Search results for: steel company
2536 Vulnerability of Steel Moment-Frame Buildings with Pinned and, Alternatively, with Semi-Rigid Connections
Authors: Daniel Llanes, Alfredo Reyes, Sonia E. Ruiz, Federico Valenzuela Beltran
Abstract:
Steel frames have been used in building construction for more than one hundred years. Beam-column may be connected to columns using either stiffened or unstiffened angles at the top and bottom beam flanges. Designers often assume that these assemblies acted as “pinned” connections for gravity loads and that the stiffened connections would act as “fixed” connections for lateral loads. Observation of damages sustained by buildings during the 1994 Northridge earthquake indicated that, contrary to the intended behavior, in many cases, brittle fractures initiated within the connections at very low levels of plastic demand, and in some cases, while the structures remained essentially elastic. Due to the damage presented in these buildings other type of alternative connections have been proposed. According to a research funded by the Federal Emergency Management Agency (FEMA), the screwed connections have better performance when they are subjected to cyclic loads, but at the same time, these connections have some degree of flexibility. Due to this situation, some researchers ventured into the study of semi-rigid connections. In the present study three steel buildings, constituted by regular frames are analyzed. Two types of connections are considered: pinned and semi-rigid connections. With the aim to estimate their structural capacity, a number of incremental dynamic analyzes are performed. 3D structural models are used for the analyses. The seismic ground motions were recorded on sites near Los Angeles, California, where the structures are supposed to be located. The vulnerability curves of the building are obtained in terms of maximum inter-story drifts. The vulnerability curves (which correspond to the models with two different types of connections) are compared, and its implications on its structural design and performance is discussed.Keywords: steel frame Buildings, vulnerability curves, semi-rigid connections, pinned connections
Procedia PDF Downloads 2252535 Modeling of Ductile Fracture Using Stress-Modified Critical Strain Criterion for Typical Pressure Vessel Steel
Authors: Carlos Cuenca, Diego Sarzosa
Abstract:
Ductile fracture occurs by the mechanism of void nucleation, void growth and coalescence. Potential sites for initiation are second phase particles or non-metallic inclusions. Modelling of ductile damage at the microscopic level is very difficult and complex task for engineers. Therefore, conservative predictions of ductile failure using simple models are necessary during the design and optimization of critical structures like pressure vessels and pipelines. Nowadays, it is well known that the initiation phase is strongly influenced by the stress triaxiality and plastic deformation at the microscopic level. Thus, a simple model used to study the ductile failure under multiaxial stress condition is the Stress Modified Critical Strain (SMCS) approach. Ductile rupture has been study for a structural steel under different stress triaxiality conditions using the SMCS method. Experimental tests are carried out to characterize the relation between stress triaxiality and equivalent plastic strain by notched round bars. After calibration of the plasticity and damage properties, predictions are made for low constraint bending specimens with and without side grooves. Stress/strain fields evolution are compared between the different geometries. Advantages and disadvantages of the SMCS methodology are discussed.Keywords: damage, SMSC, SEB, steel, failure
Procedia PDF Downloads 2972534 Evaluating the Performance of Passive Direct Methanol Fuel Cell under Varying Operating and Structural Conditions
Authors: Rahul Saraswat
Abstract:
More recently, a focus is given on replacing machined stainless steel metal flow-fields with inexpensive wiremesh current collectors. The flow-fields are based on simple woven wiremesh screens of various stainless steels, which are sandwiched between a thin metal plate of the same material to create a bipolar plate/flow-field configuration for use in a stack. Major advantages of using stainless steel wire screens include the elimination of expensive raw materials as well as machining and/or other special fabrication costs. Objective of the project is to improve the performance of the passive direct methanol fuel cell without increasing the cost of the cell and to make it as compact and light as possible. From the literature survey, it was found that very little is done in this direction & the following methodology was used. 1.) The passive DMFC cell can be made more compact, lighter and less costly by changing the material used in its construction. 2.) Controlling the fuel diffusion rate through the cell improves the performance of the cell. A passive liquid feed direct methanol fuel cell ( DMFC ) was fabricated using given MEA( Membrane Electrode Assembly ) and tested for different current collector structure. Mesh current collectors of different mesh densities, along with different support structures, were used, and the performance was found to be better. Methanol concentration was also varied. Optimisation of mesh size, support structure and fuel concentration was achieved. Cost analysis was also performed hereby. From the performance analysis study of DMFC, we can conclude with the following points : Area specific resistance (ASR) of wiremesh current collectors is lower than ASR of stainless steel current collectors. Also, the power produced by wiremesh current collectors is always more than that produced by stainless steel current collectors. Low or moderate methanol concentrations should be used for better and stable DMFC performance. Wiremesh is a good substitute of stainless steel for current collector plates of passive DMFC because of lower cost( by about 27 %), flexibility and light in weight characteristics of wiremesh.Keywords: direct methanol fuel cell, membrane electrode assembly, mesh, mesh size, methanol concentration and support structure
