Material for Renewable Energy

Authors: Benedict O. Ayomanor, Cookey Iyen, Ifeoma S. Iyen

Abstract:

Rice hull (RH) biomass product gives feasible silica for exact temperature and period. The minimal fabrication price turns its best feasible produce to metallurgical grade silicon (MG-Si). In this work, to avoid ecological worries extending from CO₂ release to oil leakage on water and land, or nuclear left-over pollution, all finally add to the immense topics of ecological squalor; high purity silicon > 98.5% emerge set from rice hull ash (RHA) by solid-liquid removal. The RHA derived was purified by nitric and hydrochloric acid solutions. Leached RHA sieved, washed in distilled water, and desiccated at 1010ºC for 4h. Extra cleansing was achieved by carefully mixing the SiO₂ ash through Mg dust at a proportion of 0.9g SiO₂ to 0.9g Mg, galvanised at 1010ºC to formula magnesium silicide. The solid produced was categorised by X-ray fluorescence (XRF), X-ray diffractometer (XRD), and Fourier transformation infrared (FTIR) spectroscopy. Elemental analysis using XRF found the percentage of silicon in the material is approximately 98.6%, main impurities are Mg (0.95%), Ca (0.09%), Fe (0.3%), K (0.25%), and Al (0.40%).

Keywords: siliceous, leached, biomass, solid-liquid extraction

Procedia PDF Downloads 55
4089 Principles of Municipal Sewage Sludge Bioconversion into Biomineral Fertilizer

Authors: K. V. Kalinichenko, G. N. Nikovskaya

Abstract:

The efficiency of heavy metals removal from sewage sludge in bioleaching with heterotrophic, chemoautotrophic (sulphur-oxidizing) sludge cenoses and chemical leaching (in distilled water, weakly acidic or alkaline medium) was compared. The efficacy of heavy metals removal from sewage sludge varied from 83 % (Zn) up to 14 % (Cr) and followed the order: Zn > Mn > Cu > Ni > Co > Pb > Cr. The advantages of metals bioleaching process at heterotrophic metabolism was shown. A new process for bioconversation of sewage sludge into fertilizer at middle temperature after partial heavy metals removal was developed. This process is based on enhancing vital ability of heterotrophic microorganisms by adding easily metabolized nutrients and synthesis of metabolites by growing sludge cenoses. These metabolites possess the properties of heavy metals extractants and flocculants which provide sludge flocks sedimentation and concentration. The process results in biomineral fertilizer with immobilized sludge bioelements with prolonged action. The fertilizer obtained satisfied the EU limits for the sewage sludge of agricultural utilization. High efficiency of the biomineral fertilizers obtained has been demonstrated in vegetation experiments.

Keywords: fertilizer, heavy metals, leaching, sewage sludge

Procedia PDF Downloads 362
4088 Evaluation of MPPT Algorithms for Photovoltaic Generator by Comparing Incremental Conductance Method, Perturbation and Observation Method and the Method Using Fuzzy Logic

Authors: Elmahdi Elgharbaoui, Tamou Nasser, Ahmed Essadki

Abstract:

In the era of sustainable development, photovoltaic (PV) technology has shown significant potential as a renewable energy source. Photovoltaic generators (GPV) have a non-linear current-voltage characteristic, with a maximum power point (MPP) characterized by an optimal voltage, and depends on environmental factors such as temperature and irradiation. To extract each time the maximum power available at the terminals of the GPV and transfer it to the load, an adaptation stage is used, consisting of a boost chopper controlled by a maximum power point tracking technique (MPPT) through a stage of pulse width modulation (PWM). Our choice has focused on three techniques which are: the perturbation and observation method (P&O), the incremental conductance method (InCond) and the last is that of control using the fuzzy logic. The implementation and simulation of the system (photovoltaic generator, chopper boost, PWM and MPPT techniques) are then performed in the Matlab/Simulink environment.

Keywords: photovoltaic generator, technique MPPT, boost chopper, PWM, fuzzy logic, P&O, InCond

Procedia PDF Downloads 307
4087 In-Vitro and Antibacterial Studies for Silicate-Phosphate Glasses Formed with Biosynthesized Silica

Authors: Damandeep Kaur, O.P. Pandey, M.S. Reddy

Abstract:

In the present research, bio-synthesisation of silica particles has been carried out successfully. For this purpose, agriculture waste rice husk (RH) has been utilized. Among several types of agriculture waste, RH is considered to be cost-effective and easily accessible. In the present investigation, a chemical approach has been followed to extract silica nanoparticles. X-Ray Diffraction (XRD) patterns indicated the amorphous nature of silica at lower temperature range. Silica and other mineral contents have been found using energy dispersive spectroscopy (EDS). Morphological and structural studies have been carried out with the use of Field Emission Scanning Electron Microscopy (FE-SEM) and Fourier Transform Infrared Transmission (FTIR) spectroscopy. Further, extracted silica from RH has been used for preparation of the glasses. The appearance of broad humps in XRD patterns confirmed the amorphous nature of prepared glasses. These glasses exhibited enhanced antibacterial effect against both Gram-positive and Gram-negative bacteria. The as-synthesized glass samples can be further used for physical and structural studies for drug loading applications.

