Search results for: longitudinal model
9568 Using the SMT Solver to Minimize the Latency and to Optimize the Number of Cores in an NoC-DSP Architectures
Authors: Imen Amari, Kaouther Gasmi, Asma Rebaya, Salem Hasnaoui
Abstract:
The problem of scheduling and mapping data flow applications on multi-core architectures is notoriously difficult. This difficulty is related to the rapid evaluation of Telecommunication and multimedia systems accompanied by a rapid increase of user requirements in terms of latency, execution time, consumption, energy, etc. Having an optimal scheduling on multi-cores DSP (Digital signal Processors) platforms is a challenging task. In this context, we present a novel technic and algorithm in order to find a valid schedule that optimizes the key performance metrics particularly the Latency. Our contribution is based on Satisfiability Modulo Theories (SMT) solving technologies which is strongly driven by the industrial applications and needs. This paper, describe a scheduling module integrated in our proposed Workflow which is advised to be a successful approach for programming the applications based on NoC-DSP platforms. This workflow transform automatically a Simulink model to a synchronous dataflow (SDF) model. The automatic transformation followed by SMT solver scheduling aim to minimize the final latency and other software/hardware metrics in terms of an optimal schedule. Also, finding the optimal numbers of cores to be used. In fact, our proposed workflow taking as entry point a Simulink file (.mdl or .slx) derived from embedded Matlab functions. We use an approach which is based on the synchronous and hierarchical behavior of both Simulink and SDF. Whence, results of running the scheduler which exist in the Workflow mentioned above using our proposed SMT solver algorithm refinements produce the best possible scheduling in terms of latency and numbers of cores.Keywords: multi-cores DSP, scheduling, SMT solver, workflow
Procedia PDF Downloads 2869567 Modeling of Particle Reduction and Volatile Compounds Profile during Chocolate Conching by Electronic Nose and Genetic Programming (GP) Based System
Authors: Juzhong Tan, William Kerr
Abstract:
Conching is one critical procedure in chocolate processing, where special flavors are developed, and smooth mouse feel the texture of the chocolate is developed due to particle size reduction of cocoa mass and other additives. Therefore, determination of the particle size and volatile compounds profile of cocoa bean is important for chocolate manufacturers to ensure the quality of chocolate products. Currently, precise particle size measurement is usually done by laser scattering which is expensive and inaccessible to small/medium size chocolate manufacturers. Also, some other alternatives, such as micrometer and microscopy, can’t provide good measurements and provide little information. Volatile compounds analysis of cocoa during conching, has similar problems due to its high cost and limited accessibility. In this study, a self-made electronic nose system consists of gas sensors (TGS 800 and 2000 series) was inserted to a conching machine and was used to monitoring the volatile compound profile of chocolate during the conching. A model correlated volatile compounds profiles along with factors including the content of cocoa, sugar, and the temperature during the conching to particle size of chocolate particles by genetic programming was established. The model was used to predict the particle size reduction of chocolates with different cocoa mass to sugar ratio (1:2, 1:1, 1.5:1, 2:1) at 8 conching time (15min, 30min, 1h, 1.5h, 2h, 4h, 8h, and 24h). And the predictions were compared to laser scattering measurements of the same chocolate samples. 91.3% of the predictions were within the range of later scatting measurement ± 5% deviation. 99.3% were within the range of later scatting measurement ± 10% deviation.Keywords: cocoa bean, conching, electronic nose, genetic programming
Procedia PDF Downloads 2559566 Reconstruction of Visual Stimuli Using Stable Diffusion with Text Conditioning
Authors: ShyamKrishna Kirithivasan, Shreyas Battula, Aditi Soori, Richa Ramesh, Ramamoorthy Srinath
Abstract:
The human brain, among the most complex and mysterious aspects of the body, harbors vast potential for extensive exploration. Unraveling these enigmas, especially within neural perception and cognition, delves into the realm of neural decoding. Harnessing advancements in generative AI, particularly in Visual Computing, seeks to elucidate how the brain comprehends visual stimuli observed by humans. The paper endeavors to reconstruct human-perceived visual stimuli using Functional Magnetic Resonance Imaging (fMRI). This fMRI data is then processed through pre-trained deep-learning models to recreate the stimuli. Introducing a new architecture named LatentNeuroNet, the aim is to achieve the utmost semantic fidelity in stimuli reconstruction. The approach employs a Latent Diffusion Model (LDM) - Stable Diffusion v1.5, emphasizing semantic accuracy and generating superior quality outputs. This addresses the limitations of prior methods, such as GANs, known for poor semantic performance and inherent instability. Text conditioning within the LDM's denoising process is handled by extracting text from the brain's ventral visual cortex region. This extracted text undergoes processing through a Bootstrapping Language-Image Pre-training (BLIP) encoder before it is injected into the denoising process. In conclusion, a successful architecture is developed that reconstructs the visual stimuli perceived and finally, this research provides us with enough evidence to identify the most influential regions of the brain responsible for cognition and perception.Keywords: BLIP, fMRI, latent diffusion model, neural perception.