Procedia PDF Downloads 682533 Magneto-Electric Behavior a Couple Aluminum / Steel Xc48
Authors: A. Mekroud, A. Khemis, M. S. Mecibah
Abstract:
The tribological behavior of a pin of paramagnetic material (aluminum), rolling on a rotating disk made of ferromagnetic material (steel XC48) in the presence of an externally applied alternating magnetic field, with the passage of electric current were studied. All tests were performed using a conventional tribometer pin- disk. Structural characterization of the surfaces in contact, oxides and wear debris, by X-ray diffraction (θ-2θ angle), showed the significant effect of magnetic field on the activation of the contact surface of the pin in no ferromagnetic material. The absence of the magnetic field causes a change of wear mode.Keywords: structural characterization of the surfaces, oxides and wear debris, X-ray diffraction
Procedia PDF Downloads 4192532 Hydrometallurgical Production of Nickel Ores from Field Bugetkol
Authors: A. T. Zhakiyenova, E. E. Zhatkanbaev, Zh. K. Zhatkanbaeva
Abstract:
Nickel plays an important role in mechanical engineering and creation of military equipment; practically all steel are alloyed by nickel and other metals for receiving more durable, heat-resistant, corrosion-resistant steel and cast iron. There are many ways of processing of nickel in the world. Generally, it is igneous metallurgy methods. In this article, the review of majority existing ways of technologies of processing silicate nickel - cobalt ores is considered. Leaching of ores of a field Bugetkol is investigated by solution of sulfuric acid. We defined a specific consumption of sulfuric acid in relation to the mass of ore and to the mass of metal.Keywords: cobalt, degree of extraction, hydrometallurgy, igneous metallurgy, leaching, matte, nickel
Procedia PDF Downloads 3842531 Fragility Assessment for Vertically Irregular Buildings with Soft Storey
Authors: N. Akhavan, Sh. Tavousi Tafreshi, A. Ghasemi
Abstract:
Seismic behavior of irregular structures through the past decades indicate that the stated buildings do not have appropriate performance. Among these subjects, the current paper has investigated the behavior of special steel moment frame with different configuration of soft storey vertically. The analyzing procedure has been evaluated with respect to incremental dynamic analysis (IDA), and numeric process was carried out by OpenSees finite element analysis package. To this end, nine 2D steel frames, with different numbers of stories and irregularity positions, which were subjected to seven pairs of ground motion records orthogonally with respect to Ibarra-Krawinkler deterioration model, have been investigated. This paper aims at evaluating the response of two-dimensional buildings incorporating soft storey which subjected to bi-directional seismic excitation. The IDAs were implemented for different stages of PGA with various ground motion records, in order to determine maximum inter-storey drift ratio. According to statistical elements and fracture range (standard deviation), the vulnerability or exceedance from above-mentioned cases has been examined. For this reason, fragility curves for different placement of soft storey in the first, middle and the last floor for 4, 8, and 16 storey buildings have been generated and compared properly.Keywords: special steel moment frame, soft storey, incremental dynamic analysis, fragility curve
Procedia PDF Downloads 3482530 Shear Behavior of Ultra High Strength Concrete Beams
Authors: Ghada Diaa, Enas A. Khattab
Abstract:
Ultra High Strength Concrete (UHSC) is a new advanced concrete that is being transferred from laboratory researches to practicable applications. In addition to its excellent durability properties, UHSC has high compressive and tensile strengths, and high modulus of elasticity. Despite of this low degree of hydration, ultra high strength values can be achieved by controlling the mixture proportions. In this research, an experimental program was carried out to investigate the shear behavior of ultra high strength concrete beams. A total of nine beams were tested to determine the effect of different parameters on the shear behavior of UHSC beams. The parameters include concrete strength, steel fiber volume, shear span to depth ratio, and web reinforcement ratio. The results demonstrated that nominal shear stress at cracking load and at ultimate load increased with the increase of concrete strength or the decrease in shear span-depth ratio. Using steel fibers or shear reinforcement increases the ultimate shear strength and makes the shear behavior more ductile. In this study, a simplified analytical model to calculate the shear strength of UHSC beams is introduced. Shear strength estimated according to the proposed method in this research is in good agreement with the experimental results.Keywords: ultra high strength, shear strength, diagonal, cracking, steel fibers
Procedia PDF Downloads 6182529 Thermal Fatigue Behavior of 400 Series Ferritic Stainless Steels
Authors: Seok Hong Min, Tae Kwon Ha
Abstract:
In this study, thermal fatigue properties of 400 series ferritic stainless steels have been evaluated in the temperature ranges of 200-800oC and 200-900oC. Systematic methods for control of temperatures within the predetermined range and measurement of load applied to specimens as a function of temperature during thermal cycles have been established. Thermal fatigue tests were conducted under fully constrained condition, where both ends of specimens were completely fixed. It has been revealed that load relaxation behavior at the temperatures of thermal cycle was closely related with the thermal fatigue property. Thermal fatigue resistance of 430J1L stainless steel is found to be superior to the other steels.Keywords: ferritic stainless steel, automotive exhaust, thermal fatigue, microstructure, load relaxation
Procedia PDF Downloads 3442528 Foundation Retrofitting of Storage Tank under Seismic Load
Authors: Seyed Abolhasan Naeini, Mohammad Hossein Zade, E. Izadi, M. Hossein Zade
Abstract:
The different seismic behavior of liquid storage tanks rather than conventional structures makes their responses more complicated. Uplifting and excessive settlement due to liquid sloshing are the most frequent damages in cylindrical liquid tanks after shell bucking failure modes. As a matter of fact, uses of liquid storage tanks because of the simple construction on compact layer of soil as a foundation are very conventional, but in some cases need to retrofit are essential. The tank seismic behavior can be improved by modifying dynamic characteristic of tank with verifying seismic loads as well as retrofitting and improving base ground. This paper focuses on a typical steel tank on loose, medium and stiff sandy soil and describes an evaluation of displacement of the tank before and after retrofitting. The Abaqus program was selected for its ability to include shell and structural steel elements, soil-structure interaction, and geometrical nonlinearities and contact type elements. The result shows considerable decreasing in settlement and uplifting in the case of retrofitted tank. Also, by increasing shear strength parameter of soil, the performance of the liquid storage tank under the case of seismic load increased.Keywords: steel tank, soil-structure, sandy soil, seismic load
Procedia PDF Downloads 4202527 Senior Management in Innovative Companies: An Approach from Creativity and Innovation Management
Authors: Juan Carlos Montalvo-Rodriguez, Juan Felipe Espinosa-Cristia, Pablo Islas Madariaga, Jorge Cifuentes Valenzuela
Abstract:
This article presents different relationships between top management and innovative companies, based on the developments of creativity and innovation management. First of all, it contextualizes the innovative company in relation to management, creativity, and innovation. Secondly, it delves into the vision of top management of innovative companies, from the perspectives of the management of creativity and innovation. Thirdly, their commonalities are highlighted, bearing in mind the importance that both approaches attribute to aspects such as leadership, networks, strategy, culture, technology, environment, and complexity in the top management of innovative companies. Based on the above, an integration of both fields of study is proposed, as an alternative to deepen the relationship between senior management and the innovative company.Keywords: top management, creativity, innovation, innovative firm, leadership, strategy
Procedia PDF Downloads 2622526 Reduction in Hot Metal Silicon through Statistical Analysis at G-Blast Furnace, Tata Steel Jamshedpur
Authors: Shoumodip Roy, Ankit Singhania, Santanu Mallick, Abhiram Jha, M. K. Agarwal, R. V. Ramna, Uttam Singh
Abstract:
The quality of hot metal at any blast furnace is judged by the silicon content in it. Lower hot metal silicon not only enhances process efficiency at steel melting shops but also reduces hot metal costs. The Hot metal produced at G-Blast furnace Tata Steel Jamshedpur has a significantly higher Si content than Benchmark Blast furnaces. The higher content of hot metal Si is mainly due to inferior raw material quality than those used in benchmark blast furnaces. With minimum control over raw material quality, the only option left to control hot metal Si is via optimizing the furnace parameters. Therefore, in order to identify the levers to reduce hot metal Si, Data mining was carried out, and multiple regression models were developed. The statistical analysis revealed that Slag B3{(CaO+MgO)/SiO2}, Slag Alumina and Hot metal temperature are key controllable parameters affecting hot metal silicon. Contour Plots were used to determine the optimum range of levels identified through statistical analysis. A trial plan was formulated to operate relevant parameters, at G blast furnace, in the identified range to reduce hot metal silicon. This paper details out the process followed and subsequent reduction in hot metal silicon by 15% at G blast furnace.Keywords: blast furnace, optimization, silicon, statistical tools
Procedia PDF Downloads 2232525 Suggestion for Malware Detection Agent Considering Network Environment
Authors: Ji-Hoon Hong, Dong-Hee Kim, Nam-Uk Kim, Tai-Myoung Chung
Abstract:
Smartphone users are increasing rapidly. Accordingly, many companies are running BYOD (Bring Your Own Device: Policies to bring private-smartphones to the company) policy to increase work efficiency. However, smartphones are always under the threat of malware, thus the company network that is connected smartphone is exposed to serious risks. Most smartphone malware detection techniques are to perform an independent detection (perform the detection of a single target application). In this paper, we analyzed a variety of intrusion detection techniques. Based on the results of analysis propose an agent using the network IDS.Keywords: android malware detection, software-defined network, interaction environment, android malware detection, software-defined network, interaction environment
Procedia PDF Downloads 4332524 Experimental Study on Granulated Steel Slag as an Alternative to River Sand
Authors: K. Raghu, M. N. Vathhsala, Naveen Aradya, Sharth
Abstract:
River sand is the most preferred fine aggregate for mortar and concrete. River sand is a product of natural weathering of rocks over a period of millions of years and is mined from river beds. Sand mining has disastrous environmental consequences. The excessive mining of river bed is creating an ecological imbalance. This has lead to have restrictions imposed by ministry of environment on sand mining. Driven by the acute need for sand, stone dust or manufactured sand prepared from the crushing and screening of coarse aggregate is being used as sand in the recent past. However manufactured sand is also a natural material and has quarrying and quality issues. To reduce the burden on the environment, alternative materials to be used as fine aggregates are being extensively investigated all over the world. Looking to the quantum of requirements, quality and properties there has been a global consensus on a material – Granulated slags. Granulated slag has been proven as a suitable material for replacing natural sand / crushed fine aggregates. In developed countries, the use of granulated