Search results for: complimentary split ring resonators
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 902

Search results for: complimentary split ring resonators

152 Testing Supportive Feedback Strategies in Second/Foreign Language Vocabulary Acquisition between Typically Developing Children and Children with Learning Disabilities

Authors: Panagiota A. Kotsoni, George S. Ypsilandis

Abstract:

Learning an L2 is a demanding process for all students and in particular for those with learning disabilities (LD) who demonstrate an inability to catch up with their classmates’ progress in a given period of time. This area of study, i.e. examining children with learning disabilities in L2 has not (yet) attracted the growing interest that is registered in L1 and thus remains comparatively neglected. It is this scientific field that this study wishes to contribute to. The longitudinal purpose of this study is to locate effective Supportive Feedback Strategies (SFS) and add to the quality of learning in second language vocabulary in both typically developing (TD) and LD children. Specifically, this study aims at investigating and comparing the performance of TD with LD children on two different types of SFSs related to vocabulary short and long-term retention. In this study two different SFSs have been examined to a total of ten (10) unknown vocabulary items. Both strategies provided morphosyntactic clarifications upon new contextualized vocabulary items. The traditional SFS (direct) provided the information only in one hypertext page with a selection on the relevant item. The experimental SFS (engaging) provided the exact same split information in three successive hypertext pages in the form of a hybrid dialogue asking from the subjects to move on to the next page by selecting the relevant link. It was hypothesized that this way the subjects would engage in their own learning process by actively asking for more information which would further lead to their better retention. The participants were fifty-two (52) foreign language learners (33 TD and 19 LD) aged from 9 to 12, attending an English language school at the level of A1 (CEFR). The design of the study followed a typical pre-post-post test procedure after an hour and after a week. The results indicated statistically significant group differences with TD children performing significantly better than the LD group in both short and long-term memory measurements and in both SFSs. As regards the effectiveness of one SFS over another the initial hypothesis was not supported by the evidence as the traditional SFS was more effective compared to the experimental one in both TD and LD children. This difference proved to be statistically significant only in the long-term memory measurement and only in the TD group. It may be concluded that the human brain seems to adapt to different SFS although it shows a small preference when information is provided in a direct manner.

Keywords: learning disabilities, memory, second/foreign language acquisition, supportive feedback

Procedia PDF Downloads 270
151 The Influence of Infiltration and Exfiltration Processes on Maximum Wave Run-Up: A Field Study on Trinidad Beaches

Authors: Shani Brathwaite, Deborah Villarroel-Lamb

Abstract:

Wave run-up may be defined as the time-varying position of the landward extent of the water’s edge, measured vertically from the mean water level position. The hydrodynamics of the swash zone and the accurate prediction of maximum wave run-up, play a critical role in the study of coastal engineering. The understanding of these processes is necessary for the modeling of sediment transport, beach recovery and the design and maintenance of coastal engineering structures. However, due to the complex nature of the swash zone, there remains a lack of detailed knowledge in this area. Particularly, there has been found to be insufficient consideration of bed porosity and ultimately infiltration/exfiltration processes, in the development of wave run-up models. Theoretically, there should be an inverse relationship between maximum wave run-up and beach porosity. The greater the rate of infiltration during an event, associated with a larger bed porosity, the lower the magnitude of the maximum wave run-up. Additionally, most models have been developed using data collected on North American or Australian beaches and may have limitations when used for operational forecasting in Trinidad. This paper aims to assess the influence and significance of infiltration and exfiltration processes on wave run-up magnitudes within the swash zone. It also seeks to pay particular attention to how well various empirical formulae can predict maximum run-up on contrasting beaches in Trinidad. Traditional surveying techniques will be used to collect wave run-up and cross-sectional data on various beaches. Wave data from wave gauges and wave models will be used as well as porosity measurements collected using a double ring infiltrometer. The relationship between maximum wave run-up and differing physical parameters will be investigated using correlation analyses. These physical parameters comprise wave and beach characteristics such as wave height, wave direction, period, beach slope, the magnitude of wave setup, and beach porosity. Most parameterizations to determine the maximum wave run-up are described using differing parameters and do not always have a good predictive capability. This study seeks to improve the formulation of wave run-up by using the aforementioned parameters to generate a formulation with a special focus on the influence of infiltration/exfiltration processes. This will further contribute to the improvement of the prediction of sediment transport, beach recovery and design of coastal engineering structures in Trinidad.