Keywords: rice husk, biosynthesized silica, bioactive glasses, antibacterial studies

Procedia PDF Downloads 98
4086 Understanding the Role of Alkali-Free Accelerators in Wet-Mix Shotcrete

Authors: Ezgi Yurdakul, Klaus-Alexander Rieder, Richard Sibbick

Abstract:

Most of the shotcrete projects require compliance with meeting a specified early-age strength target (e.g., reaching 1 MPa in 1 hour) that is selected based on the underground conditions. To meet the desired early-age performance characteristics, accelerators are commonly used as they increase early-age strength development rate and accelerate the setting thereby reducing sagging and rebound. The selection of accelerator type and its dosage is made by the setting time and strength required for the shotcrete application. While alkaline and alkali-free accelerators are the two main types used in wet-mix shotcrete; alkali-free admixtures increasingly substitute the alkaline accelerators to improve the performance and working safety. This paper aims to evaluate the impact of alkali-free accelerators in wet-mix on various tests including set time, early and later-age compressive strength, boiled absorption, and electrical resistivity. Furthermore, the comparison between accelerated and non-accelerated samples will be made to demonstrate the interaction between cement and accelerators. Scanning electron microscopy (SEM), fluorescent resin impregnated thin section and cut and polished surface images will be used to understand the microstructure characterization of mixes in the presence of accelerators.

Keywords: accelerators, chemical admixtures, shotcrete, sprayed concrete

Procedia PDF Downloads 154
4085 Open Forging of Cylindrical Blanks Subjected to Lateral Instability

Authors: A. H. Elkholy, D. M. Almutairi

Abstract:

The successful and efficient execution of a forging process is dependent upon the correct analysis of loading and metal flow of blanks. This paper investigates the Upper Bound Technique (UBT) and its application in the analysis of open forging process when a possibility of blank bulging exists. The UBT is one of the energy rate minimization methods for the solution of metal forming process based on the upper bound theorem. In this regards, the kinematically admissible velocity field is obtained by minimizing the total forging energy rate. A computer program is developed in this research to implement the UBT. The significant advantages of this method is the speed of execution while maintaining a fairly high degree of accuracy and the wide prediction capability. The information from this analysis is useful for the design of forging processes and dies. Results for the prediction of forging loads and stresses, metal flow and surface profiles with the assured benefits in terms of press selection and blank preform design are outlined in some detail. The obtained predictions are ready for comparison with both laboratory and industrial results.

Keywords: forging, upper bound technique, metal forming, forging energy, forging die/platen

Procedia PDF Downloads 277
4084 Registration of Multi-Temporal Unmanned Aerial Vehicle Images for Facility Monitoring

Authors: Dongyeob Han, Jungwon Huh, Quang Huy Tran, Choonghyun Kang

Abstract:

Unmanned Aerial Vehicles (UAVs) have been used for surveillance, monitoring, inspection, and mapping. In this paper, we present a systematic approach for automatic registration of UAV images for monitoring facilities such as building, green house, and civil structures. The two-step process is applied; 1) an image matching technique based on SURF (Speeded up Robust Feature) and RANSAC (Random Sample Consensus), 2) bundle adjustment of multi-temporal images. Image matching to find corresponding points is one of the most important steps for the precise registration of multi-temporal images. We used the SURF algorithm to find a quick and effective matching points. RANSAC algorithm was used in the process of finding matching points between images and in the bundle adjustment process. Experimental results from UAV images showed that our approach has a good accuracy to be applied to the change detection of facility.

Keywords: building, image matching, temperature, unmanned aerial vehicle

Procedia PDF Downloads 278
4083 Sustainable Separation of Nicotine from Its Aqueous Solutions

Authors: Zoran Visak, Joana Lopes, Vesna Najdanovic-Visak

Abstract:

Within this study, the separation of nicotine from its aqueous solutions, using inorganic salt sodium chloride or ionic liquid (molten salt) ECOENG212® as salting-out media, was carried out. Thus, liquid-liquid equilibria of the ternary solutions (nicotine+water+NaCl) and (nicotine+water+ECOENG212®) were determined at ambient pressure, 0.1 MPa, at three temperatures. The related phase diagrams were constructed in two manners: by adding the determined cloud-points and by the chemical analysis of phases in equilibrium (tie-line data). The latter were used to calculate two important separation parameters - partition coefficients of nicotine and separation factors. The impacts of the initial compositions of the mother solutions and of temperature on the liquid-liquid phase separation and partition coefficients were analyzed and discussed. The results obtained clearly showed that both investigated salts are good salting-out media for the efficient and sustainable separation of nicotine from its solutions with water. However, when compared, sodium chloride exhibited much better separation performance than the ionic liquid.