Procedia PDF Downloads 689565 Prediction of Covid-19 Cases and Current Situation of Italy and Its Different Regions Using Machine Learning Algorithm
Authors: Shafait Hussain Ali
Abstract:
Since its outbreak in China, the Covid_19 19 disease has been caused by the corona virus SARS N coyote 2. Italy was the first Western country to be severely affected, and the first country to take drastic measures to control the disease. In start of December 2019, the sudden outbreaks of the Coronary Virus Disease was caused by a new Corona 2 virus (SARS-CO2) of acute respiratory syndrome in china city Wuhan. The World Health Organization declared the epidemic a public health emergency of international concern on January 30, 2020,. On February 14, 2020, 49,053 laboratory-confirmed deaths and 1481 deaths have been reported worldwide. The threat of the disease has forced most of the governments to implement various control measures. Therefore it becomes necessary to analyze the Italian data very carefully, in particular to investigates and to find out the present condition and the number of infected persons in the form of positive cases, death, hospitalized or some other features of infected persons will clear in simple form. So used such a model that will clearly shows the real facts and figures and also understandable to every readable person which can get some real benefit after reading it. The model used must includes(total positive cases, current positive cases, hospitalized patients, death, recovered peoples frequency rates ) all features that explains and clear the wide range facts in very simple form and helpful to administration of that country.Keywords: machine learning tools and techniques, rapid miner tool, Naive-Bayes algorithm, predictions
Procedia PDF Downloads 1079564 Artificial Intelligence in Bioscience: The Next Frontier
Authors: Parthiban Srinivasan
Abstract:
With recent advances in computational power and access to enough data in biosciences, artificial intelligence methods are increasingly being used in drug discovery research. These methods are essentially a series of advanced statistics based exercises that review the past to indicate the likely future. Our goal is to develop a model that accurately predicts biological activity and toxicity parameters for novel compounds. We have compiled a robust library of over 150,000 chemical compounds with different pharmacological properties from literature and public domain databases. The compounds are stored in simplified molecular-input line-entry system (SMILES), a commonly used text encoding for organic molecules. We utilize an automated process to generate an array of numerical descriptors (features) for each molecule. Redundant and irrelevant descriptors are eliminated iteratively. Our prediction engine is based on a portfolio of machine learning algorithms. We found Random Forest algorithm to be a better choice for this analysis. We captured non-linear relationship in the data and formed a prediction model with reasonable accuracy by averaging across a large number of randomized decision trees. Our next step is to apply deep neural network (DNN) algorithm to predict the biological activity and toxicity properties. We expect the DNN algorithm to give better results and improve the accuracy of the prediction. This presentation will review all these prominent machine learning and deep learning methods, our implementation protocols and discuss these techniques for their usefulness in biomedical and health informatics.Keywords: deep learning, drug discovery, health informatics, machine learning, toxicity prediction
Procedia PDF Downloads 3579563 Predictive Modelling of Aircraft Component Replacement Using Imbalanced Learning and Ensemble Method
Authors: Dangut Maren David, Skaf Zakwan
Abstract:
Adequate monitoring of vehicle component in other to obtain high uptime is the goal of predictive maintenance, the major challenge faced by businesses in industries is the significant cost associated with a delay in service delivery due to system downtime. Most of those businesses are interested in predicting those problems and proactively prevent them in advance before it occurs, which is the core advantage of Prognostic Health Management (PHM) application. The recent emergence of industry 4.0 or industrial internet of things (IIoT) has led to the need for monitoring systems activities and enhancing system-to-system or component-to- component interactions, this has resulted to a large generation of data known as big data. Analysis of big data represents an increasingly important, however, due to complexity inherently in the dataset such as imbalance classification problems, it becomes extremely difficult to build a model with accurate high precision. Data-driven predictive modeling for condition-based maintenance (CBM) has recently drowned research interest with growing attention to both academics and industries. The large data generated from industrial process inherently comes with a different degree of complexity which posed a challenge for analytics. Thus, imbalance classification problem exists perversely in industrial datasets which can affect the performance of learning algorithms yielding to poor classifier accuracy in model development. Misclassification of faults can result in unplanned breakdown leading economic loss. In this paper, an advanced approach for handling imbalance classification problem is proposed and then a prognostic model for predicting aircraft component replacement is developed to predict component replacement in advanced by exploring aircraft historical data, the approached is based on hybrid ensemble-based method which improves the prediction of the minority class during learning, we also investigate the impact of our approach on multiclass imbalance problem. We validate the feasibility and effectiveness in terms of the performance of our approach using real-world aircraft operation and maintenance datasets, which spans over 7 years. Our approach shows better performance compared to other similar approaches. We also validate our approach strength for handling multiclass imbalanced dataset, our results also show good performance compared to other based classifiers.Keywords: prognostics, data-driven, imbalance classification, deep learning
Procedia PDF Downloads 1749562 The Effect of Dendrobium nobile Lindl. Alkaloids on the Blood Glucose and Amyloid Precursor Protein Metabolic Pathways in Db/Db Mice
Authors: Juan Huang, Nanqu Huang, Jingshan Shi, Yu Qiu
Abstract:
Objectives: There are pathophysiological connections between type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD), and research on drugs with hypoglycemic and beta-amyloid (Aβ)-clearing effects have great therapeutic potential for AD. Dendrobium nobile Lindl. Alkaloids (DNLA) as one of the active compounds of Dendrobium nobile Lindl. In this study, we attempted to verify the hypoglycemic effect and investigate the effects of DNLA on the amyloid precursor protein (APP) metabolic pathway of the hippocampus in db/db mice. Methods: 4-weeks-old male C57BL/KsJ mice were the control group. And the same age and sexuality db/db mice were: model, DNLA-L (20 mg/kg), DNLA-M (40 mg/kg), and DNLA-H (80 mg/kg). After, mice were treated with different concentrations of DNLA for 17 weeks. The fasting blood glucose (FBG) was detected by glucose oxidase assay every week from the 4th to last week. The protein expression of β-amyloid 1-42 (Aβ1-42), β-site amyloid precursor protein-cleaving enzyme 1 (BACE1), and APP were examined by Western blotting. Results: The concentration of FBG and the protein expression of Aβ1-42, BACE1, and APP were increased in the hippocampus of the model group. Moreover, DNLA not only significantly decreased the concentration of FBG but also reduced the protein expressions of Aβ1-42, BACE1 and APP in the hippocampus of db/db mice in a dose-dependent manner. Conclusions: DNLA can decrease the protein expressions of Aβ1-42 in the hippocampus of db/db mice, and the mechanism may be involved in the APP metabolic pathway.Keywords: Alzheimer's disease, type 2 diabetes mellitus, β-site amyloid precursor protein-cleaving enzyme 1, traditional Chinese medicines, beta-amyloid
Procedia PDF Downloads 2559561 Connecting MRI Physics to Glioma Microenvironment: Comparing Simulated T2-Weighted MRI Models of Fixed and Expanding Extracellular Space
Authors: Pamela R. Jackson, Andrea Hawkins-Daarud, Cassandra R. Rickertsen, Kamala Clark-Swanson, Scott A. Whitmire, Kristin R. Swanson
Abstract:
Glioblastoma Multiforme (GBM), the most common primary brain tumor, often presents with hyperintensity on T2-weighted or T2-weighted fluid attenuated inversion recovery (T2/FLAIR) magnetic resonance imaging (MRI). This hyperintensity corresponds with vasogenic edema, however there are likely many infiltrating tumor cells within the hyperintensity as well. While MRIs do not directly indicate tumor cells, MRIs do reflect the microenvironmental water abnormalities caused by the presence of tumor cells and edema. The inherent heterogeneity and resulting MRI features of GBMs complicate assessing disease response. To understand how hyperintensity on T2/FLAIR MRI may correlate with edema in the extracellular space (ECS), a multi-compartmental MRI signal equation which takes into account tissue compartments and their associated volumes with input coming from a mathematical model of glioma growth that incorporates edema formation was explored. The reasonableness of two possible extracellular space schema was evaluated by varying the T2 of the edema compartment and calculating the possible resulting T2s in tumor and peripheral edema. In the mathematical model, gliomas were comprised of vasculature and three tumor cellular phenotypes: normoxic, hypoxic, and necrotic. Edema was characterized as fluid leaking from abnormal tumor vessels. Spatial maps of tumor cell density and edema for virtual tumors were simulated with different rates of proliferation and invasion and various ECS expansion schemes. These spatial maps were then passed into a multi-compartmental MRI signal model for generating simulated T2/FLAIR MR images. Individual compartments’ T2 values in the signal equation were either from literature or estimated and the T2 for edema specifically was varied over a wide range (200 ms – 9200 ms). T2 maps were calculated from simulated images. T2 values based on simulated images were evaluated for regions of interest (ROIs) in normal appearing white matter, tumor, and peripheral edema. The ROI T2 values were compared to T2 values reported in literature. The expanding scheme of extracellular space is had T2 values similar to the literature calculated values. The static scheme of extracellular space had a much lower T2 values and no matter what T2 was associated with edema, the intensities did not come close to literature values. Expanding the extracellular space is necessary to achieve simulated edema intensities commiserate with acquired MRIs.Keywords: extracellular space, glioblastoma multiforme, magnetic resonance imaging, mathematical modeling
Procedia PDF Downloads 2359560 Securing Web Servers by the Intrusion Detection System (IDS)
Authors: Yousef Farhaoui
Abstract:
An IDS is a tool which is used to improve the level of security. We present in this paper different architectures of IDS. We will also discuss measures that define the effectiveness of IDS and the very recent works of standardization and homogenization of IDS. At the end, we propose a new model of IDS called BiIDS (IDS Based on the two principles of detection) for securing web servers and applications by the Intrusion Detection System (IDS).Keywords: intrusion detection, architectures, characteristic, tools, security, web server
Procedia PDF Downloads 4199559 Transitioning towards a Circular Economy in the Textile Industry: Approaches to Address Environmental Challenges
Authors: Mozhdeh Khalili Kordabadi
Abstract:
Textiles play a vital role in human life, particularly in the form of clothing. However, the alarming rate at which textiles end up in landfills presents a significant environmental risk. With approximately one garbage truck per second being filled with discarded textiles, urgent measures are required to mitigate this trend. Governments and responsible organizations are calling upon various stakeholders to shift from a linear economy to a circular economy model in the textile industry. This article highlights several key approaches that can be undertaken to address this pressing issue. These approaches include the creation of renewable raw material sources, rethinking production processes, maximizing the use and reuse of textile products, implementing reproduction and recycling strategies, exploring redistribution to new markets, and finding innovative means to extend the lifespan of textiles. By adopting these strategies, the textile industry can contribute to a more sustainable and environmentally friendly future. Introduction: Textiles, particularly clothing, are essential to human existence. However, the rapid accumulation of textiles in landfills poses a significant threat to the environment. This article explores the urgent need for the textile industry to transition from a linear economy model to a circular economy model. The linear model, characterized by the creation, use, and disposal of textiles, is unsustainable in the long term. By adopting a circular economy approach, the industry can minimize waste, reduce environmental impact, and promote sustainable practices. This article outlines key approaches that can be undertaken to drive this transition. Approaches to Address Environmental Challenges: Creation of Renewable Raw Materials Sources: Exploring and promoting the use of renewable and sustainable raw materials, such as organic cotton, hemp, and recycled fibers, can significantly reduce the environmental footprint of textile production. Rethinking Production Processes: Implementing cleaner production techniques, optimizing resource utilization, and minimizing waste generation are crucial steps in reducing the environmental impact of textile manufacturing. Maximizing Use and Reuse of Textile Products: Encouraging consumers to prolong the lifespan of textile products through proper care, maintenance, and repair services can reduce the frequency of disposal and promote a culture of sustainability. Reproduction and Recycling Strategies: Investing in innovative technologies and infrastructure to enable efficient reproduction and recycling of textiles can close the loop and minimize waste generation. Redistribution of Textiles to New Markets: Exploring opportunities to redistribute textiles to new and parallel markets, such as resale platforms, can extend their lifecycle and prevent premature disposal. Improvising Means to Extend Textile Lifespan: Encouraging design practices that prioritize durability, versatility, and timeless aesthetics can contribute to prolonging the lifespan of textiles. Conclusion: The textile industry must urgently transition from a linear economy to a circular economy model to mitigate the adverse environmental impact caused by textile waste. By implementing the outlined approaches, such as sourcing renewable raw materials, rethinking production processes, promoting reuse and recycling, exploring new markets, and extending the lifespan of textiles, stakeholders can work together to create a more sustainable and environmentally friendly textile industry. These measures require collective action and collaboration between governments, organizations, manufacturers, and consumers to drive positive change and safeguard the planet for future generations.Keywords: textiles, circular economy, environmental challenges, renewable raw materials, production processes, reuse, recycling, redistribution, textile lifespan extension.
Procedia PDF Downloads 969558 Evaluation of Soil Erosion Risk and Prioritization for Implementation of Management Strategies in Morocco
Authors: Lahcen Daoudi, Fatima Zahra Omdi, Abldelali Gourfi
Abstract:
In Morocco, as in most Mediterranean countries, water scarcity is a common situation because of low and unevenly distributed rainfall. The expansions of irrigated lands, as well as the growth of urban and industrial areas and tourist resorts, contribute to an increase of water demand. Therefore in the 1960s Morocco embarked on an ambitious program to increase the number of dams to boost water retention capacity. However, the decrease in the capacity of these reservoirs caused by sedimentation is a major problem; it is estimated at 75 million m3/year. Dams and reservoirs became unusable for their intended purposes due to sedimentation in large rivers that result from soil erosion. Soil erosion presents an important driving force in the process affecting the landscape. It has become one of the most serious environmental problems that raised much interest throughout the world. Monitoring soil erosion risk is an important part of soil conservation practices. The estimation of soil loss risk is the first step for a successful control of water erosion. The aim of this study is to estimate the soil loss risk and its spatial distribution in the different fields of Morocco and to prioritize areas for soil conservation interventions. The approach followed is the Revised Universal Soil Loss Equation (RUSLE) using remote sensing and GIS, which is the most popular empirically based model used globally for erosion prediction and control. This model has been tested in many agricultural watersheds in the world, particularly for large-scale basins due to the simplicity of the model formulation and easy availability of the dataset. The spatial distribution of the annual soil loss was elaborated by the combination of several factors: rainfall erosivity, soil erodability, topography, and land cover. The average annual soil loss estimated in several basins watershed of Morocco varies from 0 to 50t/ha/year. Watersheds characterized by high-erosion-vulnerability are located in the North (Rif Mountains) and more particularly in the Central part of Morocco (High Atlas Mountains). This variation of vulnerability is highly correlated to slope variation which indicates that the topography factor is the main agent of soil erosion within these basin catchments. These results could be helpful for the planning of natural resources management and for implementing sustainable long-term management strategies which are necessary for soil conservation and for increasing over the projected economic life of the dam implemented.Keywords: soil loss, RUSLE, GIS-remote sensing, watershed, Morocco