Keywords: beach porosity, empirical models, infiltration, swash, wave run-up

Procedia PDF Downloads 338
150 Destigmatising Generalised Anxiety Disorder: The Differential Effects of Causal Explanations on Stigma

Authors: John McDowall, Lucy Lightfoot

Abstract:

Stigma constitutes a significant barrier to the recovery and social integration of individuals affected by mental illness. Although there is some debate in the literature regarding the definition and utility of stigma as a concept, it is widely accepted that it comprises three components: stereotypical beliefs, prejudicial reactions, and discrimination. Stereotypical beliefs describe the cognitive knowledge-based component of stigma, referring to beliefs (often negative) about members of a group that is based on cultural and societal norms (e.g. ‘People with anxiety are just weak’). Prejudice refers to the affective/evaluative component of stigma and describes the endorsement of negative stereotypes and the resulting negative emotional reactions (e.g. ‘People with anxiety are just weak, and they frustrate me’). Discrimination refers to the behavioural component of stigma, which is arguably the most problematic, as it exerts a direct effect on the stigmatized person and may lead people to behave in a hostile or avoidant way towards them (i.e. refusal to hire them). Research exploring anti-stigma initiatives focus primarily on an educational approach, with the view that accurate information will replace misconceptions and decrease stigma. Many approaches take a biogenetic stance, emphasising brain and biochemical deficits - the idea being that ‘mental illness is an illness like any other.' While this approach tends to effectively reduce blame, it has also demonstrated negative effects such as increasing prognostic pessimism, the desire for social distance and perceptions of stereotypes. In the present study 144 participants were split into three groups and read one of three vignettes presenting causal explanations for Generalised Anxiety Disorder (GAD): One explanation emphasized biogenetic factors as being important in the etiology of GAD, another emphasised psychosocial factors (e.g. aversive life events, poverty, etc.), and a third stressed the adaptive features of the disorder from an evolutionary viewpoint. A variety of measures tapping the various components of stigma were administered following the vignettes. No difference in stigma measures as a function of causal explanation was found. People who had contact with mental illness in the past were significantly less stigmatising across a wide range of measures, but this did not interact with the type of causal explanation.

Keywords: generalised anxiety disorder, discrimination, prejudice, stigma

Procedia PDF Downloads 271
149 Evidence of a Negativity Bias in the Keywords of Scientific Papers

Authors: Kseniia Zviagintseva, Brett Buttliere

Abstract:

Science is fundamentally a problem-solving enterprise, and scientists pay more attention to the negative things, that cause them dissonance and negative affective state of uncertainty or contradiction. While this is agreed upon by philosophers of science, there are few empirical demonstrations. Here we examine the keywords from those papers published by PLoS in 2014 and show with several sentiment analyzers that negative keywords are studied more than positive keywords. Our dataset is the 927,406 keywords of 32,870 scientific articles in all fields published in 2014 by the journal PLOS ONE (collected from Altmetric.com). Counting how often the 47,415 unique keywords are used, we can examine whether those negative topics are studied more than positive. In order to find the sentiment of the keywords, we utilized two sentiment analysis tools, Hu and Liu (2004) and SentiStrength (2014). The results below are for Hu and Liu as these are the less convincing results. The average keyword was utilized 19.56 times, with half of the keywords being utilized only 1 time and the maximum number of uses being 18,589 times. The keywords identified as negative were utilized 37.39 times, on average, with the positive keywords being utilized 14.72 times and the neutral keywords - 19.29, on average. This difference is only marginally significant, with an F value of 2.82, with a p of .05, but one must keep in mind that more than half of the keywords are utilized only 1 time, artificially increasing the variance and driving the effect size down. To examine more closely, we looked at those top 25 most utilized keywords that have a sentiment. Among the top 25, there are only two positive words, ‘care’ and ‘dynamics’, in position numbers 5 and 13 respectively, with all the rest being identified as negative. ‘Diseases’ is the most studied keyword with 8,790 uses, with ‘cancer’ and ‘infectious’ being the second and fourth most utilized sentiment-laden keywords. The sentiment analysis is not perfect though, as the words ‘diseases’ and ‘disease’ are split by taking 1st and 3rd positions. Combining them, they remain as the most common sentiment-laden keyword, being utilized 13,236 times. More than just splitting the words, the sentiment analyzer logs ‘regression’ and ‘rat’ as negative, and these should probably be considered false positives. Despite these potential problems, the effect is apparent, as even the positive keywords like ‘care’ could or should be considered negative, since this word is most commonly utilized as a part of ‘health care’, ‘critical care’ or ‘quality of care’ and generally associated with how to improve it. All in all, the results suggest that negative concepts are studied more, also providing support for the notion that science is most generally a problem-solving enterprise. The results also provide evidence that negativity and contradiction are related to greater productivity and positive outcomes.

