Search results for: water depth
10657 Investigating the Determinants and Growth of Financial Technology Depth of Penetration among the Heterogeneous Africa Economies
Authors: Tochukwu Timothy Okoli, Devi Datt Tewari
Abstract:
The high rate of Fintech adoption has not transmitted to greater financial inclusion and development in Africa. This problem is attributed to poor Fintech diversification and usefulness in the continent. This concept is referred to as the Fintech depth of penetration in this study. The study, therefore, assessed its determinants and growth process in a panel of three emergings, twenty-four frontiers and five fragile African economies disaggregated with dummies over the period 2004-2018 to allow for heterogeneity between groups. The System Generalized Method of Moments (GMM) technique reveals that the average depth of Mobile banking and automated teller machine (ATM) is a dynamic heterogeneity process. Moreover, users' previous experiences/compatibility, trial-ability/income, and financial development were the major factors that raise its usefulness, whereas perceived risk, financial openness, and inflation rate significantly limit its usefulness. The growth rate of Mobile banking, ATM, and Internet banking in 2018 is, on average 41.82, 0.4, and 20.8 per cent respectively greater than its average rates in 2004. These greater averages after the 2009 financial crisis suggest that countries resort to Fintech as a risk-mitigating tool. This study, therefore, recommends greater Fintech diversification through improved literacy, institutional development, financial liberalization, and continuous innovation.Keywords: depth of fintech, emerging Africa, financial technology, internet banking, mobile banking
Procedia PDF Downloads 13010656 Evaluation of Wheat Varieties on Water Use Efficiency under Staggering Sowing times and Variable Irrigation Regimes under Timely and Late Sown Conditions
Authors: Vaibhav Baliyan, Shweta Mehrotra, S. S. Parihar
Abstract:
The agricultural productivity is challenged by climate change and depletion in natural resources, including water and land, which significantly affects the crop yield. Wheat is a thermo-sensitive crop and is prone to heat stress. High temperature decreases crop duration, yield attributes, and, subsequently, grain yield and biomass production. Terminal heat stress affects grain filling duration, grain yield, and yield attributes, thus causing a reduction in wheat yield. A field experiment was conducted at Indian Agricultural Research Institute, New Delhi, for two consecutive rabi seasons (2017-18 and 2018-19) on six varieties of wheat (early sown - HD 2967, HD 3086, HD 2894 and late sown - WR 544, HD 3059, HD 3117 ) with three moisture regimes (100%, 80%, and 60% ETc, and no irrigation) and six sowing dates in three replications to investigate the effect of different moisture regimes and sowing dates on growth, yield and water use efficiency of wheat for development of best management practices for mitigation of terminal heat stress. HD3086 and HD3059 gave higher grain yield than others under early sown and late sown conditions, respectively. Maximum soil moisture extraction was recorded from 0-30 cm soil depth across the sowing dates, irrigation regimes, and varieties. Delayed sowing resulted in reducing crop growth period and forced maturity, in turn, led to significant deterioration in all the yield attributing characters and, there by, reduction in yield, suggesting that terminal heat stress had greater impact on yield. Early sowing and irrigation at 80% ETc resulted in improved growth and yield attributes and water use efficiency in both the seasons and helped to some extent in reducing the risk of terminal heat stress of wheat grown on sandy loam soils of semi-arid regions of India.Keywords: sowing, irrigation, yield, heat stress
Procedia PDF Downloads 9710655 Solar Heating System to Promote the Disinfection
Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale
Abstract:
It presents a heating system using low cost alternative solar collectors to promote the disinfection of water in low income communities that take water contaminated by bacteria. The system consists of two solar collectors, with total area of 4 m² and was built using PET bottles and cans of beer and soft drinks. Each collector is made up of 8 PVC tubes, connected in series and work in continuous flow. It will determine the flux the most appropriate to generate the temperature to promote the disinfection. Will be presented results of the efficiency and thermal loss of system and results of analysis of water after undergoing the process of heating.Keywords: disinfection of water, solar heating system, poor communities, PVC
Procedia PDF Downloads 47910654 An Investigation of Interdisciplinary Techniques for Assessment of Water Quality in an Industrial Area
Authors: Priti Saha, Biswajit Paul
Abstract:
Rapid urbanization and industrialization have increased the demand of groundwater. However, the present era has evident an enormous level of groundwater pollution. Therefore, water quality assessment is paramount importance to evaluate its suitability for drinking, irrigation and industrial use. This study focus to evaluate the groundwater quality of an industrial city in eastern India through interdisciplinary techniques. The multi-purpose Water Quality Index (WQI) assess the suitability for drinking as well as irrigation of forty sampling locations, where 2.5% and 15% of sampling locations have excellent water quality (WQI:0-25) as well as 15% and 40% have good quality (WQI:25-50), which represents its suitability for drinking and irrigation respectively. However, the industrial water quality was assessed through Ryznar Stability Index (LSI), which affirmed that only 2.5% of sampling locations have neither corrosive nor scale forming properties (RSI: 6.2-6.8). These techniques with the integration of geographical information system (GIS) for spatial assessment indorsed its effectiveness to identify the regions where the water bodies are suitable to use for drinking, irrigation as well as industrial activities. Further, the sources of these contaminants were identified through factor analysis (FA), which revealed that both the geogenic as well as anthropogenic sources were responsible for groundwater pollution. This research demonstrates the effectiveness of statistical and GIS techniques for the analysis of environmental contaminants.Keywords: groundwater, water quality analysis, water quality index, WQI, factor analysis, FA, spatial assessment
Procedia PDF Downloads 19410653 Comparison of Mean Monthly Soil Temperature at (5 and 30 cm) Depths at Compton Experimental Site, West Midlands (UK), between 1976-2008
Authors: Aminu Mansur
Abstract:
A comparison of soil temperature at (5 and 30 cm) depths at a research site over the period (1976-2008) was analyzed. Based on the statistical analysis of the database of (12,045) days of individual soil temperature measurements in sandy-loam of the (salwick series) soils, the mean soil temperature revealed a statistically significant increase of about -1.1 to 10.9°C at 5 cm depth in 1976 compared to 2008. Similarly, soil temperature at 30 cm depth increased by -0.1 to 2.1°C in 2008 compared to 1976. Although, rapid increase in soil temperature at all depths was observed during that period, but a thorough assessment of these conditions suggested that the soil temperature at 5 cm depth are progressively increasing over time. A typical example of those increases in soil temperature was provided for agriculture where Miscanthus (elephant) plant that grows within the study area is adversely affected by the mean soil temperature increase. The study concluded that these observations contribute to the growing mass of evidence of global warming and knowledge on secular trends. Therefore, there was statistically significant increase in soil temperature at Compton Experimental Site between 1976-2008.Keywords: soil temperature, warming trend, environment science, climate and atmospheric sciences
Procedia PDF Downloads 29810652 Water Management of Erdenet Mining Company
Authors: K. H. Oyuntungalag, Scott Kenner, O. Erdenetuya
Abstract:
The life cycle phases of mining projects are described in this guidance document, and includes initial phases (exploration, feasibility and planning), mine development (construction and operations), closure and reclamation. Initial phases relate to field programs and desktop studies intended to build the data and knowledge base, including the design of water management infrastructure and development during these initial phases. Such a model is essential to demonstrate that the water management plan (WMP) will provide adequate water for the mine operations and sufficient capacity for anticipated flows and volumes, and minimize environmental impacts on the receiving environment. The water and mass balance model must cover the whole mine life cycle, from the start of mine development to a date sufficiently far in the future where the reclaimed landscape is considered self- sustaining following complete closure of the mine (i.e., post- closure). The model simulates the movement of water within the components of the water management infrastructure and project operating areas, and calculates chemical loadings to each mine component. At Erdenet Mining company an initial water balance model reflecting the tailings dam, groundwater seepage and mine process water was developed in collaboration with Dr. Scott Kenner (visiting Fulbright scholar). From this preliminary study the following recommendations were made: 1. Develop a detailed groundwater model to simulate seepage from the tailings dam, 2. Establish an evaporation pan for improving evapotranspiration estimates, and 3. Measure changes in storage of water within the tailings dam and other water storage components within the mine processing.Keywords: evapotranspiration , monitoring program, Erdenet mining, tailings dam
Procedia PDF Downloads 47710651 Effect of Polymer Residues for Wastewater Treatment from Petroleum Production
Authors: Chayonnat Thanamun, Kreangkrai Maneeintr
Abstract:
For petroleum industry, polymer flooding is the one of the main methods in enhanced oil recovery (EOR) that is used water-soluble polymer such as partially hydrolyzed polyacrylamide (HPAM) to increase oil production. It is added to the flooding water to improve the mobility ratio in the flooding process. During the polymer flooding process, water is produced as a by-product along with oil and gas production. This produced water is a mixture of inorganic and organic compound. Moreover, produced water is more difficult to treat than that from water flooding. In this work, the effect of HPAM residue on the wastewater treatment from polymer flooding is studied. Polyaluminium chloride (PAC) is selected to use as a flocculant. Therefore, the objective of this study is to evaluate the effect of polymer residues in produced water on the wastewater treatment by using PAC. The operating parameters of this study are flocculant dosage ranging from 300,400 and 500 mg/L temperature from 30-50 Celsius degree and HPAM concentrations from 500, 1000 and 2000 mg/L. Furthermore, the turbidity, as well as total suspended solids (TSS), are also studied. The results indicated that with an increase in HPAM concentration, the TSS and turbidity increase gradually with the increasing of coagulant dosage under the same temperature. Also, the coagulation-flocculation performance is improved with the increasing temperature. This can be applied to use in the wastewater treatment from oil production before this water can be injected back to the reservoir.Keywords: wastewater treatment, petroleum production, polyaluminium chloride, polyacrylamide
Procedia PDF Downloads 15310650 Evaluation the Concentration of Pb, Cd, Cu, Ni, Zn, Cr in Rainbow Trout and Water of Haraz River
Authors: Meysam Tehranisharif, Hadi Nakhaee, Seyed Aaghaali Seyed Moosavi, Solmaz Ahadi
Abstract:
Being the second largest river in the southern Caspian Sea basin, the Haraz River flows northwards through the Alborz mountains in the central region of Mazandaran province.The Haraz basin has specific geological characteristics affecting the river water quality.This area has been a rich source of minerals from times immemorial. About 45 mines (coal, limestone, sand and gravel, etc.) have been operational for the last eight decades. In the other hand this region is one of the most famous fish culturing area around Tehran & many farms are located beside this river .The aim of this study was to determine the concentration of Zn, Cd, Cr, pb , Cu, Ni in fish muscles & water in Haraz river. In order to determine the heavy metals concentration in all parts of the river , 4 station (Haraz , Razan , chelrood & Amol)were selected . Totally 32 samples were colleted from 8 farms (4 sample from each farm and 2 farms from each station). 4 water samples were collected. Biometeric were performed , then 10 grams of fish muscle were dissected and samples were prepared according to standard method. Heavy metal concentration were determined by atomic absorption method. The mean concentration of Zn in fish muscles & water in Haraz , Razan , Chelrood and Amool were 0.72 , 0.32,0.522,0.5 & 1.72,1.81,1.77,1.7 ppm respectively. Ni didn't detect in fish samples but the mean concentration in water samples in Haraz , Razan , Chelrood and Amool were 1.1 ,0.9,1.1,1.1 ppm respectively. The mean concentration of Cr in fish muscles & water in Haraz , Razan , Chelrood and Amool were 0.586,0.492,0.5,0.552 & 2.2 , 2.2,2.1,2.22 ppm respectively . Cd didn't detect in any sample. Pb concentration in fish samples & water in Haraz , Razan , Chelrood & Amool were 0.44,0.34, o.37,0.48 & 0.11,0.11,0.11,0.14 ppm repectively .The mean concentration of Cu in fish muscles & water in Haraz , Razan , Chelrood and Amool were 0.754,0.372,0.539,2.3 &0.11,0.21,0.17,0.37 ppm respectively. Cu concentration in The fish muscles and water was increased significantly in Amol station .The results of this study showed that heavy metal concentration in fish muscles and water are lower than standards.Keywords: heavy metals, fish, water, Haraz , Iran