Procedia PDF Downloads 4619557 Learning Instructional Managements between the Problem-Based Learning and Stem Education Methods for Enhancing Students Learning Achievements and their Science Attitudes toward Physics the 12th Grade Level
Authors: Achirawatt Tungsombatsanti, Toansakul Santiboon, Kamon Ponkham
Abstract:
Strategies of the STEM education was aimed to prepare of an interdisciplinary and applied approach for the instructional of science, technology, engineering, and mathematics in an integrated students for enhancing engagement of their science skills to the Problem-Based Learning (PBL) method in Borabu School with a sample consists of 80 students in 2 classes at the 12th grade level of their learning achievements on electromagnetic issue. Research administrations were to separate on two different instructional model groups, the 40-experimental group was designed with the STEM instructional experimenting preparation and induction in a 40-student class and the controlling group using the PBL was designed to students identify what they already know, what they need to know, and how and where to access new information that may lead to the resolution of the problem in other class. The learning environment perceptions were obtained using the 35-item Physics Laboratory Environment Inventory (PLEI). Students’ creating attitude skills’ sustainable development toward physics were assessed with the Test Of Physics-Related Attitude (TOPRA) The term scaling was applied to the attempts to measure the attitude objectively with the TOPRA was used to assess students’ perceptions of their science attitude toward physics. Comparisons between pretest and posttest techniques were assessed students’ learning achievements on each their outcomes from each instructional model, differently. The results of these findings revealed that the efficiency of the PLB and the STEM based on criteria indicate that are higher than the standard level of the 80/80. Statistically, significant of students’ learning achievements to their later outcomes on the controlling and experimental physics class groups with the PLB and the STEM instructional designs were differentiated between groups at the .05 level, evidently. Comparisons between the averages mean scores of students’ responses to their instructional activities in the STEM education method are higher than the average mean scores of the PLB model. Associations between students’ perceptions of their physics classes to their attitudes toward physics, the predictive efficiency R2 values indicate that 77%, and 83% of the variances in students’ attitudes for the PLEI and the TOPRA in physics environment classes were attributable to their perceptions of their physics PLB and the STEM instructional design classes, consequently. An important of these findings was contributed to student understanding of scientific concepts, attitudes, and skills as evidence with STEM instructional ought to higher responding than PBL educational teaching. Statistically significant between students’ learning achievements were differentiated of pre and post assessments which overall on two instructional models.Keywords: learning instructional managements, problem-based learning, STEM education, method, enhancement, students learning achievements, science attitude, physics classes
Procedia PDF Downloads 2289556 Applying Failure Modes and Effect Analysis Concept in a Global Software Development Process
Authors: Camilo Souza, Lidia Melo, Fernanda Terra, Francisco Caio, Marcelo Reis
Abstract:
SIDIA is a research and development (R&D) institute that belongs to Samsung’s global software development process. The SIDIA’s Model Team (MT) is a part of Samsung’s Mobile Division Area, which is responsible for the development of Android releases embedded in Samsung mobile devices. Basically, in this software development process, the kickoff occurs in some strategic countries (e.g., South Korea) where some software requirements are applied and the initial software tests are performed. When the software achieves a more mature level, a new branch is derived, and the development continues in subsidiaries from other strategic countries (e.g., SIDIA-Brazil). However, even in the newly created branches, there are several interactions between developers from different nationalities in order to fix bugs reported during test activities, apply some specific requirements from partners and develop new features as well. Despite the GSD strategy contributes to improving software development, some challenges are also introduced as well. In this paper, we share the initial results about the application of the failure modes and effect analysis (FMEA) concept in the software development process followed by the SIDIA’s model team. The main goal was to identify and mitigate the process potential failures through the application of recommended actions. The initial results show that the application of the FMEA concept allows us to identify the potential failures in our GSD process as well as to propose corrective actions to mitigate them. Finally, FMEA encouraged members of different teams to take actions that contribute to improving our GSD process.Keywords: global software development, potential failures, FMEA, recommended actions
Procedia PDF Downloads 2279555 Humoral and Cytokine Responses to Major Human Cytomegalovirus Antigens in Mouse Model
Authors: Sahar Essa, Hussain A. Safar, Raj Raghupathy
Abstract:
Human cytomegalovirus (CMV) continues to be a source of severe complications in immunologically immature and immunocompromised hosts. Effective CMV vaccines that help diminish CMV disease in transplant patients and avoid congenital infection are of great importance. Though the exact roles of defense mechanisms are unidentified, viral-specific antibodies and cytokine responses are known to be involved in controlling CMV infections. CMV envelope glycoprotein B (UL55/gB), matrix proteins (UL83/pp65, UL99/pp28, UL32/pp150), and assembly protein UL80a/pp38 are known to be targets of antiviral immune responses. We immunized mice intraperitoneally with these five CMV-related proteins (commercial) for their ability to induce specific antibody responses (in-house immunoassay) and cytokine production (commercial assay) in a mouse model. We observed a significant CMV-antigen-specific antibody response to pp38 and pp65 (E/C ˃2.0, p˂0.001). Mice immunized with pp38 had significantly higher concentrations of GM-CSF, IFN-α, IL-2 IL-4, IL-5, and IL-17A (p˂0.05). Mice immunized with pp65 showed significantly higher concentrations of GM-CSF, IFN-γ, IL-2 IL-4, IL-10, IL-12, IL-17A, and TNF-α. Th1 to Th2 cytokines ratios revealed a Th1 cytokine bias in mice immunized with pp38, pp65, pp150, and gB. We suggest that stimulation with multiple CMV-related proteins, which include pp38, pp65, and gB antigens, will allow both humoral and cellular immune responses to be efficiently activated, thus serving as appropriate CMV antigens for future vaccines.Keywords: cytomegalovirus, UL99/pp28, UL80a/pp38, UL83/pp65, UL32/pp150, UL55/gB, CMV-antigen-specific antibody, CMV antigen-specific cytokine responses
Procedia PDF Downloads 839554 Psychological Variables of Sport Participation and Involvement among Student-Athletes of Tertiary Institutions in South-West, Nigeria
Authors: Mayowa Adeyeye
Abstract:
This study was conducted to investigate the psychological variables motivating sport participation and involvement among student-athletes of tertiary institutions in south-west Nigeria. One thousand three hundred and fifty (N-1350) student-athletes were randomly selected in all sports from nine tertiary institutions in south-west Nigeria. These tertiary institutions include University of Lagos, Lagos State University, Obafemi Awolowo University, Osun State University, University of Ibadan, University of Agriculture Abeokuta, Federal University of Technology Akungba, University of Ilorin, and Kwara State University. The descriptive survey research method was adopted while a self developed validated likert type questionnaire named Sport Participation Scale (SPS) was used to elicit opinion from respondents. The test-retest reliability value obtained for the instrument, using Pearson Product Moment Correlation Co-efficient was 0.96. Out of the one thousand three hundred and fifty (N-1350) questionnaire administered, only one thousand two hundred and five (N-1286) were correctly filled, coded and analysed using inferential statistics of Chi-Square (X2) while all the tested hypotheses were set at .05 alpha level. Based on the findings of this study, the result revealed that several psychological factors influence student athletes to continue participation in sport, which includes love for the game, famous athletes as role model and family support. However, the analysis further revealed that the stipends the student-athletes get from their universities have no influence on their participation and involvement in sport.Keywords: sport participation, involvement, student-athletes, role model, family, peer
Procedia PDF Downloads 4279553 The Internationalization of Capital Market Influencing Debt Sustainability's Impact on the Growth of the Nigerian Economy
Authors: Godwin Chigozie Okpara, Eugine Iheanacho
Abstract:
The paper set out to assess the sustainability of debt in the Nigerian economy. Precisely, it sought to determine the level of debt sustainability and its impact on the growth of the economy; whether internationalization of capital market has positively influenced debt sustainability’s impact on economic growth; and to ascertain the direction of causality between external debt sustainability and the growth of GDP. In the light of these objectives, ratio analysis was employed for the determination of debt sustainability. Our findings revealed that the periods 1986 – 1994 and 1999 – 2004 were periods of severe unsustainable borrowing. The unit root test showed that the variables of the growth model were integrated of order one, I(1) and the cointegration test provided evidence for long run stability. Considering the dawn of internationalization of capital market, the researcher employed the structural break approach using Chow Breakpoint test on the vector error correction model (VECM). The result of VECM showed that debt sustainability, measured by debt to GDP ratio exerts negative and significant impact on the growth of the economy while debt burden measured by debt-export ratio and debt service export ratio are negative though insignificant on the growth of GDP. The Cho test result indicated that internationalization of capital market has no significant effect on the debt overhang impact on the growth of the Economy. The granger causality test indicates a feedback effect from economic growth to debt sustainability growth indicators. On the bases of these findings, the researchers made some necessary recommendations which if followed religiously will go a long way to ameliorating debt burdens and engendering economic growth.Keywords: debt sustainability, internalization, capital market, cointegration, chow test
Procedia PDF Downloads 4379552 Thermodynamics of Water Condensation on an Aqueous Organic-Coated Aerosol Aging via Chemical Mechanism
Authors: Yuri S. Djikaev
Abstract:
A large subset of aqueous aerosols can be initially (immediately upon formation) coated with various organic amphiphilic compounds whereof the hydrophilic moieties are attached to the aqueous aerosol core while the hydrophobic moieties are exposed to the air thus forming a hydrophobic coating thereupon. We study the thermodynamics of water condensation on such an aerosol whereof the hydrophobic organic coating is being concomitantly processed by chemical reactions with atmospheric reactive species. Such processing (chemical aging) enables the initially inert aerosol to serve as a nucleating center for water condensation. The most probable pathway of such aging involves atmospheric hydroxyl radicals that abstract hydrogen atoms from hydrophobic moieties of surface organics (first step), the resulting radicals being quickly oxidized by ubiquitous atmospheric oxygen molecules to produce surface-bound peroxyl radicals (second step). Taking these two reactions into account, we derive an expression for the free energy of formation of an aqueous droplet on an organic-coated aerosol. The model is illustrated by numerical calculations. The results suggest that the formation of aqueous cloud droplets on such aerosols is most likely to occur via Kohler activation rather than via nucleation. The model allows one to determine the threshold parameters necessary for their Kohler activation. Numerical results also corroborate previous suggestions that one can neglect some details of aerosol chemical composition in investigating aerosol effects on climate.Keywords: aqueous aerosols, organic coating, chemical aging, cloud condensation nuclei, Kohler activation, cloud droplets
Procedia PDF Downloads 3959551 Consolidation Behavior of Lebanese Soil and Its Correlation with the Soil Parameters
Authors: Robert G. Nini
Abstract:
Soil consolidation is one of the biggest problem facing engineers. The consolidation process has an important role in settlement analysis for the embankments and footings resting on clayey soils. The settlement amount is related to the compression and the swelling indexes of the soil. Because the predominant upper soil layer in Lebanon is consisting mainly of clay, this layer is a real challenge for structural and highway engineering. To determine the effect of load and drainage on the engineering consolidation characteristics of Lebanese soil, a full experimental and synthesis study was conducted on different soil samples collected from many locations. This study consists of two parts. During the first part which is an experimental one, the Proctor test and the consolidation test were performed on the collected soil samples. After it, the identifications soil tests as hydrometer, specific gravity and Atterberg limits are done. The consolidation test which is the main test in this research is done by loading the soil for some days then an unloading cycle was applied. It takes two weeks to complete a typical consolidation test. Because of these reasons, during the second part of our research which is based on the analysis of the experiments results, some correlations were found between the main consolidation parameters as compression and swelling indexes with the other soil parameters easy to calculate. The results show that the compression and swelling indexes of Lebanese clays may be roughly estimated using a model involving one or two variables in the form of the natural void ratio and the Atterberg limits. These correlations have increasing importance for site engineers, and the proposed model also seems to be applicable to a wide range of clays worldwide.Keywords: atterberg limits, clay, compression and swelling indexes, settlement, soil consolidation
Procedia PDF Downloads 1379550 Expanding the Atelier: Design Lead Academic Project Using Immersive User-Generated Mobile Images and Augmented Reality
Authors: David Sinfield, Thomas Cochrane, Marcos Steagall
Abstract:
While there is much hype around the potential and development of mobile virtual reality (VR), the two key critical success factors are the ease of user experience and the development of a simple user-generated content ecosystem. Educational technology history is littered with the debris of over-hyped revolutionary new technologies that failed to gain mainstream adoption or were quickly superseded. Examples include 3D television, interactive CDROMs, Second Life, and Google Glasses. However, we argue that this is the result of curriculum design that substitutes new technologies into pre-existing pedagogical strategies that are focused upon teacher-delivered content rather than exploring new pedagogical strategies that enable student-determined learning or heutagogy. Visual Communication design based learning such as Graphic Design, Illustration, Photography and Design process is heavily based on the traditional forms of the classroom environment whereby student interaction takes place both at peer level and indeed teacher based feedback. In doing so, this makes for a healthy creative learning environment, but does raise other issue in terms of student to teacher learning ratios and reduced contact time. Such issues arise when students are away from the classroom and cannot interact with their peers and teachers and thus we see a decline in creative work from the student. Using AR and VR as a means of stimulating the students and to think beyond the limitation of the studio based classroom this paper will discuss the outcomes of a student project considering the virtual classroom and the techniques involved. The Atelier learning environment is especially suited to the Visual Communication model as it deals with the creative processing of ideas that needs to be shared in a collaborative manner. This has proven to have been a successful model over the years, in the traditional form of design education, but has more recently seen a shift in thinking as we move into a more digital model of learning and indeed away from the classical classroom structure. This study focuses on the outcomes of a student design project that employed Augmented Reality and Virtual Reality technologies in order to expand the dimensions of the classroom beyond its physical limits. Augmented Reality when integrated into the learning experience can improve the learning motivation and engagement of students. This paper will outline some of the processes used and the findings from the semester-long project that took place.Keywords: augmented reality, blogging, design in community, enhanced learning and teaching, graphic design, new technologies, virtual reality, visual communications