Keywords: nicotine, liquid-liquid separation, inorganic salt, ionic liquid

Procedia PDF Downloads 293
4082 Analysis of Generated Biogas from Anaerobic Digestion of Piggery Dung

Authors: Babatope Alabadan, Adeyinka Adesanya, I. E. Afangideh

Abstract:

The use of energy is paramount to human existence. Every activity globally revolves round it. Over the years, different sources of energy (petroleum fuels predominantly) have been utilized. Animal waste treatment on the farm is a phenomenon that has called for rapt research attention. Generated wastes on farm pollute the environment in diverse ways. Waste-to-bioenergy treatments can provide livestock operators with multiple value-added, renewable energy products. The objective of this work is to generate methane (CH4) gas from the anaerobic digestion of piggery dung. A retention time of 15 and 30 days and a mesophilic temperature range were selected. The generated biogas composition was methane (CH4), carbondioxide (CO2), hydrogen sulphide (H2S) and ammonia (NH3) using gas chromatography method. At 15 days retention time, 60% of (CH4) was collected while CO2 and traces of H2S and NH3 accounted for 40%. At 30 days retention time, 75% of CH4, 20% of CO2 was collected while traces of H2S and NH3 amounted to 5%. For on and off farm uses, biogas can be upgraded to biomethane by removing the CO2, NH3 and H2S. This product (CH4) can meet heating and power needs or serve as transportation fuels

Keywords: anaerobic digestion, biogas, methane, piggery dung

Procedia PDF Downloads 322
4081 Wireless Capsule Endoscope - Antenna and Channel Characterization

Authors: Mona Elhelbawy, Mac Gray

Abstract:

Traditional wired endoscopy is an intrusive process that requires a long flexible tube to be inserted through the patient’s mouth while intravenously sedated. Only images of the upper 4 feet of stomach, colon, and rectum can be captured, leaving the remaining 20 feet of small intestines. Wireless capsule endoscopy offers a painless, non-intrusive, efficient and effective alternative to traditional endoscopy. In wireless capsule endoscopy (WCE), ingestible vitamin-pill-shaped capsules with imaging capabilities, sensors, batteries, and antennas are designed to send images of the gastrointestinal (GI) tract in real time. In this paper, we investigate the radiation performance and specific absorption rate (SAR) of a miniature conformal capsule antenna operating at the Medical Implant Communication Service (MICS) frequency band in the human body. We perform numerical simulations using the finite element method based commercial software, high-frequency structure simulator (HFSS) and the ANSYS human body model (HBM). We also investigate the in-body channel characteristics between the implantable capsule and an external antenna placed on the surface of the human body.

Keywords: IEEE 802.15.6, MICS, SAR, WCE

Procedia PDF Downloads 112
4080 Achievement of Livable and Healthy City through the Design of Green and Blue Infrastructure: A Case Study on City of Isfahan, Iran

Authors: Reihaneh Rafiemanzelat

Abstract:

due to towards the rapid urbanization, cities throughout the world faced to rapid growth through gray infrastructure. Therefore designing cities based on green and blue infrastructure can offer the best solution to support healthy urban environment. This conformation with a wide range of ecosystem service has a positive impact on the regulation of air temperature, noise reduction, air quality, and also create a pleasant environment for humans activities. Research mainly focuses on the concept and principles of green and blue infrastructure in the city of Esfahan at the center of Iran in order to create a livable and healthy environment. Design principles for green and blue infrastructure are classified into two different but interconnect evaluations. Healthy green infrastructure assessing based on; volume, shape, location, dispersion, and maintenance. For blue infrastructure there are three aspects of water and ecosystem which are; the contribution of water on medical health, the contribution of water on mental health, and creating possibilities to exercise.

Keywords: healthy cities, livability, urban landscape, green and blue infrastructure

Procedia PDF Downloads 285
4079 Guided Information Campaigns for Counter-Terrorism: Behavioral Approach to Interventions Regarding Polarized Societal Network

Authors: Joshua Midha

Abstract:

The basis for information campaigns and behavioral interventions has long reigned as a tactic. From the Soviet-era propaganda machines to the opinion hijacks in Iran, these measures are now commonplace and are used for dissemination and disassembly. However, the use of these tools for strategic diffusion, specifically in a counter-terrorism setting, has only been explored on the surface. This paper aims to introduce a larger conceptual portion of guided information campaigns into preexisting terror cells and situations. It provides an alternative, low-risk intervention platform for future military strategy. This paper highlights a theoretical framework to lay out the foundationary details and explanations for behavioral interventions and moves into using a case study to highlight the possibility of implementation. It details strategies, resources, circumstances, and risk factors for intervention. It also sets an expanding foundation for offensive PsyOps and argues for tactical diffusion of information to battle extremist sentiment. The two larger frameworks touch on the internal spread of information within terror cells and external political sway, thus charting a larger holistic purpose of strategic operations.