Procedia PDF Downloads 34210649 Mechanistic Study of Composite Pavement Behavior in Heavy Duty Area
Authors: Makara Rith, Young Kyu Kim, Seung Woo Lee
Abstract:
In heavy duty areas, asphalt pavement constructed as entrance roadway may expose distresses such as cracking and rutting during service life. To mitigate these problems, composite pavement with a roller-compacted concrete base may be a good alternative; however, it should be initially investigated. Structural performances such as fatigue cracking and rut depth may be changed due to variation of some design factors. Therefore, this study focuses on the variation effect of material modulus, layer thickness and loading on composite pavement performances. Stress and strain at the critical location are determined and used as the input of transfer function for corresponding distresses to evaluate the pavement performance. Also, composite pavement satisfying the design criteria may be selected as a design section for heavy duty areas. Consequently, this investigation indicates that composite pavement has the ability to eliminate fatigue cracking in asphalt surfaces and significantly reduce rut depth. In addition, a thick or strong rigid base can significantly reduce rut depth and prolong fatigue life of this layer.Keywords: composite pavement, ports, cracking, rutting
Procedia PDF Downloads 20610648 Microscopic Insights into Water Transport Through a Biomimetic Artificial Water Nano-Channels-Polyamide Membrane
Authors: Aziz Ghoufi, Ayman Kanaan
Abstract:
Clean water is ubiquitous from drinking to agriculture and from energy supply to industrial manufacturing. Since the conventional water sources are becoming increasingly rare, the development of new technologies for water supply is crucial to address the world’s clean water needs in the 21st century. Desalination is in many regards the most promising approach to long-term water supply since it potentially delivers an unlimited source of fresh water. Seawater desalination using reverse osmosis (RO) membranes has become over the past decade a standard approach to produce fresh water. While this technology has proven to be efficient, it remains however relatively costly in terms of energy input due to the use of high-pressure pumps resulting of the low water permeation through polymeric RO membranes. Recently, water channels incorporated in lipidic and polymeric membranes were demonstrated to provide a selective water translocation that enables to break permeability- selectivity trade-off. Biomimetic Artificial Water channels (AWCs) are becoming highly attractive systems to achieve a selective transport of water. The first developed AWCs formed from imidazole quartet (I-quartet) embedded in lipidic membranes exhibited an ion selectivity higher than AQPs however associated with a lower water flow performance. Recently it has been conducted pioneer work in this field with the fabrication of the first AWC@Polyamide(PA) composite membrane with outstanding desalination performance. However, the microscopic desalination mechanism in play is still unknown and its understanding represents the shortest way for a long-term conception and design of AWC@PA composite membranes with better performance. In this work we gain an unprecedented fundamental understanding and rationalization of the nanostructuration of the AWC@PA membranes and the microscopic mechanism at the origin of their water transport performance from advanced molecular simulations. Using osmotic molecular dynamics simulations and a non-equilibrium method with water slab control, we demonstrate an increase in porosity near the AWC@PA interfaces, enhancing water transport without compromising the rejection rate. Indeed, the water transport pathways exhibit a single-file structure connected by hydrogen bonds. Finally, by comparing AWC@PA and PA membranes, we show that the difference in water flux aligns well with experimental results, validating the model used.Keywords: water desalination, biomimetic membranes, molecular simulation, nanochannels
Procedia PDF Downloads 1710647 A Review on Potential Utilization of Water Hyacinth (Eichhornia crassipes) as Livestock Feed with Particular Emphasis to Developing Countries in Africa
Authors: Shigdaf Mekuriaw, Firew Tegegne, A. Tsunekawa, Dereje Tewabe
Abstract:
The purpose of this paper is to make a comprehensive review on the use of water hyacinth (Eichhornia crassipes) as a potential livestock feed and argue its utilization as complementary strategy to other control methods. Water Hyacinth is one of the most noxious plant invaders of rivers and lakes. Such weeds cause environmental disaster and interfere with economic and recreational activities such as water transportation and fishing. Economic impacts of the weed in seven African countries have been estimated at between 20-50 million US$ every year. It would, therefore, be prudent to suggest utilization as a complementary control method. The majority of people in developing countries are dependent on traditional and inefficient crop-livestock production system that constrains their ability to enhance economic productivity and quality of life. Livestock in developing countries faces shortage of feed, especially during the long dry seasons. Existing literature shows the use of water hyacinth as livestock and fish feed. The chemical composition of water hyacinth varies considerably. Due to its relatively high crude protein (CP) content (5.8-20.0%), water hyacinth can be considered as a potential protein supplement for livestock which commonly feed cereal crop residues whose contribution as source of feed is increasing in Africa. Though the effects of anti-nutritional factors (ANFs) present in water hyacinth is not investigated, their concentrations are not above threshold hinder its utilization as livestock feed. In conclusion, water hyacinth could provide large quantities of nutritious feed for animals. Like other feeds, water hyacinth may not be offered as a sole feed and based on existing literature its optimum inclusion level reaches 50%.Keywords: Africa, livestock feed, water bodies, water hyacinth and weed control method
Procedia PDF Downloads 38610646 Governing Urban Water Infrasystems: A Case Study of Los Angeles in the Context of Global Frameworks
Authors: Joachim Monkelbaan, Marcia Hale
Abstract:
Now that global frameworks for sustainability governance (e.g. the Sustainable Development Goals, Paris Climate Agreement and Sendai Framework for Disaster Risk Reduction) are in place, the question is how these aspirations that represent major transitions can be put into practice. Water ‘infrasystems’ can play an especially significant role in strengthening regional sustainability. Infrasystems include both hard and soft infrastructure, such as pipes and technology for delivering water, as well as the institutions and governance models that direct its delivery. As such, an integrated infrasystems view is crucial for Integrative Water Management (IWM). Due to frequently contested ownership of and responsibility for water resources, these infrasystems can also play an important role in facilitating conflict and catalysing community empowerment, especially through participatory approaches to governance. In this paper, we analyze the water infrasystem of the Los Angeles region through the lens of global frameworks for sustainability governance. By complementing a solid overview of governance theories with empirical data from interviews with water actors in the LA metropolitan region (including NGOs, water managers, scientists and elected officials), this paper elucidates ways for this infrasystem to be better aligned with global sustainability frameworks. In addition, it opens up the opportunity to scrutinize the appropriateness of global frameworks when it comes to fostering sustainability action at the local level.Keywords: governance, transitions, global frameworks, infrasystems
Procedia PDF Downloads 24510645 Ultrafine Non Water Soluble Drug Particles
Authors: Shahnaz Mansouri, David Martin, Xiao Dong Chen, Meng Wai Woo
Abstract:
Ultrafine hydrophobic and non-water-soluble drugs can increase the percentage of absorbed compared to their initial dosage. This paper provides a scalable new method of making ultrafine particles of substantially insoluble water compounds specifically, submicron particles of ethanol soluble and water insoluble pharmaceutical materials by steaming an ethanol droplet to prepare a suspension and then followed by immediate drying. This suspension is formed by adding evaporated water molecules as an anti-solvent to the solute of the samples and in early stage of precipitation continued to dry by evaporating both solvent and anti-solvent. This fine particle formation has produced fast dispersion powder in water. The new method is an extension of the antisolvent vapour precipitation technique which exposes a droplet to an antisolvent vapour with reference to the dissolved materials within the droplet. Ultrafine vitamin D3 and ibuprofen particles in the submicron ranges were produced. This work will form the basis for using spray dryers as high-throughput scalable micro-precipitators.Keywords: single droplet drying, nano size particles, non-water-soluble drugs, precipitators
Procedia PDF Downloads 48310644 Ecosystem Services and Excess Water Management: Analysis of Ecosystem Services in Areas Exposed to Excess Water Inundation
Authors: Dalma Varga, Nora Hubayne H.
Abstract:
Nowadays, among the measures taken to offset the consequences of climate change, water resources management is one of the key tools, which can include excess water management. As a result of climate change’s effects and as a result of the frequent inappropriate landuse, more and more areas are affected by the excess water inundation. Hungary is located in the deepest part of the Pannonian Basin, which is exposed to water damage – especially lowland areas that are endangered by floods or excess waters. The periodical presence of excess water creates specific habitats in a given area, which have ecological, functional, and aesthetic values. Excess water inundation affects approximately 74% of Hungary’s lowland areas, of which about 46% is also under nature protection (such as national parks, protected landscape areas, nature conservation areas, Natura 2000 sites, etc.). These data prove that areas exposed to excess water inundation – which are predominantly characterized by agricultural land uses – have an important ecological role. Other research works have confirmed the presence of numerous rare and endangered plant species in drainage canals, on grasslands exposed to excess water, and on special agricultural fields with mud vegetation. The goal of this research is to define and analyze ecosystem services of areas exposed to excess water inundation. In addition to this, it is also important to determine the quantified indicators of these areas’ natural and landscape values besides the presence of protected species and the naturalness of habitats, so all in all, to analyze the various nature protections related to excess water. As a result, a practice-orientated assessment method has been developed that provides the ecological water demand, assimilates to ecological and habitat aspects, contributes to adaptive excess water management, and last but not least, increases or maintains the share of the green infrastructure network. In this way, it also contributes to reduce and mitigate the negative effects of climate change.Keywords: ecosystem services, landscape architecture, excess water management, green infrastructure planning
Procedia PDF Downloads 31310643 Parallel Self Organizing Neural Network Based Estimation of Archie’s Parameters and Water Saturation in Sandstone Reservoir
Authors: G. M. Hamada, A. A. Al-Gathe, A. M. Al-Khudafi
Abstract:
Determination of water saturation in sandstone is a vital question to determine the initial oil or gas in place in reservoir rocks. Water saturation determination using electrical measurements is mainly on Archie’s formula. Consequently accuracy of Archie’s formula parameters affects water saturation values rigorously. Determination of Archie’s parameters a, m, and n is proceeded by three conventional techniques, Core Archie-Parameter Estimation (CAPE) and 3-D. This work introduces the hybrid system of parallel self-organizing neural network (PSONN) targeting accepted values of Archie’s parameters and, consequently, reliable water saturation values. This work focuses on Archie’s parameters determination techniques; conventional technique, CAPE technique, and 3-D technique, and then the calculation of water saturation using current. Using the same data, a hybrid parallel self-organizing neural network (PSONN) algorithm is used to estimate Archie’s parameters and predict water saturation. Results have shown that estimated Arche’s parameters m, a, and n are highly accepted with statistical analysis, indicating that the PSONN model has a lower statistical error and higher correlation coefficient. This study was conducted using a high number of measurement points for 144 core plugs from a sandstone reservoir. PSONN algorithm can provide reliable water saturation values, and it can supplement or even replace the conventional techniques to determine Archie’s parameters and thereby calculate water saturation profiles.Keywords: water saturation, Archie’s parameters, artificial intelligence, PSONN, sandstone reservoir
Procedia PDF Downloads 12810642 Evaluation of Heavy Metal Contamination and Assessment of the Suitability of Water for Irrigation: A Case Study of the Sand River, Limpopo Province, South Africa
Authors: Ngonidzashe Moyo, Mmaditshaba Rapatsa
Abstract:
The primary objective of this study was to determine heavy metal contamination in the water, sediment, grass and fish in Sand River, South Africa. This river passes through an urban area and sewage effluent is discharged into it. Water from the Sand river is subsequently used for irrigation downstream of the sewage treatment works. The suitability of this water and the surrounding boreholes for irrigation was determined. This study was undertaken between January, 2014 and January, 2015. Monthly samples were taken from four sites. Sites 1 was upstream of the Polokwane Wastewater Treatment Plant, sites 2, 3 and 4 were downstream. Ten boreholes in the vicinity of the Sand River were randomly selected and the water was tested for heavy metal contamination. The concentration of heavy metals in Sand River water followed the order Mn>Fe>Pb>Cu≥Zn≥Cd. Manganese concentration averaged 0.34 mg/L. Heavy metal concentration in the sediment, grass and fish followed the order Fe>Mn>Zn>Cu>Pb>Cd. The bioaccumulation factor from grass to fish was highest in manganese (19.25), followed by zinc (16.39) and iron (14.14). Soil permeability index (PI) and sodium adsorption ratio (SAR) were used to determine the suitability of Sand River and borehole water for irrigation. The PI index for Sand River water was 75.1% and this indicates that Sand River water is suitable for irrigation of crops. The PI index for the borehole water ranged from 65.8-72.8% and again this indicates suitability of borehole water for crop irrigation. The sodium adsorption ratio also indicated that both Sand River and borehole water were suitable for irrigation. A risk assessment study is recommended to determine the suitability of the fish for human consumption.Keywords: bioaccumulation, bioavailability, heavy metals, sodium adsorption ratio
Procedia PDF Downloads 22310641 Development of Electric Generator and Water Purifier Cart
Authors: Luisito L. Lacatan, Gian Carlo J. Bergonia, Felipe C. Buado III, Gerald L. Gono, Ron Mark V. Ortil, Calvin A. Yap
Abstract:
This paper features the development of a Mobile Self-sustaining Electricity Generator for water distillation process with MCU- based wireless controller & indicator designed to solve the problem of scarcity of clean water. It is a fact that pure water is precious nowadays and its value is more precious to those who do not have or enjoy it. There are many water filtration products in existence today. However, none of these products fully satisfies the needs of families needing clean drinking water. All of the following products require either large sums of money or extensive maintenance, and some products do not even come with a guarantee of potable water. The proposed project was designed to alleviate the problem of scarcity of potable water in the country and part of the purpose was also to identify the problem or loopholes of the project such as the distance and speed required to produce electricity using a wheel and alternator, the required time for the heating element to heat up, the capacity of the battery to maintain the heat of the heating element and the time required for the boiler to produce a clean and potable water. The project has three parts. The first part included the researchers’ effort to plan every part of the project from the conversion of mechanical energy to electrical energy, from purifying water to potable drinking water to the controller and indicator of the project using microcontroller unit (MCU). This included identifying the problem encountered and any possible solution to prevent and avoid errors. Gathering and reviewing related studies about the project helped the researcher reduce and prevent any problems before they could be encountered. It also included the price and quantity of materials used to control the budget.Keywords: mobile, self – sustaining, electricity generator, water distillation, wireless battery indicator, wireless water level indicator
Procedia PDF Downloads 31010640 Free Residual Chlorine and Bacteriological Contamination in Addis Ababa Water Supply System, Ethiopia
Authors: Aklilu Zeleke
Abstract:
A cross-sectional study was conducted in order to understand the effect of wet and dry seasons on the free residual chlorine and bacteriological contamination of the Addis Ababa (Ethiopia) water supply system. Water samples were taken at 30 selected distribution points and analyzed for Free Residual Chlorine and bacteriological analysis total coliforms and fecal coliform). It was found that some of the bacteriological data and Free Residual Chlorine levels are below the recommended values and beyond the maximum tolerable limits recommended by World Health Organization and Ethiopian National Standards. Water quality during the dry season is better than that of the wet season. There is a strong relationship between Free Residual Chlorine levels in drinking water and its bacteriological quality.Keywords: addis ababa, wet season, dry season, free residual chlorine
Procedia PDF Downloads 7810639 Utilities as Creditors: The Effect of Enforcement of Water Bill Payment in Zambia
Authors: Elizabeth Spink
Abstract:
Providing safe and affordable drinking water to low-income households in developing countries remains a challenge. Policy goals of increasing household piped-water access and cost recovery for utility providers are often at odds. Nonpayment of utility bills is frequently cited as a constraint to improving the quality of utility service. However, nonpayment is widely tolerated, and households often accumulate significant debt to the utility provider. This study examines the effect of enforcement of water bill payment through supply disconnections in Livingstone, Zambia. This research uses a dynamic model of household monthly payments and accumulation of arrears, which determine the probability of disconnection, and simulates the effect of exogenous changes in enforcement levels. This model is empirically tested using an event-study framework of exogenous increases in enforcement capacity that occur during administrative rezoning events, which reduce the number of households that one enforcement agent is responsible for. The results show that households are five percentage points more likely to make a payment in the months following a rezoning event, but disconnections for low-income households increase as well, resulting in little change in revenue collected by the water utility. The results suggest that high enforcement of water bill payments toward credit-constrained households may be ineffective and lead to reduced piped-water access.Keywords: enforcement, nonpayment, piped-water access, water utilities
Procedia PDF Downloads 24510638 The Impact of Environmental Factors on the Water Quality of the Lakes in Bistrița Basin, Romania
Authors: Mihaela Alina Stanciu, Daniel Toma
Abstract:
With a touristic and economic potential among the highest in our country, Neamț County has a large number of impressive storage lakes (Izvoru Muntelui – Bicaz, Bâtca Doamnei, Vaduri, Pângărați), with high hydrographic capacities, but also a diversity of biotopes and habitats. Being an area with frequent exceedances of environmental quality indicators, we analyzed in this work their impact on the water quality parameters in three of the most visited lakes of Neamț County: Bâtca Doamnei, Vaduri, and Pângărați. An additional reason is the risk of the water eutrophication process in these lakes, representing one of the first six most important pollution problems worldwide. During the research carried out over a period of four years (2020 – 2024), we identified the major sources of water pollution for the mentioned reservoirs. We analyzed the type of impact produced by each source separately, and we proposed preventiong and control measures detailed according to their action on water quality parameters.Keywords: ecosystem, environment, eutrophication, lakes, nutrients, pollution, water quality
Procedia PDF Downloads 2910637 Depth Camera Aided Dead-Reckoning Localization of Autonomous Mobile Robots in Unstructured GNSS-Denied Environments
Authors: David L. Olson, Stephen B. H. Bruder, Adam S. Watkins, Cleon E. Davis
Abstract:
In global navigation satellite systems (GNSS), denied settings such as indoor environments, autonomous mobile robots are often limited to dead-reckoning navigation techniques to determine their position, velocity, and attitude (PVA). Localization is typically accomplished by employing an inertial measurement unit (IMU), which, while precise in nature, accumulates errors rapidly and severely degrades the localization solution. Standard sensor fusion methods, such as Kalman filtering, aim to fuse precise IMU measurements with accurate aiding sensors to establish a precise and accurate solution. In indoor environments, where GNSS and no other a priori information is known about the environment, effective sensor fusion is difficult to achieve, as accurate aiding sensor choices are sparse. However, an opportunity arises by employing a depth camera in the indoor environment. A depth camera can capture point clouds of the surrounding floors and walls. Extracting attitude from these surfaces can serve as an accurate aiding source, which directly combats errors that arise due to gyroscope imperfections. This configuration for sensor fusion leads to a dramatic reduction of PVA error compared to traditional aiding sensor configurations. This paper provides the theoretical basis for the depth camera aiding sensor method, initial expectations of performance benefit via simulation, and hardware implementation, thus verifying its veracity. Hardware implementation is performed on the Quanser Qbot 2™ mobile robot, with a Vector-Nav VN-200™ IMU and Kinect™ camera from Microsoft.Keywords: autonomous mobile robotics, dead reckoning, depth camera, inertial navigation, Kalman filtering, localization, sensor fusion
Procedia PDF Downloads 20710636 An Investigation into the Impact of the Relocation of Tannery Industry on Water Quality Parameters of Urban River Buriganga
Authors: Md Asif Imrul, Maria Rafique, M. Habibur Rahman
Abstract:
The study deals with an investigation into the impact of the relocation of tannery industry on water quality parameters of Buriganga. For this purpose, previous records have been collected from authentic data resources and for the attainment of present values, several samples were collected from three major locations of the Buriganga River during summer and winter seasons in 2018 to determine the distribution and variation of water quality parameters. Samples were collected six ft below the river water surface. Analysis indicates slightly acidic to slightly alkaline (6.8-7.49) in nature. Bio-Chemical Oxygen Demand, Total Dissolved Solids, Total Solids (TS) & Total Suspended Solids (TSS) have been found greater in summer. On the other hand, Dissolved Oxygen is found greater in rainy seasons. Relocation shows improvement in water quality parameters. Though the improvement related to relocation of tannery industry is not adequate to turn the water body to be an inhabitable place for aquatic lives.Keywords: Buriganga river, river pollution, tannery industry, water quality parameters
Procedia PDF Downloads 16010635 Applied of LAWA Classification for Assessment of the Water by Nutrients Elements: Case Oran Sebkha Basin
Authors: Boualla Nabila
Abstract:
The increasing demand on water, either for the drinkable water supply, or for the agricultural and industrial custom, requires a very thorough hydrochemical study to protect better and manage this resource. Oran is relatively a city with the worst quality of the water. Recently, the growing populations may put stress on natural waters by impairing the quality of the water. Campaign of water sampling of 55 points capturing different levels of the aquifer system was done for chemical analyzes of nutriments elements. The results allowed us to approach the problem of contamination based on the largely uniform nationwide approach LAWA (LänderarbeitsgruppeWasser), based on the EU CIS guidance, has been applied for the identification of pressures and impacts, allowing for easy comparison. Groundwater samples were analyzed, also, for physico-chemical parameters such as pH, sodium, potassium, calcium, magnesium, chloride, sulphate, carbonate and bicarbonate. The analytical results obtained in this hydrochemistry study were interpreted using Durov diagram. Based on these representations, the anomaly of high groundwater salinity observed in Oran Sebkha basin was explained by the high chloride concentration and to the presence of inverse cation exchange reaction. Durov diagram plot revealed that the groundwater has been evolved from Ca-HCO3 recharge water through mixing with the pre-existing groundwater to give mixed water of Mg-SO4 and Mg-Cl types that eventually reached a final stage of evolution represented by a Na-Cl water type.Keywords: contamination, water quality, nutrients elements, approach LAWA, durov diagram
Procedia PDF Downloads 27610634 Effect of Different Concentrations of Polluted Water on Growth and Physiological Parameters of Two Green Algae Scenedesmus obliquus and Cosmarium leave
Authors: Yahia Mosleh
Abstract:
Both Scenedesmus obliquus and Cosmarium leave were subjected to different concentrations (5, 10, 20, 50, and 80 %) of highly polluted water collected from Haddows drainage, which receives high amount of domestic sewage, and also the increasing agriculture run off and industrial effluent, then disbursed it in El-Salam fresh water canal. The water in that canal dramatically used as drinking water alongside using in irrigation. A total of 25 physicochemical parameters were determined within the drainage polluted water and also up-stream of El-Salam fresh water canal's water. The effect of five concentrations of the tested polluted water were determined on growth density, dry algal biomass, net photosynthetic oxygen production, catalase activity and ascorbic acid content on the two algae "Scenedesmus obliquus and Cosmarium leave". The result reveal that, low concentration support the growth and the physiological activities of both algae. However, the situation is different in the case of high concentrations, where it encourage the growth of Scenedesmus obliquus , meanwhile the same concentration were inhibited the growth and physiological activities of Cosmarium leave. Which indicated that, Scenedesmus obliquus tolerated high pollution better than Cosmarium leave. Finally it can be concluded that, different organisms, however, have different sensitivities to the same pollutants and the same organisms may be more or less damaged by different pollutant. Also, the inhibitory and stimulatory effects of different species varied with concentrations.Keywords: catalase activity, ascorbic acid content, Scenedesmus, Cosmarium, pollution, biomass