slag as fine aggregate to replace natural sand is well established and is in regular practice. In the present paper Granulated slag has been experimented for usage in mortar. Slags are the main by-products generated during iron and steel production in the steel industry. Over the past decades, the steel production has increased and, consequently, the higher volumes of by-products and residues generated which have driven to the reuse of these materials in an increasingly efficient way. In recent years new technologies have been developed to improve the recovery rates of slags. Increase of slags recovery and use in different fields of applications like cement making, construction and fertilizers help in preserving natural resources. In addition to the environment protection, these practices produced economic benefits, by providing sustainable solutions that can allow the steel industry to achieve its ambitious targets of “zero waste” in coming years. Slags are generated at two different stages of steel production, iron making and steel making known as BF(Blast Furnace) slag and steel slag respectively. The slagging agent or fluxes, such as lime stone, dolomite and quartzite added into BF or steel making furnaces in order to remove impurities from ore, scrap and other ferrous charges during smelting. The slag formation is the result of a complex series of physical and chemical reactions between the non-metallic charge(lime stone, dolomite, fluxes), the energy sources(coal, coke, oxygen, etc.) and refractory materials. Because of the high temperatures (about 15000 C) during their generation, slags do not contain any organic substances. Due to the fact that slags are lighter than the liquid metal, they float and get easily removed. The slags protect the metal bath from atmosphere and maintain temperature through a kind of liquid formation. These slags are in liquid state and solidified in air after dumping in the pit or granulated by impinging water systems. Generally, BF slags are granulated and used in cement making due to its high cementious properties, and steel slags are mostly dumped due to unfavourable physio-chemical conditions. The increasing dump of steel slag not only occupies a plenty of land but also wastes resources and can potentially have an impact on the environment due to water pollution. Since BF slag contains little Fe and can be used directly. BF slag has found a wide application, such as cement production, road construction, Civil Engineering work, fertilizer production, landfill daily cover, soil reclamation, prior to its application outside the iron and steel making process.Keywords: steel slag, river sand, granulated slag, environmental
Procedia PDF Downloads 2442523 Analysis of Labor Behavior Effect on Occupational Health and Safety Management by Multiple Linear Regression
Authors: Yulinda Rizky Pratiwi, Fuji Anugrah Emily
Abstract:
Management of Occupational Safety and Health (OSH) are appropriately applied properly by all workers and pekarya in the company. K3 management application also has become very important to prevent accidents. Violation of the rules regarding the K3 has often occurred from time to time. By 2015 the number of occurrences of a violation of the K3 or so-called unsafe action tends to increase. Until finally in January 2016, the number increased drastically unsafe action. Trigger increase in the number of unsafe action is a decrease in the quality of management practices K3. While the application of K3 management performed by each individual thought to be influenced by the attitude and observation guide the actions of each of the individual. In addition to the decline in the quality of K3 management application may result in increased likelihood of accidents and losses for the company as well as the local co-workers. The big difference in the number of unsafe action is very significant in the month of January 2016, making the company Pertamina as the national oil company must do a lot of effort to keep track of how the implementation of K3 management on every worker and pekarya, one at PT Pertamina EP Cepu Field Asset IV. To consider the effort to control the implementation of K3 management can be seen from the attitude and observation guide the actions of the workers and pekarya. By using Multiple Linear Regression can be seen the influence of attitude and action observation guide workers and pekarya the K3 management application that has been done. The results showed that scores K3 management application of each worker and pekarya will increase by 0.764 if the score pekarya worker attitudes and increase one unit, whereas if the score Reassurance action guidelines and pekarya workers increased by one unit then the score management application K3 will increase by 0.754.Keywords: occupational safety and health, management of occupational safety and health, unsafe action, multiple linear regression
Procedia PDF Downloads 2302522 The Porsche Pavilion in Wolfsburg, Germany
Authors: H. Pasternak, T. Krausche
Abstract:
The Porsche Pavilion is an innovative stainless steel construction using the principle, often used in ship and car design, as an advantage for building a light but stiff structure. The Pavilion is a one of a kind and outstanding construction that you can find. It fits right in the existing parts of the Autostadt within the lagoon landscape and was built in only eight months. With its curving lines and exiting bends the structure is an extraordinary work which was designed by Henn architects, Munich. The monocoque has a good balance between material and support structure. The stiffness is achieved by the upper and lower side sheathing plates and the intermediate formers. Also the roof shell has no joints and a smooth surface. The assembling of the structure requires a large time and effort cost due to many welds which are necessary to connect all section to one large shell.Keywords: construction welding, exhibition building, light steel construction, monocoque
Procedia PDF Downloads 5232521 Electrodeposition of Nickel-Zinc Alloy on Stainless Steel in a Magnetic Field in a Chloride Environment
Authors: Naima Benachour, Sabiha Chouchane, J. Paul Chopart