Keywords: terrorism, behavioral intervention, propaganda, SNA, extremism

Procedia PDF Downloads 83
4078 Fundamental Research Dissension between Hot and Cold Chamber High Pressure Die Casting

Authors: Sahil Kumar, Surinder Pal, Rahul Kapoor

Abstract:

This paper is focused on to define the basic difference between hot and cold chamber high pressure die casting process which is not fully defined in a research before paper which we have studied. The pressure die casting is basically defined into two types (1) Hot chamber Die Casting (2) Cold chamber Die Casting. Cold chamber die casting is used for casting alloys that require high pressure and have a high melting temperature, such as brass, aluminum, magnesium, copper based alloys and other high melting point nonferrous alloys. Hot chamber die casting is suitable for casting zinc, tin, lead, and low melting point alloys. In hot chamber die casting machine, the molten metal is an integral pan of the machine. It mainly consists of hot chamber and gooseneck type metal container made of cast iron. This machine is mainly used for low melting alloys and alloys of metals like zinc, lead etc. Metals and alloys having a high melting point and those which are having an affinity for iron cannot be cast by this machine, which could otherwise attack the shot sleeve and damage the machine.

Keywords: hot chamber die casting, cold chamber die casting, metals and alloys, casting technology

Procedia PDF Downloads 602
4077 The Findings EEG-LORETA about Epilepsy

Authors: Leila Maleki, Ahmad Esmali Kooraneh, Hossein Taghi Derakhshi

Abstract:

Neural activity in the human brain starts from the early stages of prenatal development. This activity or signals generated by the brain are electrical in nature and represent not only the brain function but also the status of the whole body. At the present moment, three methods can record functional and physiological changes within the brain with high temporal resolution of neuronal interactions at the network level: the electroencephalogram (EEG), the magnet oencephalogram (MEG), and functional magnetic resonance imaging (fMRI); each of these has advantages and shortcomings. EEG recording with a large number of electrodes is now feasible in clinical practice. Multichannel EEG recorded from the scalp surface provides a very valuable but indirect information about the source distribution. However, deep electrode measurements yield more reliable information about the source locations، Intracranial recordings and scalp EEG are used with the source imaging techniques to determine the locations and strengths of the epileptic activity. As a source localization method, Low Resolution Electro-Magnetic Tomography (LORETA) is solved for the realistic geometry based on both forward methods, the Boundary Element Method (BEM) and the Finite Difference Method (FDM). In this paper, we review The findings EEG- LORETA about epilepsy.

Keywords: epilepsy, EEG, EEG-LORETA

Procedia PDF Downloads 527
4076 The Effect of Nanoclay on Long Term Performance of Asphalt Concrete Pavement

Authors: A. Khodadadi, Hasani, Salehi

Abstract:

The advantages of using modified asphalt binders are widely recognized—primarily, improved rutting resistance, reduced fatigue cracking and less cold-temperature cracking. Nanoclays are known to enhance the properties of many polymers. Nanoclays are used to improve modulus and tensile strength, flame resistance and thermal and structural properties of many materials. This paper intends to investigate the application and development of nano-technological concepts for bituminous materials and asphalt pavements. The application of nano clay on the fatigue life of asphalt pavement have not been yet thoroughly understood. In this research, two type of highway asphalt materials, dense Marshall specimens, with 2% nano clay and without nano clay, were employed for the fatigue behavior of the asphalt pavement.The effect of nano additive on the performance of flexible pavements has been investigated through the indirect tensile test for the samples prepared with 2% nano clay and without nano clay in four stress levels from 200–500 kPa. The primary results indicated samples with 2% nano clay have almost double or even more fatigue life in most of stress levels.

