Search results for: logistic model tree
10162 Automated End-to-End Pipeline Processing Solution for Autonomous Driving
Authors: Ashish Kumar, Munesh Raghuraj Varma, Nisarg Joshi, Gujjula Vishwa Teja, Srikanth Sambi, Arpit Awasthi
Abstract:
Autonomous driving vehicles are revolutionizing the transportation system of the 21st century. This has been possible due to intensive research put into making a robust, reliable, and intelligent program that can perceive and understand its environment and make decisions based on the understanding. It is a very data-intensive task with data coming from multiple sensors and the amount of data directly reflects on the performance of the system. Researchers have to design the preprocessing pipeline for different datasets with different sensor orientations and alignments before the dataset can be fed to the model. This paper proposes a solution that provides a method to unify all the data from different sources into a uniform format using the intrinsic and extrinsic parameters of the sensor used to capture the data allowing the same pipeline to use data from multiple sources at a time. This also means easy adoption of new datasets or In-house generated datasets. The solution also automates the complete deep learning pipeline from preprocessing to post-processing for various tasks allowing researchers to design multiple custom end-to-end pipelines. Thus, the solution takes care of the input and output data handling, saving the time and effort spent on it and allowing more time for model improvement.Keywords: augmentation, autonomous driving, camera, custom end-to-end pipeline, data unification, lidar, post-processing, preprocessing
Procedia PDF Downloads 12010161 Experiments on Weakly-Supervised Learning on Imperfect Data
Authors: Yan Cheng, Yijun Shao, James Rudolph, Charlene R. Weir, Beth Sahlmann, Qing Zeng-Treitler
Abstract:
Supervised predictive models require labeled data for training purposes. Complete and accurate labeled data, i.e., a ‘gold standard’, is not always available, and imperfectly labeled data may need to serve as an alternative. An important question is if the accuracy of the labeled data creates a performance ceiling for the trained model. In this study, we trained several models to recognize the presence of delirium in clinical documents using data with annotations that are not completely accurate (i.e., weakly-supervised learning). In the external evaluation, the support vector machine model with a linear kernel performed best, achieving an area under the curve of 89.3% and accuracy of 88%, surpassing the 80% accuracy of the training sample. We then generated a set of simulated data and carried out a series of experiments which demonstrated that models trained on imperfect data can (but do not always) outperform the accuracy of the training data, e.g., the area under the curve for some models is higher than 80% when trained on the data with an error rate of 40%. Our experiments also showed that the error resistance of linear modeling is associated with larger sample size, error type, and linearity of the data (all p-values < 0.001). In conclusion, this study sheds light on the usefulness of imperfect data in clinical research via weakly-supervised learning.Keywords: weakly-supervised learning, support vector machine, prediction, delirium, simulation
Procedia PDF Downloads 19710160 System Dynamics Projections of Environmental Issues for Domestic Water and Wastewater Scenarios in Urban Area of India
Authors: Isha Sharawat, R. P. Dahiya, T. R. Sreekrishnan
Abstract:
One of the environmental challenges in India is urban wastewater management as regulations and infrastructural development has not kept pace with the urbanization and growing population. The quality of life of people is also improving with the rapid growth of the gross domestic product. This has contributed to the enhancement in the per capita water requirement and consumption. More domestic water consumption generates more wastewater. The scarcity of potable water is making the situation quite serious, and water supply has to be regulated in most parts of the country during summer. This requires elaborate and concerted efforts to efficiently manage the water resources and supply systems. In this article, a system dynamics modelling approach is used for estimating the water demand and wastewater generation in a district headquarter city of North India. Projections are made till the year 2035. System dynamics is a software tool used for formulation of policies. On the basis of the estimates, policy scenarios are developed for sustainable development of water resources in conformity with the growing population. Mitigation option curtailing the water demand and wastewater generation include population stabilization, water reuse and recycle and water pricing. The model is validated quantitatively, and sensitivity analysis tests are carried out to examine the robustness of the model.Keywords: system dynamics, wastewater, water pricing, water recycle
Procedia PDF Downloads 26310159 Design of an Ensemble Learning Behavior Anomaly Detection Framework
Authors: Abdoulaye Diop, Nahid Emad, Thierry Winter, Mohamed Hilia
Abstract:
Data assets protection is a crucial issue in the cybersecurity field. Companies use logical access control tools to vault their information assets and protect them against external threats, but they lack solutions to counter insider threats. Nowadays, insider threats are the most significant concern of security analysts. They are mainly individuals with legitimate access to companies information systems, which use their rights with malicious intents. In several fields, behavior anomaly detection is the method used by cyber specialists to counter the threats of user malicious activities effectively. In this paper, we present the step toward the construction of a user and entity behavior analysis framework by proposing a behavior anomaly detection model. This model combines machine learning classification techniques and graph-based methods, relying on linear algebra and parallel computing techniques. We show the utility of an ensemble learning approach in this context. We present some detection methods tests results on an representative access control dataset. The use of some explored classifiers gives results up to 99% of accuracy.Keywords: cybersecurity, data protection, access control, insider threat, user behavior analysis, ensemble learning, high performance computing
Procedia PDF Downloads 12710158 Influence of Torrefied Biomass on Co-Combustion Behaviors of Biomass/Lignite Blends
Authors: Aysen Caliskan, Hanzade Haykiri-Acma, Serdar Yaman
Abstract:
Co-firing of coal and biomass blends is an effective method to reduce carbon dioxide emissions released by burning coals, thanks to the carbon-neutral nature of biomass. Besides, usage of biomass that is renewable and sustainable energy resource mitigates the dependency on fossil fuels for power generation. However, most of the biomass species has negative aspects such as low calorific value, high moisture and volatile matter contents compared to coal. Torrefaction is a promising technique in order to upgrade the fuel properties of biomass through thermal treatment. That is, this technique improves the calorific value of biomass along with serious reductions in the moisture and volatile matter contents. In this context, several woody biomass materials including Rhododendron, hybrid poplar, and ash-tree were subjected to torrefaction process in a horizontal tube furnace at 200°C under nitrogen flow. In this way, the solid residue obtained from torrefaction that is also called as 'biochar' was obtained and analyzed to monitor the variations taking place in biomass properties. On the other hand, some Turkish lignites from Elbistan, Adıyaman-Gölbaşı and Çorum-Dodurga deposits were chosen as coal samples since these lignites are of great importance in lignite-fired power stations in Turkey. These lignites were blended with the obtained biochars for which the blending ratio of biochars was kept at 10 wt% and the lignites were the dominant constituents in the fuel blends. Burning tests of the lignites, biomasses, biochars, and blends were performed using a thermogravimetric analyzer up to 900°C with a heating rate of 40°C/min under dry air atmosphere. Based on these burning tests, properties relevant to burning characteristics such as the burning reactivity and burnout yields etc. could be compared to justify the effects of torrefaction and blending. Besides, some characterization techniques including X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM) were also conducted for the untreated biomass and torrefied biomass (biochar) samples, lignites and their blends to examine the co-combustion characteristics elaborately. Results of this study revealed the fact that blending of lignite with 10 wt% biochar created synergistic behaviors during co-combustion in comparison to the individual burning of the ingredient fuels in the blends. Burnout and ignition performances of each blend were compared by taking into account the lignite and biomass structures and characteristics. The blend that has the best co-combustion profile and ignition properties was selected. Even though final burnouts of the lignites were decreased due to the addition of biomass, co-combustion process acts as a reasonable and sustainable solution due to its environmentally friendly benefits such as reductions in net carbon dioxide (CO2), SOx and hazardous organic chemicals derived from volatiles.Keywords: burnout performance, co-combustion, thermal analysis, torrefaction pretreatment
Procedia PDF Downloads 33810157 3D Classification Optimization of Low-Density Airborne Light Detection and Ranging Point Cloud by Parameters Selection
Authors: Baha Eddine Aissou, Aichouche Belhadj Aissa
Abstract:
Light detection and ranging (LiDAR) is an active remote sensing technology used for several applications. Airborne LiDAR is becoming an important technology for the acquisition of a highly accurate dense point cloud. A classification of airborne laser scanning (ALS) point cloud is a very important task that still remains a real challenge for many scientists. Support vector machine (SVM) is one of the most used statistical learning algorithms based on kernels. SVM is a non-parametric method, and it is recommended to be used in cases where the data distribution cannot be well modeled by a standard parametric probability density function. Using a kernel, it performs a robust non-linear classification of samples. Often, the data are rarely linearly separable. SVMs are able to map the data into a higher-dimensional space to become linearly separable, which allows performing all the computations in the original space. This is one of the main reasons that SVMs are well suited for high-dimensional classification problems. Only a few training samples, called support vectors, are required. SVM has also shown its potential to cope with uncertainty in data caused by noise and fluctuation, and it is computationally efficient as compared to several other methods. Such properties are particularly suited for remote sensing classification problems and explain their recent adoption. In this poster, the SVM classification of ALS LiDAR data is proposed. Firstly, connected component analysis is applied for clustering the point cloud. Secondly, the resulting clusters are incorporated in the SVM classifier. Radial basic function (RFB) kernel is used due to the few numbers of parameters (C and γ) that needs to be chosen, which decreases the computation time. In order to optimize the classification rates, the parameters selection is explored. It consists to find the parameters (C and γ) leading to the best overall accuracy using grid search and 5-fold cross-validation. The exploited LiDAR point cloud is provided by the German Society for Photogrammetry, Remote Sensing, and Geoinformation. The ALS data used is characterized by a low density (4-6 points/m²) and is covering an urban area located in residential parts of the city Vaihingen in southern Germany. The class ground and three other classes belonging to roof superstructures are considered, i.e., a total of 4 classes. The training and test sets are selected randomly several times. The obtained results demonstrated that a parameters selection can orient the selection in a restricted interval of (C and γ) that can be further explored but does not systematically lead to the optimal rates. The SVM classifier with hyper-parameters is compared with the most used classifiers in literature for LiDAR data, random forest, AdaBoost, and decision tree. The comparison showed the superiority of the SVM classifier using parameters selection for LiDAR data compared to other classifiers.Keywords: classification, airborne LiDAR, parameters selection, support vector machine
Procedia PDF Downloads 14610156 A Causal Model for Environmental Design of Residential Community for Elderly Well-Being in Thailand
Authors: Porntip Ruengtam
Abstract:
This article is an extension of previous research presenting the relevant factors related to environmental perceptions, residential community, and the design of a healing environment, which have effects on the well-being and requirements of Thai elderly. Research methodology began with observations and interviews in three case studies in terms of the management processes and environment design of similar existing projects in Thailand. The interview results were taken to summarize with related theories and literature. A questionnaire survey was designed for data collection to confirm the factors of requirements in a residential community intended for the Thai elderly. A structural equation model (SEM) was formulated to explain the cause-effect factors for the requirements of a residential community for Thai elderly. The research revealed that the requirements of a residential community for Thai elderly were classified into three groups when utilizing a technique for exploratory factor analysis. The factors were comprised of (1) requirements for general facilities and activities, (2) requirements for facilities related to health and security, and (3) requirements for facilities related to physical exercise in the residential community. The results from the SEM showed the background of elderly people had a direct effect on their requirements for a residential community from various aspects. The results should lead to the formulation of policies for design and management of residential communities for the elderly in order to enhance quality of life as well as both the physical and mental health of the Thai elderly.Keywords: elderly, environmental design, residential community, structural equation modeling
Procedia PDF Downloads 31210155 Close-Out Netting Clauses from a Comparative Perspective
Authors: Lidija Simunovic
Abstract:
A Close-out netting cause is a clause within master agreements which reduces credit risks. This clause contains the parties ' advance agreement that the occurrence of a certain event (such as the commencement of bankruptcy proceedings) will result in the termination of the contract and that their mutual claims will be calculated as a net lump-sum to be paid by one party to the other. The legal treatment of the enforceability of close-out netting clauses opens up many legal matters in comparative legal systems because it is not uniformly treated in comparative laws. Certain legal systems take a liberal approach and allow the enforcement of close-out netting clauses. Others are much stricter, and they limit or completely prohibit the enforcement of close-out netting clauses through the mandatory provisions of their national bankruptcy laws. The author analyzes the concept of close-out netting clauses in selected comparative legal systems and examines the differences in their legal treatment by using the historical, analytical, and comparative method. It results that special treatment of the close-out netting in national laws with a liberal approach is often forced by financial industry lobbies and introduced in national laws without the justified reasons. Contrary to that in legal systems with limited or prohibited approach on close-out netting the uncertain enforceability of the close-out netting clause causes potential credit risks. The detected discrepancy on the national legal treatment and national financial markets regarding close-out netting lead to the conclusion to author’s best knowledge that is not possible to use any national model of close-out netting as a role model which perfectly fits all.Keywords: close-out netting clauses, derivatives, insolvency, offsetting
Procedia PDF Downloads 14410154 The Effects of Native Forests Conservation and Preservation Scenarios on Two Chilean Basins Water Cycle, under Climate Change Conditions
Authors: Hernández Marieta, Aguayo Mauricio, Pedreros María, Llompart Ovidio
Abstract:
The hydrological cycle is influenced by multiple factors, including climate change, land use changes, and anthropogenic activities, all of which threaten water availability and quality worldwide. In recent decades, numerous investigations have used landscape metrics and hydrological modeling to demonstrate the influence of landscape patterns on the hydrological cycle components' natural dynamics. Many of these investigations have determined the repercussions on the quality and availability of water, sedimentation, and erosion regime, mainly in Asian basins. In fact, there is progress in this branch of science, but there are still unanswered questions for our region. This study examines the hydrological response in Chilean basins under various land use change scenarios (LUCC) and the influence of climate change. The components of the water cycle were modeled using a physically distributed type hydrological and hydraulic simulation model based on and oriented to mountain basins TETIS model. Future climate data were derived from Chilean regional simulations using the WRF-MIROC5 model, forced with the RCP 8.5 scenario, at a 25 km resolution for the periods 2030-2060 and 2061-2091. LUCC scenarios were designed based on nature-based solutions, landscape pattern influences, current national and international water conservation legislation, and extreme scenarios of non-preservation and conservation of native forests. The scenarios that demonstrate greater water availability, even under climate change, are those promoting the restoration of native forests in over 30% of the basins, even alongside agricultural activities. Current legislation promoting the restoration of native forests only in riparian zones (30-60 m or 200 m in steeper areas) will not be resilient enough to address future water shortages. Evapotranspiration, direct runoff, and water availability at basin outlets showed the greatest variations due to LUCC. The relationship between hydrological modeling and landscape configuration is an effective tool for establishing future territorial planning that prioritizes water resource protection.Keywords: TETIS, landscape pattern, hydrological process, water availability, Chilean basins
Procedia PDF Downloads 3610153 Numerical Investigation of Beam-Columns Subjected to Non-Proportional Loadings under Ambient Temperature Conditions
Authors: George Adomako Kumi
Abstract:
The response of structural members, when subjected to various forms of non-proportional loading, plays a major role in the overall stability and integrity of a structure. This research seeks to present the outcome of a finite element investigation conducted by the use of finite element programming software ABAQUS to validate the experimental results of elastic and inelastic behavior and strength of beam-columns subjected to axial loading, biaxial bending, and torsion under ambient temperature conditions. The application of the rigorous and highly complicated ABAQUS finite element software will seek to account for material, non-linear geometry, deformations, and, more specifically, the contact behavior between the beam-columns and support surfaces. Comparisons of the three-dimensional model with the results of actual tests conducted and results from a solution algorithm developed through the use of the finite difference method will be established in order to authenticate the veracity of the developed model. The results of this research will seek to provide structural engineers with much-needed knowledge about the behavior of steel beam columns and their response to various non-proportional loading conditions under ambient temperature conditions.Keywords: beam-columns, axial loading, biaxial bending, torsion, ABAQUS, finite difference method
Procedia PDF Downloads 17810152 Participation of Juvenile with Driven of Tobacco Control in Education Institute: Case Study of Suan Sunandha Rajabhat University
Authors: Sakapas Saengchai
Abstract:
This paper studied the participation of juvenile with driven of tobacco control in education institute: case study of Suan Sunandha Rajabhat University is qualitative research has objective to study participation of juvenile with driven of tobacco control in University, as guidance of development participation of juvenile with driven of tobacco control in education institute the university is also free-cigarette university. There are qualitative researches on collection data of participation observation, in-depth interview of group conversation and agent of student in each faculty and college and exchange opinion of student. Result of study found that participation in tobacco control has 3 parts; 1) Participation in campaign of tobacco control, 2) Academic training and activity of free-cigarette of university and 3) As model of juvenile in tobacco control. For guidelines on youth involvement in driven tobacco control is universities should promote tobacco control activities. Reduce smoking campaign continues include a specific area for smokers has living room as sign clearly, staying in the faculty / college and developing network of model students who are non-smoking. This is a key role in the coordination of university students driving to the free cigarette university. Including the strengthening of community in the area and outside the area as good social and quality of country.Keywords: participation, juvenile, tobacco control, institute