Procedia PDF Downloads 2389549 Competing Risks Modeling Using within Node Homogeneity Classification Tree
Authors: Kazeem Adesina Dauda, Waheed Babatunde Yahya
Abstract:
To design a tree that maximizes within-node homogeneity, there is a need for a homogeneity measure that is appropriate for event history data with multiple risks. We consider the use of Deviance and Modified Cox-Snell residuals as a measure of impurity in Classification Regression Tree (CART) and compare our results with the results of Fiona (2008) in which homogeneity measures were based on Martingale Residual. Data structure approach was used to validate the performance of our proposed techniques via simulation and real life data. The results of univariate competing risk revealed that: using Deviance and Cox-Snell residuals as a response in within node homogeneity classification tree perform better than using other residuals irrespective of performance techniques. Bone marrow transplant data and double-blinded randomized clinical trial, conducted in other to compare two treatments for patients with prostate cancer were used to demonstrate the efficiency of our proposed method vis-à-vis the existing ones. Results from empirical studies of the bone marrow transplant data showed that the proposed model with Cox-Snell residual (Deviance=16.6498) performs better than both the Martingale residual (deviance=160.3592) and Deviance residual (Deviance=556.8822) in both event of interest and competing risks. Additionally, results from prostate cancer also reveal the performance of proposed model over the existing one in both causes, interestingly, Cox-Snell residual (MSE=0.01783563) outfit both the Martingale residual (MSE=0.1853148) and Deviance residual (MSE=0.8043366). Moreover, these results validate those obtained from the Monte-Carlo studies.Keywords: within-node homogeneity, Martingale residual, modified Cox-Snell residual, classification and regression tree
Procedia PDF Downloads 2729548 Chemopreventive Efficacy of Andrographolide in Rat Colon Carcinogenesis Model Using Aberrant Crypt Foci (ACF) as Endpoint Marker
Authors: Maryam Hajrezaie, Mahmood Ameen Abdulla, Nazia Abdul Majid, Hapipa Mohd Ali, Pouya Hassandarvish, Maryam Zahedi Fard
Abstract:
Background: Colon cancer is one of the most prevalent cancers in the world and is the third leading cause of death among cancers in both males and females. The incidence of colon cancer is ranked fourth among all cancers but varies in different parts of the world. Cancer chemoprevention is defined as the use of natural or synthetic compounds capable of inducing biological mechanisms necessary to preserve genomic fidelity. Andrographolide is the major labdane diterpenoidal constituent of the plant Andrographis paniculata (family Acanthaceae), used extensively in the traditional medicine. Extracts of the plant and their constituents are reported to exhibit a wide spectrum of biological activities of therapeutic importance. Laboratory animal model studies have provided evidence that Andrographolide play a role in inhibiting the risk of certain cancers. Objective: Our aim was to evaluate the chemopreventive efficacy of the Andrographolide in the AOM induced rat model. Methods: To evaluate inhibitory properties of andrographolide on colonic aberrant crypt foci (ACF), five groups of 7-week-old male rats were used. Group 1 (control group) were fed with 10% Tween 20 once a day, Group 2 (cancer control) rats were intra-peritoneally injected with 15 mg/kg Azoxymethan, Gropu 3 (drug control) rats were injected with 15 mg/kg azoxymethan and 5-Flourouracil, Group 4 and 5 (experimental groups) were fed with 10 and 20 mg/kg andrographolide each once a day. After 1 week, the treatment group rats received subcutaneous injections of azoxymethane, 15 mg/kg body weight, once weekly for 2 weeks. Control rats were continued on Tween 20 feeding once a day and experimental groups 10 and 20 mg/kg andrographolide feeding once a day for 8 weeks. All rats were sacrificed 8 weeks after the azoxymethane treatment. Colons were evaluated grossly and histopathologically for ACF. Results: Administration of 10 mg/kg and 20 mg/kg andrographolide were found to be effectively chemoprotective, as evidenced microscopily and biochemically. Andrographolide suppressed total colonic ACF formation up to 40% to 60%, respectively, when compared with control group. Pre-treatment with andrographolide, significantly reduced the impact of AOM toxicity on plasma protein and urea levels as well as on plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH) and gamma-glutamyl transpeptidase (GGT) activities. Grossly, colorectal specimens revealed that andrographolide treatments decreased the mean score of number of crypts in AOM-treated rats. Importantly, rats fed andrographolide showed 75% inhibition of foci containing four or more aberrant crypts. The results also showed a significant increase in glutathione (GSH), superoxide dismutase (SOD), nitric oxide (NO), and Prostaglandin E2 (PGE2) activities and a decrease in malondialdehyde (MDA) level. Histologically all treatment groups showed a significant decrease of dysplasia as compared to control group. Immunohistochemical staining showed up-regulation of Hsp70 and down-regulation of Bax proteins. Conclusion: The current study demonstrated that Andrographolide reduce the number of ACF. According to these data, Andrographolide might be a promising chemoprotective activity, in a model of AOM-induced in ACF.Keywords: chemopreventive, andrographolide, colon cancer, aberrant crypt foci (ACF)
Procedia PDF Downloads 4299547 Community Education Leadership and Organizational Culture: Perceptions of Empowerment
Authors: Aisha M. Khairat
Abstract:
Community education in the Arab Republic of Egypt is a model that provides education to remote, underprivileged villages and hamlets where children have no access to public education. The community education model is based on the philosophy of transforming individuals to reach their full potential and on instilling the seeds of empowerment and citizenship to induce societal transformation. This research aims at investigating the degree to which the leadership style and organizational culture of the Egyptian community schools demonstrates an empowering approach. Nile Valley NGO, an Egyptian Non-Governmental Organization (NGO) leading hundreds of Egyptian community schools was studied to investigate the perceptions of empowerment amongst its leadership. This in turn will have serious implications on the level of empowerment the communities managed by Nile Valley NGO are experiencing, and will serve as an indicator to the degree to which community schools are achieving their goals in transforming individuals and empowering communities and reforming Egyptian education – and not just a tool to reach literacy. This mixed-methods research utilized surveys and semi-structured interviews to capture the perceptions of empowerment in the views of a sample of 380 community schools facilitators (teachers) spanning 8 Egyptian governorates and Nile Valley NGO’s community education project team and leadership. The findings demonstrate interesting leadership approaches with traits from transformational and servant leadership theoretical models. The organizational culture at Nile Valley NGO reflects the universal dichotomy between market-oriented and humanitarian orientations. The perceptions of empowerment were positive, and several success stories were uncovered in spite of the many challenges faced on the national level and despite the scarcity or resources.Keywords: community education, community schools in Egypt, empowerment, organizational culture, leadership
Procedia PDF Downloads 1799546 Cybersecurity Assessment of Decentralized Autonomous Organizations in Smart Cities
Authors: Claire Biasco, Thaier Hayajneh
Abstract:
A smart city is the integration of digital technologies in urban environments to enhance the quality of life. Smart cities capture real-time information from devices, sensors, and network data to analyze and improve city functions such as traffic analysis, public safety, and environmental impacts. Current smart cities face controversy due to their reliance on real-time data tracking and surveillance. Internet of Things (IoT) devices and blockchain technology are converging to reshape smart city infrastructure away from its centralized model. Connecting IoT data to blockchain applications would create a peer-to-peer, decentralized model. Furthermore, blockchain technology powers the ability for IoT device data to shift from the ownership and control of centralized entities to individuals or communities with Decentralized Autonomous Organizations (DAOs). In the context of smart cities, DAOs can govern cyber-physical systems to have a greater influence over how urban services are being provided. This paper will explore how the core components of a smart city now apply to DAOs. We will also analyze different definitions of DAOs to determine their most important aspects in relation to smart cities. Both categorizations will provide a solid foundation to conduct a cybersecurity assessment of DAOs in smart cities. It will identify the benefits and risks of adopting DAOs as they currently operate. The paper will then provide several mitigation methods to combat cybersecurity risks of DAO integrations. Finally, we will give several insights into what challenges will be faced by DAO and blockchain spaces in the coming years before achieving a higher level of maturity.Keywords: blockchain, IoT, smart city, DAO
Procedia PDF Downloads 1219545 Modeling and Simulation of Secondary Breakup and Its Influence on Fuel Spray in High Torque Low Speed Diesel Engine
Authors: Mohsin Raza, Rizwan Latif, Syed Adnan Qasim, Imran Shafi
Abstract:
High torque low-speed diesel engine has a wide range of industrial and commercial applications. In literature, it’s found that lot of work has been done for the high-speed diesel engine and research on High Torque low-speed is rare. The fuel injection plays a key role in the efficiency of engine and reduction in exhaust emission. The fuel breakup plays a critical role in air-fuel mixture and spray combustion. The current study explains numerically an important phenomenon in spray combustion which is deformation and breakup of liquid drops in compression ignition internal combustion engine. The secondary breakup and its influence on spray and characteristics of compressed gas in-cylinder have been calculated by using simulation software in the backdrop of high torque low-speed diesel like conditions. The secondary spray breakup is modeled with KH - RT instabilities. The continuous field is described by turbulence model and dynamics of the dispersed droplet is modeled by Lagrangian tracking scheme. The results by using KH - RT model are compared against other default methods in OpenFOAM and published experimental data from research and implemented in CFD (Computational Fluid Dynamics). These numerical simulation, done in OpenFoam and Matlab, results are analyzed for the complete 720- degree 4 stroke engine cycle at a low engine speed, for favorable agreement to be achieved. Results thus obtained will be analyzed for better evaporation in near nozzle region. The proposed analyses will further help in better engine efficiency, low emission and improved fuel economy.Keywords: diesel fuel, KH-RT, Lagrangian , Open FOAM, secondary breakup
Procedia PDF Downloads 2659544 Development of Mobile Application for Internship Program Management Using the Concept of Model View Controller (MVC) Pattern
Authors: Shutchapol Chopvitayakun
Abstract:
Nowadays, especially for the last 5 years, mobile devices, mobile applications and mobile users, through the deployment of wireless communication and mobile phone cellular network, all these components are growing significantly bigger and stronger. They are being integrated into each other to create multiple purposes and pervasive deployments into every business and non-business sector such as education, medicine, traveling, finance, real estate and many more. Objective of this study was to develop a mobile application for seniors or last-year students who enroll the internship program at each tertiary school (undergraduate school) and do onsite practice at real field sties, real organizations and real workspaces. During the internship session, all students as the interns are required to exercise, drilling and training onsite with specific locations and specific tasks or may be some assignments from their supervisor. Their work spaces are both private and government corporates and enterprises. This mobile application is developed under schema of a transactional processing system that enables users to keep daily work or practice log, monitor true working locations and ability to follow daily tasks of each trainee. Moreover, it provides useful guidance from each intern’s advisor, in case of emergency. Finally, it can summarize all transactional data then calculate each internship cumulated hours from the field practice session for each individual intern.Keywords: internship, mobile application, Android OS, smart phone devices, mobile transactional processing system, guidance and monitoring, tertiary education, senior students, model view controller (MVC)
Procedia PDF Downloads 3159543 The Counselling Practice of School Social Workers in Swedish Elementary Schools - A Focus Group Study
Authors: Kjellgren Maria, Lilliehorn Sara, Markström Urban
Abstract:
This article describes the counselling practice of school social workers (SSWs) with individual children. SSWs work in the school system’s pupil health team, whose primary task is health promotion and prevention. The work of SSWs is about helping children and adolescents who, for various reasons, suffer from mental ill-health, school absenteeism, or stress that make them unable to achieve their intended goals. SSWs preferably meet these children in individual counselling sessions. The aim of this article is to describe and analyse SSWs’ experience of counselling with children and to examine the characteristics of counselling practice. The data collection was conducted through four semi-structured focus group interviews with a total of 22 SSWs in four different regions in Sweden. SSWs provide counselling to children in order to bring about improved feelings or behavioural changes. It can be noted that SSWs put emphasis on both the counselling process and the alliance with the child. The interviews showed a common practice among SSWs regarding the structure of the counselling sessions, with certain steps and approaches being employed. However, the specific interventions differed and were characterised by an eclectic standpoint in which SSWs utilise a broad repertoire of therapeutic schools and techniques. Furthermore, a relational perspective emerged as a most prominent focus for the SSWs by re-emerging throughout the material. We believe that SSWs could benefit from theoretical perspectives on ‘contextual model’ and ‘attachment theory’ as ‘models of the mind’. Being emotionally close to the child and being able to follow their development requires a lot from SSWs, as both professional caregivers and as “safe havens”.Keywords: school social conselling, school social workers, contextual model, attachment thory
Procedia PDF Downloads 1349542 Numerical Simulation of the Production of Ceramic Pigments Using Microwave Radiation: An Energy Efficiency Study Towards the Decarbonization of the Pigment Sector
Authors: Pedro A. V. Ramos, Duarte M. S. Albuquerque, José C. F. Pereira
Abstract:
Global warming mitigation is one of the main challenges of this century, having the net balance of greenhouse gas (GHG) emissions to be null or negative in 2050. Industry electrification is one of the main paths to achieving carbon neutrality within the goals of the Paris Agreement. Microwave heating is becoming a popular industrial heating mechanism due to the absence of direct GHG emissions, but also the rapid, volumetric, and efficient heating. In the present study, a mathematical model is used to simulate the production using microwave heating of two ceramic pigments, at high temperatures (above 1200 Celsius degrees). The two pigments studied were the yellow (Pr, Zr)SiO₂ and the brown (Ti, Sb, Cr)O₂. The chemical conversion of reactants into products was included in the model by using the kinetic triplet obtained with the model-fitting method and experimental data present in the Literature. The coupling between the electromagnetic, thermal, and chemical interfaces was also included. The simulations were computed in COMSOL Multiphysics. The geometry includes a moving plunger to allow for the cavity impedance matching and thus maximize the electromagnetic efficiency. To accomplish this goal, a MATLAB controller was developed to automatically search the position of the moving plunger that guarantees the maximum efficiency. The power is automatically and permanently adjusted during the transient simulation to