Keywords: Nano clay, Asphalt, fatigue life, pavement

Procedia PDF Downloads 437
4075 Efficiency Enhancement of Photovoltaic Panels Using an Optimised Air Cooled Heat Sink

Authors: Wisam K. Hussam, Ali Alfeeli, Gergory J. Sheard

Abstract:

Solar panels that use photovoltaic (PV) cells are popular for converting solar radiation into electricity. One of the major problems impacting the performance of PV panels is the overheating caused by excessive solar radiation and high ambient temperatures, which degrades the efficiency of the PV panels remarkably. To overcome this issue, an aluminum heat sink was used to dissipate unwanted heat from PV cells. The dimensions of the heat sink were determined considering the optimal fin spacing that fulfils hot climatic conditions. In this study, the effects of cooling on the efficiency and power output of a PV panel were studied experimentally. Two PV modules were used: one without and one with a heat sink. The experiments ran for 11 hours from 6:00 a.m. to 5:30 p.m. where temperature readings in the rear and front of both PV modules were recorded at an interval of 15 minutes using sensors and an Arduino microprocessor. Results are recorded for both panels simultaneously for analysis, temperate comparison, and for power and efficiency calculations. A maximum increase in the solar to electrical conversion efficiency of 35% and almost 55% in the power output were achieved with the use of a heat sink, while temperatures at the front and back of the panel were reduced by 9% and 11%, respectively.

Keywords: photovoltaic cell, natural convection, heat sink, efficiency

Procedia PDF Downloads 134
4074 Cyber Security Enhancement via Software Defined Pseudo-Random Private IP Address Hopping

Authors: Andre Slonopas, Zona Kostic, Warren Thompson

Abstract:

Obfuscation is one of the most useful tools to prevent network compromise. Previous research focused on the obfuscation of the network communications between external-facing edge devices. This work proposes the use of two edge devices, external and internal facing, which communicate via private IPv4 addresses in a software-defined pseudo-random IP hopping. This methodology does not require additional IP addresses and/or resources to implement. Statistical analyses demonstrate that the hopping surface must be at least 1e3 IP addresses in size with a broad standard deviation to minimize the possibility of coincidence of monitored and communication IPs. The probability of breaking the hopping algorithm requires a collection of at least 1e6 samples, which for large hopping surfaces will take years to collect. The probability of dropped packets is controlled via memory buffers and the frequency of hops and can be reduced to levels acceptable for video streaming. This methodology provides an impenetrable layer of security ideal for information and supervisory control and data acquisition systems.

Keywords: moving target defense, cybersecurity, network security, hopping randomization, software defined network, network security theory

Procedia PDF Downloads 170
4073 The Effect of Glass Thickness on Stress in Vacuum Glazing

Authors: Farid Arya, Trevor Hyde, Andrea Trevisi, Paolo Basso, Danilo Bardaro

Abstract:

Heat transfer through multiple pane windows can be reduced by creating a vacuum pressure less than 0.1 Pa between the glass panes, with low emittance coatings on one or more of the internal surfaces. Fabrication of vacuum glazing (VG) requires the formation of a hermetic seal around the periphery of the glass panes together with an array of support pillars between the panes to prevent them from touching under atmospheric pressure. Atmospheric pressure and temperature differentials induce stress which can affect the integrity of the glazing. Several parameters define the stresses in VG including the glass thickness, pillar specifications, glazing dimensions and edge seal configuration. Inherent stresses in VG can result in fractures in the glass panes and failure of the edge seal. In this study, stress in VG with different glass thicknesses is theoretically studied using Finite Element Modelling (FEM). Based on the finding in this study, suggestions are made to address problems resulting from the use of thinner glass panes in the fabrication of VG. This can lead to the development of high performance, light and thin VG.

Keywords: vacuum glazing, stress, vacuum insulation, support pillars

Procedia PDF Downloads 173
4072 Design of Strain Sensor Based on Cascaded Fiber Bragg Grating for Remote Sensing Monitoring Application

Authors: Arafat A. A. Shabaneh

Abstract:

Harsh environments demand a developed detection of an optical communication system to ensure a high level of security and safety. Fiber Bragg gratings (FBG) are emerging sensing instruments that respond to variations in strain and temperature via varying wavelengths. In this paper, cascaded uniform FBG as a strain sensor for 6 km length at 1550 nm wavelength with 30 oC is designed with analyzing of dynamic strain and wavelength shifts. FBG is placed in a small segment of optical fiber, which reflects light of a specific wavelength and passes the remaining wavelengths. This makes a periodic alteration in the refractive index within the fiber core. The alteration in the modal index of fiber produced due to strain consequences in a Bragg wavelength. When the developed sensor exposure to a strain of cascaded uniform FBG by 0.01, the wavelength is shifted to 0.0000144383 μm. The sensing accuracy of the developed sensor is 0.0012. Simulation results show reliable and effective strain monitoring sensors for remote sensing applications.