Procedia PDF Downloads 27210151 Influence of Cucurbitacin-Containing Phytonematicides on Growth of Rough Lemon (Citrus jambhiri)
Authors: Raisibe V. Mathabatha, Phatu W. Mashela, Nehemiah M. Mokgalong
Abstract:
Occasional incidence of phytotoxicity in Nemarioc-BL and Nemafric-AL phytonematicides to crops raises credibility challenges that could negate their registration as commercial products. Responses of plants to phytonematicides are characterized by the existence of stimulation, neutral and inhibition phases, with the mid-point of the former being referred to as the Mean Concentration Stimulation Point (MSCP = Dm + Rh/2). The objective of this study was to determine the MCSP and the overall sensitivity (∑k) of Nemarioc-AL and Nemafric-BL phytonematicides to rough lemon seedling rootstocks using the Curve-fitting Allelochemical Response Dosage (CARD) computer-based model. Two parallel greenhouse experiments were initiated, with seven dilutions of each phytonematicide arranged in a randomised complete block design, replicated nine times. Six-month-old rough lemon seedlings were transplanted into 20-cm-diameter plastic pots, filled with steam-pasteurised river sand (300°C for 3 h) and Hygromix-T growing mixture. Treatments at 0, 2, 4, 8, 16, 32 and 164% dilutions were applied weekly at 300 ml/plant. At 84 days after the treatments, analysis of variance-significant plant variables was subjected to the CARD model to generate appropriate biological indices. Computed MCSP values for Nemarioc-AL and Nemafric-BL phytonematicides on rough lemon were 29 and 38%, respectively, whereas ∑k values were 1 and 0, respectively. At the applied concentrations, rough lemon seedlings were highly sensitive to Nemarioc-AL and Nemafric-BL phytonematicides.Keywords: crude extracts, cucurbitacins, effective microbes, fruit extracts
Procedia PDF Downloads 14510150 The Leadership Criterion: Challenges in Pursuing Excellence in the Jordanian Public Sector
Authors: Shaker Aladwan, Paul Forrester
Abstract:
This paper explores the challenges that face leaders when implementing business excellence programmes in the Jordanian public sector. The study adopted a content analysis approach to analyse the excellence assessment reports that have been produced by the King Abdullah II Centre for Excellence (KACE). The sample comprises ten public organisations which have participated in the King Abdullah Award for Excellence (KAA) more than once and acknowledge in their reports that they have failed to achieve satisfactory results. The key challenges to the implementation of leadership criteria in the public sector in Jordan were found to be poor strategic planning, lack of employee empowerment, weaknesses in benchmarking performance, a lack of financial resources, poor integration and coordination, and poor measurement system: This study proposes a conceptual model for the as assessment of challenges that face managers when seeking to implement excellence in leadership in the Jordanian public sector. Theoretically, this paper fills context gaps in the excellence literature in general and organisational excellence in the public sector in particular. Leadership challenges in the public sector are generally widely studied, but it is important to gain a better understanding of how these challenges can be overcome. In comparison to many existing studies, this research has provided specific and detailed insights these organisational excellence challenges in the public sector and provides a conceptual model for use by other researchers into the future.Keywords: leadership criterion, organisational excellence, challenges, quality awards, public sector, Jordan
Procedia PDF Downloads 38910149 A Lexicographic Approach to Obstacles Identified in the Ontological Representation of the Tree of Life
Authors: Sandra Young
Abstract:
The biodiversity literature is vast and heterogeneous. In today’s data age, numbers of data integration and standardisation initiatives aim to facilitate simultaneous access to all the literature across biodiversity domains for research and forecasting purposes. Ontologies are being used increasingly to organise this information, but the rationalisation intrinsic to ontologies can hit obstacles when faced with the intrinsic fluidity and inconsistency found in the domains comprising biodiversity. Essentially the problem is a conceptual one: biological taxonomies are formed on the basis of specific, physical specimens yet nomenclatural rules are used to provide labels to describe these physical objects. These labels are ambiguous representations of the physical specimen. An example of this is with the genus Melpomene, the scientific nomenclatural representation of a genus of ferns, but also for a genus of spiders. The physical specimens for each of these are vastly different, but they have been assigned the same nomenclatural reference. While there is much research into the conceptual stability of the taxonomic concept versus the nomenclature used, to the best of our knowledge as yet no research has looked empirically at the literature to see the conceptual plurality or singularity of the use of these species’ names, the linguistic representation of a physical entity. Language itself uses words as symbols to represent real world concepts, whether physical entities or otherwise, and as such lexicography has a well-founded history in the conceptual mapping of words in context for dictionary making. This makes it an ideal candidate to explore this problem. The lexicographic approach uses corpus-based analysis to look at word use in context, with a specific focus on collocated word frequencies (the frequencies of words used in specific grammatical and collocational contexts). It allows for inconsistencies and contradictions in the source data and in fact includes these in the word characterisation so that 100% of the available evidence is counted. Corpus analysis is indeed suggested as one of the ways to identify concepts for ontology building, because of its ability to look empirically at data and show patterns in language usage, which can indicate conceptual ideas which go beyond words themselves. In this sense it could potentially be used to identify if the hierarchical structures present within the empirical body of literature match those which have been identified in ontologies created to represent them. The first stages of this research have revealed a hierarchical structure that becomes apparent in the biodiversity literature when annotating scientific species’ names, common names and more general names as classes, which will be the focus of this paper. The next step in the research is focusing on a larger corpus in which specific words can be analysed and then compared with existing ontological structures looking at the same material, to evaluate the methods by means of an alternative perspective. This research aims to provide evidence as to the validity of the current methods in knowledge representation for biological entities, and also shed light on the way that scientific nomenclature is used within the literature.Keywords: ontology, biodiversity, lexicography, knowledge representation, corpus linguistics
Procedia PDF Downloads 13710148 Inclined Convective Instability in a Porous Layer Saturated with Non-Newtonian Fluid
Authors: Rashmi Dubey
Abstract:
The study aims at investigating the onset of thermal convection in an inclined porous layer saturated with a non-Newtonian fluid. The layer is infinitely extended and has a finite width confined between two boundaries with constant pressure conditions, where the lower one is maintained at a higher temperature. Over the years, this area of research has attracted many scientists and researchers, for it has a plethora of applications in the fields of sciences and engineering, such as in civil engineering, geothermal sites, petroleum industries, etc.Considering the possibilities in a practical scenario, an inclined porous layer is considered, which can be used to develop a generalized model applicable to any inclination. Using the isobaric boundaries, the hydrodynamic boundary conditions are derived for the power-law model and are used to obtain the basic state flow. The convection in the basic state flow is driven by the thermal buoyancy in the flow system and is carried away further due to hydrodynamic boundaries. A linear stability analysis followed by a normal-mode analysis is done to investigate the onset of convection in the buoyancy-driven flow. The analysis shows that the convective instability is always initiated by the non-traveling modes for the Newtonian fluid, but prevails in the form of oscillatory modes, for up to a certain inclination of the porous layer. However, different behavior is observed for the dilatant and pseudoplastic fluids.Keywords: thermal convection, linear stability, porous media flow, Inclined porous layer
Procedia PDF Downloads 12210147 Closed Loop Traffic Control System Using PLC
Authors: Chinmay Shah
Abstract:
The project is all about development of a close loop traffic light control system using PLC (Programmable Logic Controller). This project is divided into two parts which are hardware and software. The hardware part for this project is a model of four way junction of a traffic light. Three indicator lamps (Red, Yellow and Green) are installed at each lane for represents as traffic light signal. This traffic control model is a replica of actuated traffic control. Actuated traffic control system is a close loop traffic control system which controls the timing of the indicator lamps depending on the fluidity of traffic for a particular lane. To make it autonomous, in each lane three IR sensors are placed which helps to sense the percentage of traffic present on any particular lane. The IR Sensors and Indicator lamps are connected to LG PLC XGB series. The PLC controls every signal which is coming from the inputs (IR Sensors) to software and display to the outputs (Indicator lamps). Default timing for the indicator lamps is 30 seconds for each lane. But depending on the percentage of traffic present, if the traffic is nearly 30-35%, green lamp will be on for 10 seconds, for 65-70% traffic it will be 20 seconds, for full 100% traffic it will be on for full 30 seconds. The software part that operates with LG PLC is “XG 5000” Programmer. Using this software, the ladder logic diagram is programmed to control the traffic light base on the flow chart. At the end of this project, the traffic light system is actuated successfully by PLC.Keywords: close loop, IR sensor, PLC, light control system
Procedia PDF Downloads 56910146 Influence of Valve Lift Timing on Producer Gas Combustion and Its Modeling Using Two-Stage Wiebe Function
Authors: M. Sreedhar Babu, Vishal Garg, S. B. Akella, Shibu Clement, N. K. S Rajan
Abstract:
Producer gas is a biomass derived gaseous fuel which is extensively used in internal combustion engines for power generation application. Unlike the conventional hydrocarbon fuels (Gasoline and Natural gas), the combustion properties of producer gas fuel are much different. Therefore, setting of optimal spark time for efficient engine operation is required. Owing to the fluctuating tendency of producer gas composition during gasification process, the heat release patterns (dictating the power output and emissions) obtained are quite different from conventional fuels. It was found that, valve lift timing is yet another factor which influences the burn rate of producer gas fuel, and thus, the heat release rate of the engine. Therefore, the present study was motivated to estimate the influence of valve lift timing analytically (Wiebe model) on the burn rate of producer gas through curve fitting against experimentally obtained mass fraction burn curves of several producer gas compositions. Furthermore, Wiebe models are widely used in zero-dimensional codes for engine parametric studies and are quite popular. This study also addresses the influence of hydrogen and methane concentration of producer gas on combustion trends, which are known to cause dynamics in engine combustion.Keywords: combustion duration (CD), crank angle (CA), mass fraction burnt (MFB), producer sas (PG), Wiebe Combustion Model (WCM), wide open throttle (WOT)
Procedia PDF Downloads 31110145 Using Computer Vision to Detect and Localize Fractures in Wrist X-ray Images
Authors: John Paul Q. Tomas, Mark Wilson L. de los Reyes, Kirsten Joyce P. Vasquez
Abstract:
The most frequent type of fracture is a wrist fracture, which often makes it difficult for medical professionals to find and locate. In this study, fractures in wrist x-ray pictures were located and identified using deep learning and computer vision. The researchers used image filtering, masking, morphological operations, and data augmentation for the image preprocessing and trained the RetinaNet and Faster R-CNN models with ResNet50 backbones and Adam optimizers separately for each image filtering technique and projection. The RetinaNet model with Anisotropic Diffusion Smoothing filter trained with 50 epochs has obtained the greatest accuracy of 99.14%, precision of 100%, sensitivity/recall of 98.41%, specificity of 100%, and an IoU score of 56.44% for the Posteroanterior projection utilizing augmented data. For the Lateral projection using augmented data, the RetinaNet model with an Anisotropic Diffusion filter trained with 50 epochs has produced the highest accuracy of 98.40%, precision of 98.36%, sensitivity/recall of 98.36%, specificity of 98.43%, and an IoU score of 58.69%. When comparing the test results of the different individual projections, models, and image filtering techniques, the Anisotropic Diffusion filter trained with 50 epochs has produced the best classification and regression scores for both projections.Keywords: Artificial Intelligence, Computer Vision, Wrist Fracture, Deep Learning
Procedia PDF Downloads 7210144 Modelling and Control of Milk Fermentation Process in Biochemical Reactor
Authors: Jožef Ritonja
Abstract:
The biochemical industry is one of the most important modern industries. Biochemical reactors are crucial devices of the biochemical industry. The essential bioprocess carried out in bioreactors is the fermentation process. A thorough insight into the fermentation process and the knowledge how to control it are essential for effective use of bioreactors to produce high quality and quantitatively enough products. The development of the control system starts with the determination of a mathematical model that describes the steady state and dynamic properties of the controlled plant satisfactorily, and is suitable for the development of the control system. The paper analyses the fermentation process in bioreactors thoroughly, using existing mathematical models. Most existing mathematical models do not allow the design of a control system for controlling the fermentation process in batch bioreactors. Due to this, a mathematical model was developed and presented that allows the development of a control system for batch bioreactors. Based on the developed mathematical model, a control system was designed to ensure optimal response of the biochemical quantities in the fermentation process. Due to the time-varying and non-linear nature of the controlled plant, the conventional control system with a proportional-integral-differential controller with constant parameters does not provide the desired transient response. The improved adaptive control system was proposed to improve the dynamics of the fermentation. The use of the adaptive control is suggested because the parameters’ variations of the fermentation process are very slow. The developed control system was tested to produce dairy products in the laboratory bioreactor. A carbon dioxide concentration was chosen as the controlled variable. The carbon dioxide concentration correlates well with the other, for the quality of the fermentation process in significant quantities. The level of the carbon dioxide concentration gives important information about the fermentation process. The obtained results showed that the designed control system provides minimum error between reference and actual values of carbon dioxide concentration during a transient response and in a steady state. The recommended control system makes reference signal tracking much more efficient than the currently used conventional control systems which are based on linear control theory. The proposed control system represents a very effective solution for the improvement of the milk fermentation process.Keywords: biochemical reactor, fermentation process, modelling, adaptive control
Procedia PDF Downloads 12910143 Exploitation Pattern of Atlantic Bonito in West African Waters: Case Study of the Bonito Stock in Senegalese Waters
Authors: Ousmane Sarr
Abstract:
The Senegalese coasts have high productivity of fishery resources due to the frequency of intense up-welling system that occurs along its coast, caused by the maritime trade winds making its waters nutrients rich. Fishing plays a primordial role in Senegal's socioeconomic plans and food security. However, a global diagnosis of the Senegalese maritime fishing sector has highlighted the challenges this sector encounters. Among these concerns, some significant stocks, a priority target for artisanal fishing, need further assessment. If no efforts are made in this direction, most stock will be overexploited or even in decline. It is in this context that this research was initiated. This investigation aimed to apply a multi-modal approach (LBB, Catch-only-based CMSY model and its most recent version (CMSY++); JABBA, and JABBA-Select) to assess the stock of Atlantic bonito, Sarda sarda (Bloch, 1793) in the Senegalese Exclusive Economic Zone (SEEZ). Available catch, effort, and size data from Atlantic bonito over 15 years (2004-2018) were used to calculate the nominal and standardized CPUE, size-frequency distribution, and length at retentions (50 % and 95 % selectivity) of the species. These relevant results were employed as input parameters for stock assessment models mentioned above to define the stock status of this species in this region of the Atlantic Ocean. The LBB model indicated an Atlantic bonito healthy stock status with B/BMSY values ranging from 1.3 to 1.6 and B/B0 values varying from 0.47 to 0.61 of the main scenarios performed (BON_AFG_CL, BON_GN_Length, and BON_PS_Length). The results estimated by LBB are consistent with those obtained by CMSY. The CMSY model results demonstrate that the SEEZ Atlantic bonito stock is in a sound condition in the final year of the main scenarios analyzed (BON, BON-bt, BON-GN-bt, and BON-PS-bt) with sustainable relative stock biomass (B2018/BMSY = 1.13 to 1.3) and fishing pressure levels (F2018/FMSY= 0.52 to 1.43). The B/BMSY and F/FMSY results for the JABBA model ranged between 2.01 to 2.14 and 0.47 to 0.33, respectively. In contrast, The estimated B/BMSY and F/FMSY for JABBA-Select ranged from 1.91 to 1.92 and 0.52 to 0.54. The Kobe plots results of the base case scenarios ranged from 75% to 89% probability in the green area, indicating sustainable fishing pressure and an Atlantic bonito healthy stock size capable of producing high yields close to the MSY. Based on the stock assessment results, this study highlighted scientific advice for temporary management measures. This study suggests an improvement of the selectivity parameters of longlines and purse seines and a temporary prohibition of the use of sleeping nets in the fishery for the Atlantic bonito stock in the SEEZ based on the results of the length-base models. Although these actions are temporary, they can be essential to reduce or avoid intense pressure on the Atlantic bonito stock in the SEEZ. However, it is necessary to establish harvest control rules to provide coherent and solid scientific information that leads to appropriate decision-making for rational and sustainable exploitation of Atlantic bonito in the SEEZ and the Eastern Atlantic Ocean.Keywords: multi-model approach, stock assessment, atlantic bonito, SEEZ
Procedia PDF Downloads 6110142 How Markets React to Corporate Disclosure: An Analysis Using a SEM Model
Authors: Helena Susana Afonso Alves, Natália Maria Rafael Canadas, Ana Maria Rodrigues
Abstract:
We examined the impact of governance rules on information asymmetry, using the turnover ratio and the bid-ask spread as proxies for the information asymmetry. We used a SEM model and analyzed the indirect relations through the voluntary disclosure of information and the organizational performance. We built a voluntary disclosure index based on the information firms provided in their annual reports and divided the governance characteristics in two constructs: directors’ and supervisors’ structures and ownership structure. We concluded that the ownership structure exerts a direct influence on share price and share liquidity, Otherwise, the directors’ and supervisors’ structures exert an indirect influence, through the organizational performance and the voluntary disclosure of information. The results also show that for firms with high levels of disclosure the bid-ask spread is lower. However, in firms with a high ownership concentration investors tend to increase the bid-ask spreads and trade less, which, in this case, reduces the liquidity of the stock. The failure to find the relationship between voluntary disclosure of information and the turnover ratio shows us that the liquidity of shares is more related to the greater or lesser concentration of shareholders, with the performance of their companies than with the access to information. Moreover, it is clear that the role that information disclosure plays is mainly at the level of price formation.Keywords: corporate governance, information asymmetry, voluntary disclosure, structural equation modelling, SEM
Procedia PDF Downloads 51510141 Therapeutic Effect of Indane 1,3-Dione Derivatives in the Restoration of Insulin Resistance in Human Liver Cells and in Db/Db Mice Model: Biochemical, Physiological and Molecular Insights of Investigation
Authors: Gulnaz Khan, Meha F. Aftab, Munazza Murtaza, Rizwana S. Waraich
Abstract:
Advanced glycation end products (AGEs) precursor and its abnormal accumulation cause damage to various tissues and organs. AGEs have pathogenic implication in several diseases including diabetes. Existing AGEs inhibitors are not in clinical use, and there is a need for development of novel inhibitors. The present investigation aimed at identifying the novel AGEs inhibitors and assessing their mechanism of action for treating insulin resistance in mice model of diabetes. Novel derivatives of benzylidene of indan-1,3-dione were synthesized. The compounds were selected to study their action mechanism in improving insulin resistance, in vitro, in human hepatocytes and murine adipocytes and then, in vivo, in mice genetic model of diabetes (db/db). Mice were treated with novel derivatives of benzylidene of indane 1,3-dione. AGEs mediated ROS production was measured by dihydroethidium fluorescence assay. AGEs level in the serum of treated mice was observed by ELISA. Gene expression of receptor for AGEs (RAGE), PPAR-gamma, TNF-alpha and GLUT-4 was evaluated by RT-PCR. Glucose uptake was measured by fluorescent method. Microscopy was used to analyze glycogen synthesis in muscle. Among several derivatives of benzylidene of indan-1,3-dione, IDD-24, demonstrated highest inhibition of AGESs. IDD-24 significantly reduced AGEs formation and expression of receptor for advanced glycation end products (RAGE) in fat, liver of db/db mice. Suppression of AGEs mediated ROS production was also observed in hepatocytes and fat cell, after treatment with IDD-24. Glycogen synthesis was increased in muscle tissue of mice treated with IDD-24. In adipocytes, IDD-24 prevented AGEs induced reduced glucose uptake. Mice treated with IDD-24 exhibited increased glucose tolerance, serum adiponectin levels and decreased insulin resistance. The result of present study suggested that IDD-24 can be a possible treatment target to address glycotoxins induced insulin resistance.Keywords: advance glycation end product, hyperglycemia, indan-1, 3-dione, insulin resistance
Procedia PDF Downloads 15710140 Machine Learning for Targeting of Conditional Cash Transfers: Improving the Effectiveness of Proxy Means Tests to Identify Future School Dropouts and the Poor
Authors: Cristian Crespo
Abstract:
Conditional cash transfers (CCTs) have been targeted towards the poor. Thus, their targeting assessments check whether these schemes have been allocated to low-income households or individuals. However, CCTs have more than one goal and target group. An additional goal of CCTs is to increase school enrolment. Hence, students at risk of dropping out of school also are a target group. This paper analyses whether one of the most common targeting mechanisms of CCTs, a proxy means test (PMT), is suitable to identify the poor and future school dropouts. The PMT is compared with alternative approaches that use the outputs of a predictive model of school dropout. This model was built using machine learning algorithms and rich administrative datasets from Chile. The paper shows that using machine learning outputs in conjunction with the PMT increases targeting effectiveness by identifying more students who are either poor or future dropouts. This joint targeting approach increases effectiveness in different scenarios except when the social valuation of the two target groups largely differs. In these cases, the most likely optimal approach is to solely adopt the targeting mechanism designed to find the highly valued group.Keywords: conditional cash transfers, machine learning, poverty, proxy means tests, school dropout prediction, targeting
Procedia PDF Downloads 20310139 Influence of Environmental Conditions on a Solar Assisted Mashing Process
Authors: Ana Fonseca, Stefany Villacis
Abstract:
In this paper, the influence of several scenarios on a model of solar assisted mashing process in a brewery, while applying the model to different locations and therefore changing the environmental conditions, was analyzed. Assorted beer producer locations in different countries around the globe with contrasting climatic zones such as Guayaquil (Ecuador), Bangkok (Thailand), Mumbai (India), Veracruz (Mexico) and Brisbane (Australia) were evaluated and compared with a base case study Oldenburg (Germany), and results were drawn. The evaluation was restricted to the results obtained using TRNSYS 16 as simulating tool. On the base case, an annual Solar Fraction (SF) of 0.50 was encountered, results showed highly affection when modifying the pump control of the primary circuit and when increasing the area of collectors. A sensitivity analysis of the system for the selected locations was performed, resulting in Guayaquil the highest annual SF with a ratio of 2.5 times the expected value as compared with the base case. In contrast, Brisbane presented the lowest ratio, resulting in half of the expected one due to its lower irradiance. In conclusion, cities in Sunbelt countries have the technical potential to apply solar heat for their low-temperature industrial processes, in this case implementing a green brewery in Guayaquil.Keywords: evacuated tubular solar collector, irradiance, mashing process, solar fraction, solar thermal
Procedia PDF Downloads 14010138 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases
Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar
Abstract:
Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning
Procedia PDF Downloads 11710137 Development and Effects of Transtheoretical Model Exercise Program for Elderly Women with Chronic Back Pain
Authors: Hyun-Ju Oh, Soon-Rim Suh, Mihan Kim
Abstract:
The steady and rapid increase of the older population is a global phenomenon. Chronic diseases and disabilities are increased due to aging. In general, exercise has been known to be most effective in preventing and managing chronic back pain. However, it is hard for the older women to initiate and maintain the exercise. Transtheoretical model (TTM) is one of the theories explain behavioral changes such as exercise. The application of the program considering the stage of behavior change is effective for the elderly woman to start and maintain the exercise. The purpose of this study was to develop TTM based exercise program and to examine its effect for elderly women with chronic back-pain. For the program evaluation, the non-equivalent control pre-posttest design was applied. The independent variable of this study is exercise intervention program. The contents of the program were constructed considering the characteristics of the elderly women with chronic low back pain, focusing on the process of change, the stage of change by the previous studies. The developed exercise program was applied to the elderly women with chronic low back pain in the planning stage and the preparation stage. The subjects were 50 older women over 65 years of age with chronic back-pain who did not practice regular exercise. The experimental group (n=25) received the 8weeks TTM based exercise program. The control group received the book which named low back pain management. Data were collected at three times: before the exercise intervention, right after the intervention, and 4weeks after the intervention. The dependent variables were the processes of change, decisional balance, exercise self-efficacy, back-pain, depression and muscle strength. The results of this study were as follows. Processes of change (<.001), pros of decisional balance (<.001), exercise self-efficacy (<.001), back pain (<.001), depression (<.001), muscle strength (<.001) were higher in the experimental group than in the control group right after the program and 4weeks after the programs. The results of this study show that applying the TTM based exercise program increases the use of the change process, increases the exercise self-efficacy, increases the stage of changing the exercise behavior and strengthens the muscular strength by lowering the degree of pain and depression Respectively. The significance of the study was to confirm the effect of continuous exercise by maintaining regular exercise habits by applying exercise program of the transtheoretical model to the chronic low back pain elderly with exercise intention.Keywords: chronic back pain, elderly, exercise, women