impose stationary regime and total conversion, the two requisites of every converged solution. Both 2D and 3D geometries were used and a parametric study regarding the axial bed velocity and the heat transfer coefficient at the boundaries was performed. Moreover, a Verification and Validation study was carried out by comparing the conversion profiles obtained numerically with the experimental data available in the Literature; the numerical uncertainty was also estimated to attest to the result's reliability. The results show that the model-fitting method employed in this work is a suitable tool to predict the chemical conversion of reactants into the pigment, showing excellent agreement between the numerical results and the experimental data. Moreover, it was demonstrated that higher velocities lead to higher thermal efficiencies and thus lower energy consumption during the process. This work concludes that the electromagnetic heating of materials having high loss tangent and low thermal conductivity, like ceramic materials, maybe a challenge due to the presence of hot spots, which may jeopardize the product quality or even the experimental apparatus. The MATLAB controller increased the electromagnetic efficiency by 25% and global efficiency of 54% was obtained for the titanate brown pigment. This work shows that electromagnetic heating will be a key technology in the decarbonization of the ceramic sector as reductions up to 98% in the specific GHG emissions were obtained when compared to the conventional process. Furthermore, numerical simulations appear as a suitable technique to be used in the design and optimization of microwave applicators, showing high agreement with experimental data.Keywords: automatic impedance matching, ceramic pigments, efficiency maximization, high-temperature microwave heating, input power control, numerical simulation
Procedia PDF Downloads 1389541 Physics-Informed Convolutional Neural Networks for Reservoir Simulation
Authors: Jiangxia Han, Liang Xue, Keda Chen
Abstract:
Despite the significant progress over the last decades in reservoir simulation using numerical discretization, meshing is complex. Moreover, the high degree of freedom of the space-time flow field makes the solution process very time-consuming. Therefore, we present Physics-Informed Convolutional Neural Networks(PICNN) as a hybrid scientific theory and data method for reservoir modeling. Besides labeled data, the model is driven by the scientific theories of the underlying problem, such as governing equations, boundary conditions, and initial conditions. PICNN integrates governing equations and boundary conditions into the network architecture in the form of a customized convolution kernel. The loss function is composed of data matching, initial conditions, and other measurable prior knowledge. By customizing the convolution kernel and minimizing the loss function, the neural network parameters not only fit the data but also honor the governing equation. The PICNN provides a methodology to model and history-match flow and transport problems in porous media. Numerical results demonstrate that the proposed PICNN can provide an accurate physical solution from a limited dataset. We show how this method can be applied in the context of a forward simulation for continuous problems. Furthermore, several complex scenarios are tested, including the existence of data noise, different work schedules, and different good patterns.Keywords: convolutional neural networks, deep learning, flow and transport in porous media, physics-informed neural networks, reservoir simulation
Procedia PDF Downloads 1439540 Fully Automated Methods for the Detection and Segmentation of Mitochondria in Microscopy Images
Authors: Blessing Ojeme, Frederick Quinn, Russell Karls, Shannon Quinn
Abstract:
The detection and segmentation of mitochondria from fluorescence microscopy are crucial for understanding the complex structure of the nervous system. However, the constant fission and fusion of mitochondria and image distortion in the background make the task of detection and segmentation challenging. In the literature, a number of open-source software tools and artificial intelligence (AI) methods have been described for analyzing mitochondrial images, achieving remarkable classification and quantitation results. However, the availability of combined expertise in the medical field and AI required to utilize these tools poses a challenge to its full adoption and use in clinical settings. Motivated by the advantages of automated methods in terms of good performance, minimum detection time, ease of implementation, and cross-platform compatibility, this study proposes a fully automated framework for the detection and segmentation of mitochondria using both image shape information and descriptive statistics. Using the low-cost, open-source python and openCV library, the algorithms are implemented in three stages: pre-processing, image binarization, and coarse-to-fine segmentation. The proposed model is validated using the mitochondrial fluorescence dataset. Ground truth labels generated using a Lab kit were also used to evaluate the performance of our detection and segmentation model. The study produces good detection and segmentation results and reports the challenges encountered during the image analysis of mitochondrial morphology from the fluorescence mitochondrial dataset. A discussion on the methods and future perspectives of fully automated frameworks conclude the paper.Keywords: 2D, binarization, CLAHE, detection, fluorescence microscopy, mitochondria, segmentation
Procedia PDF Downloads 3579539 The Role of Demographics and Service Quality in the Adoption and Diffusion of E-Government Services: A Study in India
Authors: Sayantan Khanra, Rojers P. Joseph
Abstract:
Background and Significance: This study is aimed at analyzing the role of demographic and service quality variables in the adoption and diffusion of e-government services among the users in India. The study proposes to examine the users' perception about e-Government services and investigate the key variables that are most salient to the Indian populace. Description of the Basic Methodologies: The methodology to be adopted in this study is Hierarchical Regression Analysis, which will help in exploring the impact of the demographic variables and the quality dimensions on the willingness to use e-government services in two steps. First, the impact of demographic variables on the willingness to use e-government services is to be examined. In the second step, quality dimensions would be used as inputs to the model for explaining variance in excess of prior contribution by the demographic variables. Present Status: Our study is in the data collection stage in collaboration with a highly reliable, authentic and adequate source of user data. Assuming that the population of the study comprises all the Internet users in India, a massive sample size of more than 10,000 random respondents is being approached. Data is being collected using an online survey questionnaire. A pilot survey has already been carried out to refine the questionnaire with inputs from an expert in management information systems and a small group of users of e-government services in India. The first three questions in the survey pertain to the Internet usage pattern of a respondent and probe whether the person has used e-government services. If the respondent confirms that he/she has used e-government services, then an aggregate of 15 indicators are used to measure the quality dimensions under consideration and the willingness of the respondent to use e-government services, on a five-point Likert scale. If the respondent reports that he/she has not used e-government services, then a few optional questions are asked to understand the reason(s) behind the same. Last four questions in the survey are dedicated to collect data related to the demographic variables. An indication of the Major Findings: Based on the extensive literature review carried out to develop several propositions; a research model is prescribed to start with. A major outcome expected at the completion of the study is the development of a research model that would help to understand the relationship involving the demographic variables and service quality dimensions, and the willingness to adopt e-government services, particularly in an emerging economy like India. Concluding Statement: Governments of emerging economies and other relevant agencies can use the findings from the study in designing, updating, and promoting e-government services to enhance public participation, which in turn, would help to improve efficiency, convenience, engagement, and transparency in implementing these services.Keywords: adoption and diffusion of e-government services, demographic variables, hierarchical regression analysis, service quality dimensions
Procedia PDF Downloads 267