Keywords: Cascaded fiber Bragg gratings, Strain sensor, Remote sensing, Wavelength shift

Procedia PDF Downloads 188
4071 Comparison of Different Electrical Machines with Permanent Magnets in the Stator for Use as an Industrial Drive

Authors: Marcel Lehr, Andreas Binder

Abstract:

This paper compares three different permanent magnet synchronous machines (Doubly-Salient-Permanent-Magnet-Machine (DSPM), Flux-Reversal-Permanent-Magnet-Machine (FRPM), Flux-Switching-Permanent-Magnet-Machine (FSPM)) with the permanent magnets in the stator of the machine for use as an industrial drive for 400 V Y, 45 kW and 1000 ... 3000 min-1. The machines are compared based on the magnetic co-energy and Finite-Element-Method-Simulations regarding the torque density. The results show that the FSPM provides the highest torque density of the three machines. Therefore, an FSPM prototype was built, tested on a test bench and finally compared with an already built conventional permanent magnet synchronous machine (PMSM) of the same size (stator outer diameter dso = 314 mm, axial length lFe = 180 mm) and rating with surface-mounted rotor magnets. These measurements show that the conventional PMSM and the FSPM machine are roughly equivalent in their electrical behavior.

Keywords: doubly-salient-permanent-magnet-machine, flux-reversal-permanent-magnet-machine, flux-switching-permanent-magnet-machine, industrial drive

Procedia PDF Downloads 350
4070 Development and Characterization of a Polymer Composite Electrolyte to Be Used in Proton Exchange Membranes Fuel Cells

Authors: B. A. Berns, V. Romanovicz, M. M. de Camargo Forte, D. E. O. S. Carpenter

Abstract:

The Proton Exchange Membranes (PEM) are largely studied because they operate at low temperatures and they are suitable for mobile applications. However, There are some deficiencies in their operation, Mainly those that use ethanol as a hydrogen source that require a certain attention. Therefore, This research aimed to develop Nafion® composite membranes, Mixing clay minerals, Kaolin and halloysite to the polymer matrix in order to improve the ethanol molecule retentions and at the same time to keep the system’s protonic conductivity. The modified Nafion/Kaolin, Nafion/Halloysite composite membranes were prepared in weight proportion of 0.5, 1.0 and 1.5. The membranes obtained were characterized as to their ethanol permeability, Protonic conductivity and water absorption. The composite morphology and structure are characterized by SEM and EDX and also the thermal behavior is determined by TGA and DSC. The analysis of the results shows ethanol permeability reduction from 48% to 63%. However, The protonic conductivity results are lower in relation to pure Nafion®. As to the thermal behavior, The Nafion® composite membranes were stable up to a temperature of 325ºC.

Keywords: Polymer-matrix composites (PMCs), thermal properties, nanoclay, differential scanning calorimetry

Procedia PDF Downloads 383
4069 Recovery of Value-Added Whey Proteins from Dairy Effluent Using Aqueous Two-Phase System

Authors: Perumalsamy Muthiah, Murugesan Thanapalan

Abstract:

The remains of cheese production contain nutritional value added proteins viz., α-Lactalbumin, β-Lactoglobulin representing 80- 90% of the total volume of milk entering the process. Although several possibilities for cheese-whey exploitation have been assayed, approximately half of world cheese-whey production is not treated but is discarded as effluent. It is necessary to develop an effective and environmentally benign extraction process for the recovery of value added cheese whey proteins. Recently aqueous two phase system (ATPS) have emerged as potential separation process, particularly in the field of biotechnology due to the mild conditions of the process, short processing time, and ease of scale-up. In order to design an ATPS process for the recovery of cheese whey proteins, development of phase diagram and the effect of system parameters such as pH, types and the concentrations of the phase forming components, temperature, etc., on the partitioning of proteins were addressed in order to maximize the recovery of proteins. Some of the practical problems encountered in the application of aqueous two-phase systems for the recovery of Cheese whey proteins were also discussed.

Keywords: aqueous two-phase system, phase diagram, extraction, cheese whey

Procedia PDF Downloads 396
4068 Simulation of 1D Dielectric Barrier Discharge in Argon Mixtures

Authors: Lucas Wilman Crispim, Patrícia Hallack, Maikel Ballester

Abstract:

This work aims at modeling electric discharges in gas mixtures. The mathematical model mimics the ignition process in a commercial spark-plug when a high voltage is applied to the plug terminals. A longitudinal unidimensional Cartesian domain is chosen for the simulation region. Energy and mass transfer are considered for a macroscopic fluid representation, while energy transfer in molecular collisions and chemical reactions are contemplated at microscopic level. The macroscopic model is represented by a set of uncoupled partial differential equations. Microscopic effects are studied within a discrete model for electronic and molecular collisions in the frame of ZDPlasKin, a plasma modeling numerical tool. The BOLSIG+ solver is employed in solving the electronic Boltzmann equation. An operator splitting technique is used to separate microscopic and macroscopic models. The simulation gas is a mixture of atomic Argon neutral, excited and ionized. Spatial and temporal evolution of such species and temperature are presented and discussed.