Procedia PDF Downloads 25110136 Evaluating Effectiveness of Training and Development Corporate Programs: The Russian Agribusiness Context
Authors: Ekaterina Tikhonova
Abstract:
This research is aimed to evaluate the effectiveness of T&D (Training and Development) on the example of two T&D programs for the Executive TOP Management run in 2012, 2015-2016 in Komos Group. This study is commissioned to research the effectiveness of two similar corporate T&D programs (within one company) in two periods of time (2012, 2015-2016) through evaluating the programs’ effectiveness using the four-level Kirkpatrick’s model of evaluating T&D programs and calculating ROI as an instrument for T&D program measuring by Phillips’ formula. The research investigates the correlation of two figures: the ROI calculated and the rating percentage scale per the ROI implementation (Wagle’s scale). The study includes an assessment of feedback 360 (Kirkpatrick's model) and Phillips’ ROI Methodology that provides a step-by-step process for collecting data, summarizing and processing the collected information. The data is collected from the company accounting data, the HR budgets, MCFO and the company annual reports for the research periods. All analyzed data and reports are organized and presented in forms of tables, charts, and graphs. The paper also gives a brief description of some constrains of the research considered. After ROI calculation, the study reveals that ROI ranges between the average implementation (65% to 75%) by Wagle’s scale that can be considered as a positive outcome. The paper also gives some recommendations how to use ROI in practice and describes main benefits of ROI implementation.Keywords: ROI, organizational performance, efficacy of T&D program, employee performance
Procedia PDF Downloads 25010135 Hybrid Weighted Multiple Attribute Decision Making Handover Method for Heterogeneous Networks
Authors: Mohanad Alhabo, Li Zhang, Naveed Nawaz
Abstract:
Small cell deployment in 5G networks is a promising technology to enhance capacity and coverage. However, unplanned deployment may cause high interference levels and high number of unnecessary handovers, which in turn will result in an increase in the signalling overhead. To guarantee service continuity, minimize unnecessary handovers, and reduce signalling overhead in heterogeneous networks, it is essential to properly model the handover decision problem. In this paper, we model the handover decision according to Multiple Attribute Decision Making (MADM) method, specifically Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS). In this paper, we propose a hybrid TOPSIS method to control the handover in heterogeneous network. The proposed method adopts a hybrid weighting, which is a combination of entropy and standard deviation. A hybrid weighting control parameter is introduced to balance the impact of the standard deviation and entropy weighting on the network selection process and the overall performance. Our proposed method shows better performance, in terms of the number of frequent handovers and the mean user throughput, compared to the existing methods.Keywords: handover, HetNets, interference, MADM, small cells, TOPSIS, weight
Procedia PDF Downloads 14810134 The Concept of Development: A Normative Restructured Model in the Light of Indian Political Thought and Classical Liberalism
Authors: Sarthak S. Salunke
Abstract:
Development, as a notion, is seen in perspective of western philosophical conceptions, and the western developed nations have become a yardstick for setting up development goals for developing and underdeveloped nations around the world. This blanket term of development becomes superficial and materialistic in context of the vast geopolitical, territorial, cultural and behavioral diversities existing in countries of the Africa and the Asia, and tends to undermine the atomistic aspect of development. Indian political theories, which are often seen as religious philosophies, have inherent structure of development of human being as an individual and as a part of the society, and, in result, development of the State. These theories, primarily individualistic in nature, have a combination of altruism and rationalism which guides human beings towards constructing a collectively developed and morally sustainable society. This research focuses on the application of this Indian thought in combination of classical liberal thought to tackle the issues of development in diverse societies. The proposed restructured model of development is based on molecular individualism, instead of atomic individual approach of liberalists, which lets development modelers to target meaningful clusters for designating goals for development based on the particular needs based on geopolitical, cultural and ethical requirements, and making it meaningful in conjunction with global development to establish a harmony between western and eastern worlds.Keywords: Indian political thought, development, liberalism, molecular individualism
Procedia PDF Downloads 18310133 Application of Bim Model Data to Estimate ROI for Robots and Automation in Construction Projects
Authors: Brian Romansky
Abstract:
There are many practical, commercially available robots and semi-autonomous systems that are currently available for use in a wide variety of construction tasks. Adoption of these technologies has the potential to reduce the time and cost to deliver a project, reduce variability and risk in delivery time, increase quality, and improve safety on the job site. These benefits come with a cost for equipment rental or contract fees, access to specialists to configure the system, and time needed for set-up and support of the machines while in use. Calculation of the net ROI (Return on Investment) requires detailed information about the geometry of the site, the volume of work to be done, the overall project schedule, as well as data on the capabilities and past performance of available robotic systems. Assembling the required data and comparing the ROI for several options is complex and tedious. Many project managers will only consider the use of a robot in targeted applications where the benefits are obvious, resulting in low levels of adoption of automation in the construction industry. This work demonstrates how data already resident in many BIM (Building Information Model) projects can be used to automate ROI estimation for a sample set of commercially available construction robots. Calculations account for set-up and operating time along with scheduling support tasks required while the automated technology is in use. Configuration parameters allow for prioritization of time, cost, or safety as the primary benefit of the technology. A path toward integration and use of automatic ROI calculation with a database of available robots in a BIM platform is described.Keywords: automation, BIM, robot, ROI.
Procedia PDF Downloads 85