Abstract:
The objective of this work is to determine the appropriate conditions for a Ni-Zn deposit with good nickel content. The electrodeposition of zinc-nickel on a stainless steel is carried out in a chlorinated bath NiCl2.6H2O, ZnCl2, and H3BO3), whose composition is 1.1 M; 1.8 M; 0.1 M respectively. Studies show the effect of the concentration of NH4Cl, which reveals a significant effect on the reduction and ion transport in the electrolyte. In order to highlight the influence of magnetic field on the chemical composition and morphology of the deposit, chronopotentiometry tests were conducted, the curves obtained inform us that the application of a magnetic field promotes stability of the deposit. Characterization developed deposits was performed by scanning electron microscopy coupled with EDX and specified by the X-ray diffraction.Keywords: Zn-Ni alloys, electroplating, magnetic field, chronopotentiometry
Procedia PDF Downloads 4402520 Experimental Investigation on Strengthening of Timber Beam Using Glass Fibers and Steel Plates
Authors: Sisaynew Tesfaw Admassu
Abstract:
The strengthening of timber beams can be necessary for several reasons including the increase of live loads (possible in a historical building for a change of destination of use or upgrading to meet new requirements), the reduction of the resistant cross-sections following deterioration (attacks of biological agents such as fungi, and insects) or traumatic events (fires) and the excess of deflection in the members. The main purpose of strengthening an element is not merely to repair it, but also to prevent and minimize the appearance of future problems. This study did an experimental investigation on the behavior of reference and strengthened solid timber beams. The strengthening materials used in this study were CSM-450 glass fiber and steel materials for both flexural and shear strengthening techniques. Twenty-two solid timber beams of Juniperus procera (TID) species with the dimensions of 60 x 90 x 780 mm were used in the present study. The binding material to bond the strengthening materials with timber was general-purpose resin with Luperox® K10 MEKP catalyst. Three beams were used as control beams (unstrengthen beams) while the remaining nineteen beams were strengthened using the strengthening materials for flexure and shear. All the beams were tested for three points loading to failure by using a Universal Testing Machine, UTM-600kN machine. The experimental results showed that the strengthened beams performed better than the unstrengthen beams. The experimental result of flexural strengthened beams showed that the load-bearing capacity of strengthened beams increased between 16.34 – 42.55%. Four layers of Glass Fiber Reinforced polymer on the tension side of the beams was shown to be the most effective way to enhance load-bearing capacity. The strengthened beams also have an enhancement in their flexural stiffness. The stiffness of flexural strengthened beams was increased between 1.18 – 65.53% as compared to the control beams. The highest increment in stiffness has occurred on beams strengthened using 2x60 mm steel plates. The shear-strengthened beams showed a relatively small amount of performance as compared to flexural-strengthened beams; the reason is that the beams are sufficient for shear. The polyester resin used in the experimental work showed good performance in bonding agents between materials. The resin showed more effectiveness in GFRP materials than steel materials.Keywords: heritage structures, strengthening, stiffness, adhesive, polyester resin, steel plates
Procedia PDF Downloads 722519 Validation of Modern Work Modules and Their Impact on Sustainable Human Resource Management in the Construction Industry
Authors: Robin Becker, Nane Roetmann, Manfred Helmus
Abstract:
The construction industry faces a significant challenge due to a shortage of skilled work-ers, especially in construction management, despite an increase in graduates. This is main-ly because the job is associated with high stress, long hours, and poor work-life balance. A survey revealed that the profession is unattractive to students, who prioritize personal growth, flexibility, and digitalization in their careers. To address this issue, companies can consider implementing various work modules like "working time documentation," "home office," "job sharing," and "time off." These modules can improve control, work-life bal-ance, and efficiency if tailored to the company's framework. They offer a way to make the field more appealing to future employees while benefiting existing staff, provided that both employers and employees are flexible and considerate of project-specific conditions and teams. The feasibility of these models depends on the company's overall framework, with potential for cost-neutral implementation and positive effects on efficiency and men-tal health. However, their success also relies on the specific context of the company, and more data is needed to assess their full impact.Keywords: modern construction management, construction industry, work modules, shortage of junior staff, sustainable personnel management, making construction management more attractive, working time model
Procedia PDF Downloads 402518 Risks of Investment in the Development of Its Personnel
Authors: Oksana Domkina
Abstract:
According to the modern economic theory, human capital became one of the main production factors and the most promising direction of investment, as such investment provides opportunity of obtaining high and long-term economic and social effects. Informational technology (IT) sector is the representative of this new economy which is most dependent on human capital as the main competitive factor. So the question for this sector is not whether investment in development of personal should be made, but what are the most effective ways of executing it and who has to pay for the education: Worker, company or government. In this paper we examine the IT sector, describe the labor market of IT workers and its development, and analyze the risks that IT companies may face if they invest in the development of their workers and what factors influence it. The main problem and difficulty of quantitative estimation of risk of investment in human capital of a company and its forecasting is human factor. Human behavior is often unpredictable and complex, so it requires specific approaches and methods of assessment. To build a comprehensive method of estimation of the risk of investment in human capital of a company considering human factor, we decided to use the method of analytic hierarchy process (AHP), that initially was created and developed. We separated three main group of factors: Risks related to the worker, related to the company, and external factors. To receive data for our research, we conducted a survey among the HR departments of Ukrainian IT companies used them as experts for the AHP method. Received results showed that IT companies mostly invest in the development of their workers, although several hire only already qualified personnel. According to the results, the most significant risks are the risk of ineffective training and the risk of non-investment that are both related to the firm. The analysis of risk factors related to the employee showed that, the factors of personal reasons, motivation, and work performance have almost the same weights of importance. Regarding internal factors of the company, there is a high role of the factor of compensation and benefits, factors of interesting projects, team, and career opportunities. As for the external environment, one of the most dangerous factor of risk is competitor activities, meanwhile the political and economical situation factor also has a relatively high weight, which is easy to explain by the influence of severe crisis in Ukraine during 2014-2015. The presented method allows to take into consideration all main factors that affect the risk of investment in human capital of a company. This gives a base for further research in this field and allows for a creation of a practical framework for making decisions regarding the personnel development strategy and specific employees' development plans for the HR departments.Keywords: risks, personnel development, investment in development, factors of risk, risk of investment in development, IT, analytic hierarchy process, AHP
Procedia PDF Downloads 3002517 Correlation between Entrepreneur's Perception of Human Resource Function and Company's Growth
Authors: Ivan Todorović, Stefan Komazec, Jelena Anđelković-Labrović, Ondrej Jaško, Miha Marič
Abstract:
Micro, small and medium enterprises (MSME) are important factors of the economy in each country. Recent years have brought increased number and higher sophistication of scientific research related to numerous aspects of entrepreneurship. Various authors try to find the positive correlation between entrepreneur's personal characteristics, skills and knowledge on one hand, and company growth and success of small business on the other hand. Different models recognize staff as one of the key elements in every organizational system. Human resource (HR) function is present in almost all large companies, despite the geographical location or industry. Small and medium enterprises also often have separate positions or even departments for HR administration. However, in early stages of organizational life cycle human resources are usually managed by the founder, entrepreneur. In this paper we want to question whether the companies where founder, entrepreneur, recognizes the significance of human capital in the organization and understands the importance of HR management have higher growth rate and better business results. The findings of this research can be implemented in practice, but also in the academia, for improving the curricula related to the MSME and entrepreneurship.Keywords: entrepreneurship, MSME, micro small and medium enterprises, company growth, human resources, HR management
Procedia PDF Downloads 3552516 Using Shape Memory Alloys for Structural Engineering Applications
Authors: Donatello Cardone
Abstract:
Shape memory alloys (SMAs) have great potential for use in the field of civil engineering. The author of this manuscript has been involved, since 1996, in several experimental and theoretical studies on the application of SMAs in structural engineering, within national and international research projects. This paper provides an overview of the main results achieved, including the conceptual design, implementation, and testing of different SMA-based devices, namely: (i) energy-dissipating braces for RC buildings, (ii) seismic isolation devices for buildings and bridges, (iii) smart tie-rods for arches and vaults and (iv) seismic restrainers for bridges. The main advantages of using SMA-based devices in the seismic protection of structures derive from the double-flag shape of their hysteresis loops, which implies three favourable features, i.e., self-centering capability, good energy dissipation capability, and high stiffness for small displacements. The main advantages of SMA-based units for steel tie-rods are associated with the thermal behaviour of superelastic SMAs, which is antagonistic compared to that of steel. This implies a strong reduction of force changes due to air temperature variations. Finally, SMA-based seismic restrainers proved to be effective in preventing bridge deck unseating and pounding.Keywords: seismic protection of structures, shape memory alloys, structural engineering, steel tie-rods, seismic restrainers for bridges
Procedia PDF Downloads 972515 Experiment Study on the Influence of Tool Materials on the Drilling of Thick Stacked Plate of 2219 Aluminum Alloy
Authors: G. H. Li, M. Liu, H. J. Qi, Q. Zhu, W. Z. He
Abstract:
The drilling and riveting processes are widely used in the assembly of carrier rocket, which makes the efficiency and quality of drilling become the important factor affecting the assembly process. According to the problem existing in the drilling of thick stacked plate (thickness larger than 10mm) of carrier rocket, such as drill break, large noise and burr etc., experimental study of the influence of tool material on the drilling was carried out. The cutting force was measured by a piezoelectric dynamometer, the aperture was measured with an outline projector, and the burr is observed and measured by a digital stereo microscope. Through the measurement, the effects of tool material on the drilling were analyzed from the aspects of drilling force, diameter, and burr. The results show that, compared with carbide drill and coated carbide one, the drilling force of high speed steel is larger. But, the application of high speed steel also has some advantages, e.g. a higher number of hole can be obtained, the height of burr is small, the exit is smooth and the slim burr is less, and the tool experiences wear but not fracture. Therefore, the high speed steel tool is suitable for the drilling of thick stacked plate of 2219 Aluminum alloy.Keywords: 2219 aluminum alloy, thick stacked plate, drilling, tool material
Procedia PDF Downloads 2352514 Evaluating the Performance of Passive Direct Methanol Fuel Cell under Varying Operating and Structural Conditions
Authors: Rahul Saraswat
Abstract:
More recently, a focus has been given to replacing machined stainless steel metal flow fields with inexpensive wire mesh current collectors. The flow fields are based on simple woven wire mesh screens of various stainless steels, which are sandwiched between a thin metal plate of the same material to create a bipolar plate/flow field configuration for use in a stack. Major advantages of using stainless steel wire screens include the elimination of expensive raw materials as well as machining and/or other special fabrication costs. The objective of the project is to improve the performance of the passive direct methanol fuel cell without increasing the cost of the cell and to make it as compact and light as possible. From the literature survey, it was found that very little is done in this direction, and the following methodology was used. 1. The passive direct methanol fuel cell (DMFC) can be made more compact, lighter, and less costly by changing the material used in its construction. 2. Controlling the fuel diffusion rate through the cell improves the performance of the cell. A passive liquid feed direct methanol fuel cell (DMFC) was fabricated using a given MEA (Membrane Electrode Assembly) and tested for different current collector structures. Mesh current collectors of different mesh densities along with different support structures, were used, and the performance was found to be better. Methanol concentration was also varied. Optimisation of mesh size, support structure, and fuel concentration was achieved. Cost analysis was also performed hereby. From the performance analysis study of DMFC, we can conclude with the following points: Area specific resistance (ASR) of wire mesh current collectors is lower than the ASR of stainless steel current collectors. Also, the power produced by wire mesh current collectors is always more than that produced by stainless steel current collectors. 1. Low or moderate methanol concentrations should be used for better and stable DMFC performance. 2. Wiremesh is a good substitute for stainless steel for current collector plates of passive DMFC because of its lower cost (by about 27 %), flexibility, and light in weight characteristics of wire mesh.Keywords: direct methanol fuel cell, membrane electrode assembly, mesh, mesh size, methanol concentration, support structure
Procedia PDF Downloads 802513 Corporate Governance in India: A Critical Analysis with Respect to Financial Market Crisis
Authors: Sonal Purohit, Animesh Dubey
Abstract:
Corporate governance deals with the entire network of formal and informal relationship with the management of the company and company’s stakeholders including employees, customers, creditors, local communities, and society in general. The recent financial crisis was truly a global crisis in its nature and effects. The Indian financial markets were not immune to this global financial crisis. It is believed that corporate governance also had a major role to play in staggering the effect of this crisis. The objective of this paper is to examine the failure of prevailing corporate governance practice in India during financial crisis. Lack of appropriate implementation of the corporate government norms was a reason behind the phenomenon of money being pulled-out by FIIs, which constitute major investors and influencers of the Indian financial market.Keywords: corporate governance, FII, financial market, financial crisis
Procedia PDF Downloads 4762512 The Role of Societas Europaea in Business Environment of Czech Republic
Authors: Werner Bernatik, Pavel Adamek
Abstract:
The Societas Europaea is the legal form of company which plays its role within European Union since 2004. Since that it has settled in particular EU's member according to conditions. There is several hundreds of Societas Europaea found in EU and the article pays attention to historical background of conditions which formed the European Entrepreneurial Environment. Also, the differences of particular details of Societas Europaea are mentioned. Furthermore, the case of Czech Republic Business Environment is subject of interest where, surprisingly, the total amount of registered Societas Europaea was identified as the highest. The possible reasons of such situation are subject of research and results are to be presented in the article.Keywords: Societas Europaea, business environment, legal form of company, entrepreneurial environment, European Union, competitivness
Procedia PDF Downloads 4232511 Improving the Efficiency of Repacking Process with Lean Technique: The Study of Read With Me Group Company Limited
Authors: Jirayut Phetchuen, Jongkol Srithorn
Abstract:
The study examines the unloading and repacking process of Read With Me Group Company Limited. The research aims to improve the old work process and build a new efficient process with the Lean Technique and new machines for faster delivery without increasing the number of employees. Currently, two employees work based on five days on and off. However, workplace injuries have delayed the delivery time, especially the delivery to the neighboring countries. After the process improvement, the working space increased by 25%, the Process Lead Time decreased by 40%, the work efficiency increased by 175.82%, and the work injuries rate was reduced to zero.Keywords: lean technique, plant layout design, U-shaped disassembly line, value stream mapping