Procedia PDF Downloads 29010633 Assessment of Water Quality of Euphrates River at Babylon Governorate, for Drinking, Irrigation and general, Using Water Quality Index (Canadian Version) (CCMEWQI)
Authors: Amer Obaid Saud
Abstract:
Water quality index (WQI) is considered as an effective tool in categorization of water resources for its quality and suitability for different uses. The Canadian version of water quality index (CCME WQI) which based on the comparison of the water quality parameters to regulatory standards and give a single value to the water quality of a source was applied in this study to assess the water quality of Euphrates river in Iraq at Babylon Governorate north of Baghdad and determine its suitability for aquatic environment (GWQI), drinking water (PWSI) and irrigation(IWQI). Five stations were selected on the river in Babylon (Euphrates River/AL-Musiab, Hindia barrage, two stations at Hilla city and the fifth station at Al-Hshmeya north of Hilla. Fifteen water samples were collected every month during August 2013 to July 2014 at the study sites and analyzed for the physico-chemical parameters like (Temperature, pH, Electrical Conductivity, Total Dissolved Solids(TDS), Total Suspended Solids(TSS), Total Alkalinity, Total Hardness, Calcium and Magnesium Concentration, some of nutrient like Nitrite, Nitrate, Phosphate also the study of concentration of some heavy metals (Fe, Pb, Zn, Cu, Mn, and Cd) in water and comparison of measures to benchmarks such as guidelines and objectives to assess change in water quality. The result of Canadian version of(CCME .WQI) to assess the irrigation water quality (IWQI) of Euphrates river was (83-good) at site one during second seasonal period while the lowest was (66-Fair) in the second station during the fourth seasonal period, the values of potable water supply index (PWSI)that the highest value was (68-Fair) in the fifth site during the second period while the lowest value (42 -Poor) in the second site during the first seasonal period,the highest value for general water quality (GWQI) was (74-Fair) in site five during the second seasonal period, the lowest value (48-Marginal) in the second site during the first seasonal period. It was observed that the main cause of deterioration in water quality was due to the lack of, unprotected river sites ,high anthropogenic activities and direct discharge of industrial effluent.Keywords: Babylon governorate, Canadian version, water quality, Euphrates river
Procedia PDF Downloads 39810632 Water Supply and Demand Analysis for Ranchi City under Climate Change Using Water Evaluation and Planning System Model
Authors: Pappu Kumar, Ajai Singh, Anshuman Singh
Abstract:
There are different water user sectors such as rural, urban, mining, subsistence and commercial irrigated agriculture, commercial forestry, industry, power generation which are present in the catchment in Subarnarekha River Basin and Ranchi city. There is an inequity issue in the access to water. The development of the rural area, construction of new power generation plants, along with the population growth, the requirement of unmet water demand and the consideration of environmental flows, the revitalization of small-scale irrigation schemes is going to increase the water demands in almost all the water-stressed catchment. The WEAP Model was developed by the Stockholm Environment Institute (SEI) to enable evaluation of planning and management issues associated with water resources development. The WEAP model can be used for both urban and rural areas and can address a wide range of issues including sectoral demand analyses, water conservation, water rights and allocation priorities, river flow simulation, reservoir operation, ecosystem requirements and project cost-benefit analyses. This model is a tool for integrated water resource management and planning like, forecasting water demand, supply, inflows, outflows, water use, reuse, water quality, priority areas and Hydropower generation, In the present study, efforts have been made to access the utility of the WEAP model for water supply and demand analysis for Ranchi city. A detailed works have been carried out and it was tried to ascertain that the WEAP model used for generating different scenario of water requirement, which could help for the future planning of water. The water supplied to Ranchi city was mostly contributed by our study river, Hatiya reservoir and ground water. Data was collected from various agencies like PHE Ranchi, census data of 2011, Doranda reservoir and meteorology department etc. This collected and generated data was given as input to the WEAP model. The model generated the trends for discharge of our study river up to next 2050 and same time also generated scenarios calculating our demand and supplies for feature. The results generated from the model outputs predicting the water require 12 million litter. The results will help in drafting policies for future regarding water supplies and demands under changing climatic scenarios.Keywords: WEAP model, water demand analysis, Ranchi, scenarios
Procedia PDF Downloads 41910631 Influence of Produced Water Mixed With Crude Oil on the Geotechnical Properties of Sandy Soil
Authors: Khalifa Abdunaser
Abstract:
This study investigated the effects of oil contamination due to pro-duced water leaks that created lakes decades ago, as well as the extent of its im-pact on altering the geotechnical characteristics of the soil, which could act as a barrier to groundwater access The concentration of total petroleum hydrocarbons (TPH), which is the main component in the contaminated soil, was measured using a variety of analyses. Additionally, some extensive laboratory tests were performed to examine the effects on the soil's geotechnical properties, including particle size distribution, shear strength, consistency limits, specific gravity, and permeability coefficient. A clear decrease in TPH concentration was observed with increasing depth, and it is expected to end within only a few meters. It was found that there is a signifi-cant effect of this pollutant on the size of the soil particles, which led to them be-coming coarser than the uncontaminated soil particles. Moreover, it causes a de-crease in fluid and plastic boundaries, as well as an increase in cohesion between soil particles. However, the angle of internal friction decreases with the increase in the content of petroleum hydrocarbons in the soil samples. It came to light that determining the permeability coefficient as one of the physical characteristics of the most important factors responsible for the passage of pollutants in the groundwater, as it showed an obvious reduction in the permeability, which is the main reason dealt as an obstacle to the arrival of oil pollutants to the groundwater.Keywords: TPH, specific gravity, oil lake, Libya