Keywords: CFD, electronic discharge, ignition, spark plug

Procedia PDF Downloads 148
4067 Case Study: Hybrid Mechanically Stabilized Earth Wall System Built on Basal Reinforced Raft

Authors: S. Kaymakçı, D. Gündoğdu, H. Özçelik

Abstract:

The truck park of a warehouse for a chain of supermarket was going to be constructed on a poor ground. Rather than using a piled foundation, the client was convinced that a ground improvement using a reinforced foundation raft also known as “basal reinforcement” shall work. The retaining structures supporting the truck park area were designed using a hybrid structure made up of the Terramesh® Wall System and MacGrid™ high strength geogrids. The total wall surface area is nearly 2740 sq.m , reaching a maximum height of 13.00 meters. The area is located in the first degree seismic zone of Turkey and the design seismic acceleration is high. The design of walls has been carried out using pseudo-static method (limit equilibrium) taking into consideration different loading conditions using Eurocode 7. For each standard approach stability analysis in seismic condition were performed. The paper presents the detailed design of the reinforced soil structure, basal reinforcement and the construction methods; advantages of using such system for the project are discussed.

Keywords: basal reinforcement, geogrid, reinforced soil raft, reinforced soil wall, soil reinforcement

Procedia PDF Downloads 287
4066 Electromagnetic and Physicochemical Properties in the Addition of Silicon Oxide on the SSPS Renewable Films

Authors: Niloofar Alipoormazandarani

Abstract:

The rift environmental, efficiency and being environmental-friendly of these innovative food packaging in edible films made them as an alternative to synthetic packages. This issue has been widely studied in this experiment. Some of the greatest advances in food packaging industry is associated with nanotechnology. Recently, a polysaccharide extracted from the cell wall of soybean cotyledons: A soluble soybean polysaccharide (SSPS), a pectin-like structure. In this study, the addition (0%, 1%, 3%, and 5%) of nano silica dioxide (SiO2) film is examined SSPS in different features. The research aims to investigate the effect of nano-SiO2 on the physicochemical and electromagnetic properties of the SSPS films were sonicated and then heated to the melting point, besides the addition of plasticizer. After that, it has been cooled into the room temperature and were dried with Casting method. In final examinations,improvement in Moisture Content and Water Absorption was observed with a significant decrease.Also, in Color measurements there were some obvious differences. These reports indicate that the incorporation of nano-SiO2 and SSPS has the power to be extensively used in pharmaceutical and food packaging industry as well.

Keywords: SSPS, NanoSiO2, food packaging, renewable films

Procedia PDF Downloads 375
4065 Adsorption of Cd2+ from Aqueous Solutions Using Chitosan Obtained from a Mixture of Littorina littorea and Achatinoidea Shells

Authors: E. D. Paul, O. F. Paul, J. E. Toryila, A. J. Salifu, C. E. Gimba

Abstract:

Adsorption of Cd2+ ions from aqueous solution by Chitosan, a natural polymer, obtained from a mixture of the exoskeletons of Littorina littorea (Periwinkle) and Achatinoidea (Snail) was studied at varying adsorbent dose, contact time, metal ion concentrations, temperature and pH using batch adsorption method. The equilibrium adsorption isotherms were determined between 298 K and 345 K. The adsorption data were adjusted to Langmuir, Freundlich and the pseudo second order kinetic models. It was found that the Langmuir isotherm model most fitted the experimental data, with a maximum monolayer adsorption of 35.1 mgkg⁻¹ at 308 K. The entropy and enthalpy of adsorption were -0.1121 kJmol⁻¹K⁻¹ and -11.43 kJmol⁻¹ respectively. The Freundlich adsorption model, gave Kf and n values consistent with good adsorption. The pseudo-second order reaction model gave a straight line plot with rate constant of 1.291x 10⁻³ kgmg⁻¹ min⁻¹. The qe value was 21.98 mgkg⁻¹, indicating that the adsorption of Cadmium ion by the chitosan composite followed the pseudo-second order kinetic model.

Keywords: adsorption, chitosan, littorina littorea, achatinoidea, natural polymer

Procedia PDF Downloads 386
4064 Analysis of an Error Estimate for the Asymptotic Solution of the Heat Conduction Problem in a Dilated Pipe

Authors: E. Marušić-Paloka, I. Pažanin, M. Prša

Abstract:

Subject of this study is the stationary heat conduction problem through a pipe filled with incompressible viscous fluid. In previous work, we observed the existence and uniqueness theorems for the corresponding boundary-value problem and within we have taken into account the effects of the pipe's dilatation due to the temperature of the fluid inside of the pipe. The main difficulty comes from the fact that flow domain changes depending on the solution of the observed heat equation leading to a non-standard coupled governing problem. The goal of this work is to find solution estimate since the exact solution of the studied problem is not possible to determine. We use an asymptotic expansion in order of a small parameter which is presented as a heat expansion coefficient of the pipe's material. Furthermore, an error estimate is provided for the mentioned asymptotic approximation of the solution for inner area of the pipe. Close to the boundary, problem becomes more complex so different approaches are observed, mainly Theory of Perturbations and Separations of Variables. In view of that, error estimate for the whole approximation will be provided with additional software simulations of gotten situation.