Procedia PDF Downloads 1042510 The Role of Psychological Hardiness and Psychological Resilience Employee's Commitment to Change
Authors: Ni Made Dian Swandewi, Wustari L. Mangundjaya
Abstract:
Employees’ commitment to change are required for the success of organizational change in the company. The objective of this study is to identify the correlation between psychological hardiness and psychological resilience on commitment to change. The respondents of current research are permanent employees and employees that have worked for at least two years in a company that has been experiencing organizational change. Data was collected using Commitment to Change Inventory, Dispositional Resilience Scale (DRS), and Modified CD-RISC. The data were analyzed using regression. The results of the research show that both Psychological Hardiness and Psychological Resilience have positive and significant correlation and contribution on Commitment to Change. This research is important for companies who undergo organizational change in order plan and implement change more effectively.Keywords: commitment to change, organizational change, psychological hardiness, psychological resilience
Procedia PDF Downloads 3272509 Statistical Process Control in Manufacturing, a Case Study on an Iranian Automobile Company
Authors: M. E. Khiav, D. J. Borah, H. T. S. Santos, V. T. Faria
Abstract:
For automobile companies, it has become very important to ensure sound quality in manufacturing and assembling in order to prevent occurrence of defects and to reduce the amount of parts replacements to be done in the service centers during the warranty period. Statistical Process Control (SPC) is widely used as the tool to analyze the quality of such processes and plays a significant role in the improvement of the processes by identifying the patterns and the location of the defects. In this paper, a case study has been conducted on an Iranian automobile company. This paper performs a quality analysis of a particular component called “Internal Bearing for the Back Wheel” of a particular car model, manufactured by the company, based on the 10 million data received from its service centers located all over the country. By creating control charts including X bar–S charts and EWMA charts, it has been observed after the year 2009, the specific component underwent frequent failures and there has been a sharp dip in the average distance covered by the cars till the specific component requires replacement/maintenance. Correlation analysis was performed to find out the reasons that might have affected the quality of the specific component in all the cars produced by the company after the year 2009. Apart from manufacturing issues, some political and environmental factors have been identified to have a potential impact on the quality of the component. A maiden attempt has been made to analyze the quality issues within an Iranian automobile manufacturer; such issues often get neglected in developing countries. The paper also discusses the possibility of political scenario of Iran and the country’s environmental conditions affecting the quality of the end products, which not only strengthens the extant literature but also provides a new direction for future research.Keywords: capability analysis, car manufacturing, statistical process control, quality control, quality tools
Procedia PDF Downloads 3802508 Indonesia: Top Five Tax Haven Countries as the Strategy to Tax Avoidance
Authors: Maya Safira Dewi
Abstract:
Indonesia is one in the top ten countries most funds flowing into Tax Haven. Illegal funds flowing out of Indonesia reached USD 10.9 billion per year. While the total to 2010 of the Indonesian financial assets are in tax havens from Indonesia amounted to USD 331 billion (Kar and Freitas, 2012). Singapore, Netherlands, Virgin Island, Mauritius and Cayman Island are the highest countries that became the location of companies affiliated with the company listed in Indonesia Stock Exchange. The 469 companies listed on the stock exchange there are 128 companies (27.29%) with overseas entities, listed total overseas affiliated companies amounted to 417 firms in 2012 and 415 companies in 2011. The most of the branches or the parent company are located in Singapore, Netherlands, Virgin Island, Mauritius and Cayman Island. Judging from the existing tax provisions in these countries, have corporate tax rates that is lower than Indonesia. Tax avoidance to tax haven countries can be made by using some Strategies. They are transfer pricing, shopping treaty, thin capitalization and the controlled foreign company. Singapore, Netherlands, Virgin Island, Mauritius and Cayman Island are tax haven countries which become a tax heaven for Indonesian tax payer. It can be concluded that tax havens are a serious problem for Indonesia, and the need for a more assertive policy establishment and more detail about tax havens.Keywords: tax avoidance, tax haven, transfer pricing, tax rate, tax payer
Procedia PDF Downloads 4112507 Quality Management System Audit and Its Impact on Company's Performance
Authors: Redha Elhuni
Abstract:
The purpose of this paper is to find out the impact of Quality Management System (QMS) ISO/IEC 17025:2005 certification audit on company’s Performance. Libyan petroleum Institute has been certified ISO/IEC 17025:2005 for 8 years. Therefore, it is necessary to study and analyze the impact of that certification on its performance. Survey study has been done by distributing a questionnaire by handing it personally to qualified staff in the 15 accredited laboratories in the institute. The response rate was 66.6%. The statistical operations with the results of analytical study have been done to achieve the goal and objectives of the research. Finally, ISO/IEC 17025:2005 certification audit is found to have a positive effect on the institute’s performance.Keywords: auditing process, ISO/IEC 17025:2005, quality management system, Libyan petroleum institute
Procedia PDF Downloads 354