Procedia PDF Downloads 9210630 Water Reclamation from Synthetic Winery Wastewater Using a Fertiliser Drawn Forward Osmosis System Evaluating Aquaporin-Based Biomimetic and Cellulose Triacetate Forward Osmosis Membranes
Authors: Robyn Augustine, Irena Petrinic, Claus Helix-Nielsen, Marshall S. Sheldon
Abstract:
This study examined the performance of two commercial forward osmosis (FO) membranes; an aquaporin (AQP) based biomimetic membrane, and cellulose triacetate (CTA) membrane in a fertiliser is drawn forward osmosis (FDFO) system for the reclamation of water from synthetic winery wastewater (SWW) operated over 24 hr. Straight, 1 M KCl and 1 M NH₄NO₃ fertiliser solutions were evaluated as draw solutions in the FDFO system. The performance of the AQP-based biomimetic and CTA FO membranes were evaluated in terms of permeate water flux (Jw), reverse solute flux (Js) and percentage water recovery (Re). The average water flux and reverse solute flux when using 1 M KCl as a draw solution against controlled feed solution, deionised (DI) water, was 11.65 L/m²h and 3.98 g/m²h (AQP) and 6.24 L/m²h and 2.89 g/m²h (CTA), respectively. Using 1 M NH₄NO₃ as a draw solution yielded average water fluxes and reverse solute fluxes of 10.73 L/m²h and 1.31 g/m²h (AQP) and 5.84 L/m²h and 1.39 g/m²h (CTA), respectively. When using SWW as the feed solution and 1 M KCl and 1 M NH₄NO₃ as draw solutions, respectively, the average water fluxes observed were 8.15 and 9.66 L/m²h (AQP) and 5.02 and 5.65 L/m²h (CTA). Membrane water flux decline was the result of a combined decrease in the effective driving force of the FDFO system, reverse solute flux and organic fouling. Permeate water flux recoveries of between 84-98%, and 83-89% were observed for the AQP-based biomimetic and CTA membrane, respectively after physical cleaning by flushing was employed. The highest water recovery rate of 49% was observed for the 1 M KCl fertiliser draw solution with AQP-based biomimetic membrane and proved superior in the reclamation of water from SWW.Keywords: aquaporin biomimetic membrane, cellulose triacetate membrane, forward osmosis, reverse solute flux, synthetic winery wastewater and water flux
Procedia PDF Downloads 16510629 Role of Ionic Solutions Affect Water Treeing Propagation in XLPE Insulation for High Voltage Cable
Authors: T. Boonraksa, B. Marungsri
Abstract:
This paper presents the experimental results on role of ionic solutions affect water treeing propagation in cross-linked polyethylene insulation for high voltage cable. To study the water treeing expansion due to the ionic solutions, discs of 4mm thickness and 4cm diameter were taken from 115 kV XLPE insulation cable and were used as test specimen in this study. Ionic solutions composed of CuSO4, FeSO4, Na2SO4 and K2SO4 were used. Each specimen was immersed in 0.1 mole ionic solutions and was tested for 120 hrs. under a voltage stress at 7 kV AC rms, 1000 Hz. The results show that Na2SO4 and CuSO4solutions play an important role in the expansion of water treeing and cause degradation of the cross-linked polyethylene (XLPE) in the presence of the applied electric field.Keywords: ionic solutions, water treeing, water treeing expansion, cross-linked polyethylene (XLPE)
Procedia PDF Downloads 38310628 The Potential Fresh Water Resources of Georgia and Sustainable Water Management
Authors: Nana Bolashvili, Vakhtang Geladze, Tamazi Karalashvili, Nino Machavariani, George Geladze, Davit Kartvelishvili, Ana Karalashvili
Abstract:
Fresh water is the major natural resource of Georgia. The average perennial sum of the rivers' runoff in Georgia is 52,77 km³, out of which 9,30 km³ inflows from abroad. The major volume of transit river runoff is ascribed to the Chorokhi river. Average perennial runoff in Western Georgia is 41,52 km³, in Eastern Georgia 11,25 km³. The indices of Eastern and Western Georgia were calculated with 50% and 90% river runoff respectively, while the same index calculation for other countries is based on a 50% river runoff. Out of total volume of resources, 133,2 m³/sec (4,21 km³) has been geologically prospected by the State Commission on Reserves and Acknowledged as reserves available for exploitation, 48% (2,02 km³) of which is in Western Georgia and 2,19 km³ in Eastern Georgia. Considering acknowledged water reserves of all categories per capita water resources accounts to 2,2 m³/day, whereas high industrial category -0. 88 m³ /day fresh drinking water. According to accepted norms, the possibility of using underground water reserves is 2,5 times higher than the long-term requirements of the country. The volume of abundant fresh-water reserves in Georgia is about 150 m³/sec (4,74 km³). Water in Georgia is consumed mostly in agriculture for irrigation purposes. It makes 66,4% around Georgia, in Eastern Georgia 72,4% and 38% in Western Georgia. According to the long-term forecast provision of population and the territory with water resources in Eastern Georgia will be quite normal. A bit different is the situation in the lower reaches of the Khrami and Iori rivers which could be easily overcome by corresponding financing. The present day irrigation system in Georgia does not meet the modern technical requirements. The overall efficiency of their majority varies between 0,4-0,6. Similar is the situation in the fresh water and public service water consumption. Organization of the mentioned systems, installation of water meters, introduction of new methods of irrigation without water loss will substantially increase efficiency of water use. Besides new irrigation norms developed from agro-climatic, geographical and hydrological angle will significantly reduce water waste. Taking all this into account we assume that for irrigation agricultural lands in Georgia is necessary 6,0 km³ water, 5,5 km³ of which goes to Eastern Georgia on irrigation arable areas. To increase water supply in Eastern Georgian territory and its population is possible by means of new water reservoirs as the runoff of every river considerably exceeds the consumption volume. In conclusion, we should say that fresh water resources by which Georgia is that rich could be significant source for barter exchange and investment attraction. Certain volume of fresh water can be exported from Western Georgia quite trouble free, without bringing any damage to population and hydroecosystems. The precise volume of exported water per region/time and method/place of water consumption should be defined after the estimation of different hydroecosystems and detailed analyses of water balance of the corresponding territories.Keywords: GIS, management, rivers, water resources
Procedia PDF Downloads 369