Keywords: asymptotic analysis, dilated pipe, error estimate, heat conduction

Procedia PDF Downloads 223
4063 Magnetohydrodynamics (MHD) Boundary Layer Flow Past A Stretching Plate with Heat Transfer and Viscous Dissipation

Authors: Jiya Mohammed, Tsadu Shuaib, Yusuf Abdulhakeem

Abstract:

The research work focuses on the cases of MHD boundary layer flow past a stretching plate with heat transfer and viscous dissipation. The non-linear of momentum and energy equation are transform into ordinary differential equation by using similarity transformation, the resulting equation are solved using Adomian Decomposition Method (ADM). An attempt has been made to show the potentials and wide range application of the Adomian decomposition method in the comparison with the previous one in solving heat transfer problems. The Pade approximates value (η= 11[11, 11]) is use on the difficulty at infinity. The results are compared by numerical technique method. A vivid conclusion can be drawn from the results that ADM provides highly precise numerical solution for non-linear differential equations. The result where accurate especially for η ≤ 4, a general equating terms of Eckert number (Ec), Prandtl number (Pr) and magnetic parameter ( ) is derived which was used to investigate velocity and temperature profiles in boundary layer.

Keywords: MHD, Adomian decomposition, boundary layer, viscous dissipation

Procedia PDF Downloads 534
4062 Calcium Complexing Properties of Isosaccharinate Ion in Highly Alkaline Environment

Authors: Csilla Dudás, Éva Böszörményi, Bence Kutus, István Pálinkó, Pál Sipos

Abstract:

In this study the behavior of alpha-D-isosaccharinate (2-hydroxymethyl-3-deoxy-D-erythro-pentonate, ISA−) in alkaline medium in the presence of calcium was studied. At first the Ca–ISA system was studied by Ca-ion selective electrode (Ca-ISE) in neutral medium at T = 25 °C and I = 1 M NaCl to determine the formation constant of the CaISA+ monocomplex, which was found to be logK = 1.01 ± 0.01 for the reaction of Ca2+ + ISA– = CaISA+. In alkaline medium pH potentiometric titrations were carried out to determine the composition and stability constant of the complex(es) formed. It was found that in these systems above pH = 12.5 the predominant species is the CaISAOH complex. Its formation constant was found to be logK = 3.04 ± 0.05 for the reaction of Ca2+ + ISA– + H2O = CaISAOH + H+ at T = 25 °C and I = 1 M NaCl. Solubility measurements resulted in data consistent with those of the potentiometric titrations. Temperature dependent NMR spectra showed that the slow exchange range between the complex and the free ligand is below 5 °C. It was also showed that ISA– acts as a multidentate ligand forming macrochelate Ca-complexes. The structure of the complexes was determined by using ab initio quantum chemical calculations.

Keywords: Ca-ISE potentiometry, calcium complexes, isosaccharinate ion, NMR spectroscopy, pH potentiometry

Procedia PDF Downloads 249
4061 A Homogeneous Catalytic System for Decolorization of a Mixture of Orange G Acid and Naphthol Blue-Black Dye Based on Hydrogen Peroxide and a Recyclable DAWSON Type Heteropolyanion

Authors: Ouahiba Bechiri, Mostefa Abbessi

Abstract:

The color removal from industrial effluents is a major concern in wastewater treatment. The main objective of this work was to study the decolorization of a mixture of Orange G acid (OG) and naphthol blue black dye (NBB) in aqueous solution by hydrogen peroxide using [H1,5Fe1,5P2W12Mo6O61,23H2O] as catalyst. [H1,5Fe1,5P2 W12Mo6O61,23H2O] is a recyclable DAWSON type heteropolyanion. Effects of various experimental parameters of the oxidation reaction of the dye were investigated. The studied parameters were: the initial pH, H2O2 concentration, the catalyst mass and the temperature. The optimum conditions had been determined, and it was found that efficiency of degradation obtained after 15 minutes of reaction was about 100%. The optimal parameters were: initial pH = 3; [H2O2]0 = 0.08 mM; catalyst mass = 0.05g; for a concentration of dyes = 30mg/L.

Keywords: Dawson type heteropolyanion, naphthol blue-black, dye degradation, orange G acid, oxidation, hydrogen peroxide

Procedia PDF Downloads 345