Keywords: bibliometrics, keywords analysis, negativity bias, positive and negative words, scientific papers, scientometrics

Procedia PDF Downloads 166
148 In the Valley of the Shadow of Death: Gossip, God, and Scapegoating in Susannah, an American Opera by Carlisle Floyd

Authors: Shirl H. Terrell

Abstract:

In the telling of mythologies, stories of cultural and religious histories, the creative arts provide an archetypal lens through which the personal and collective unconscious are viewed, thus revealing mysteries of the unknown psyche. To that end, the author of this paper, using the hermeneutic approach, proves that Carlisle Floyd’s (1955) English language opera Susannah illuminates humanity’s instinctual nature and behaviors through music, libretto, and drama. While impressive musical works such as Wagner’s Ring Cycle and Webber’s Phantom of the Opera have received extensive Jungian analyses, critics and scholars often ignore lesser esteemed works, such as Susannah, notwithstanding the fact that they have been consistently performed on the theater circuit. Such pieces, when given notice, allow viewers to grasp the soul-making depth and timeless quality of productions which may otherwise go unrecognized as culturally or psychologically significant. Although Susannah has sometimes been described as unsophisticated and simple in scope, the author demonstrates why Floyd’s 'little' opera, set in New Hope Valley, Appalachia, a cultural region in the Eastern United States known for its prevailing myths and distortions of isolation, temperament, and the judgmentally conservative behavior of its inhabitants, belongs to opera’s hallmark works. Its approach to powerful underlying archetypal themes, which give rise to the poignant and haunting depictions of the darker and destructive side of the human soul, the Shadow, provides crucial significance to the work. The Shadow’s manifestation in the form of the scapegoating complex is central to the plot of Susannah; the church’s meting out of rules, judgment, and reparation for sins point to the foreboding aspects of human behavior that evoke their intrinsic nature. The scapegoating complex is highlighted in an eight-step process gleaned from the works of Kenneth Burke and Rene Girard. In summary, through depth psychological terms and mythological motifs, the author provides an insightful approach to perceiving instinctual behaviors as they play out in an American opera that has been staged over eight-hundred times, yet, unfortunately, remains in the shadows. Susannah’s timelessness is now.

Keywords: archetypes, mythology, opera, scapegoating, Shadow, Susannah

Procedia PDF Downloads 139
147 The Effects of Ellagic Acid on Rat Lungs Induced Tobacco Smoke

Authors: Nalan Kaya, Gonca Ozan, Elif Erdem, Neriman Colakoglu, Enver Ozan

Abstract:

The toxic effects of tobacco smoke exposure have been detected in numerous studies. Ellagic acid (EA), (2,3,7,8-tetrahydroxy [1]-benzopyranol [5,4,3-cde] benzopyran 5,10-dione), a natural phenolic lactone compound, is found in various plant species including pomegranate, grape, strawberries, blackberries and raspberries. Similar to the other effective antioxidants, EA can safely interact with the free radicals and reduces oxidative stress through the phenolic ring and hydroxyl components in its structure. The aim of the present study was to examine the protective effects of ellagic acid against oxidative damage on lung tissues of rats induced by tobacco smoke. Twenty-four male adult (8 weeks old) Spraque-Dawley rats were divided randomly into 4 equal groups: group I (Control), group II (Tobacco smoke), group III (Tobacco smoke + corn oil) and group IV (Tobacco smoke + ellagic acid). The rats in group II, III and IV, were exposed to tobacco smoke 1 hour twice a day for 12 weeks. In addition to tobacco smoke exposure, 12 mg/kg ellagic acid (dissolved in corn oil), was applied to the rats in group IV by oral gavage. Equal amount of corn oil used in solving ellagic acid was applied to the rats by oral gavage in group III. At the end of the experimental period, rats were decapitated. Lung tissues and blood samples were taken. The lung slides were stained by H&E and Masson’s Trichrome methods. Also, galactin-3 stain was applied. Biochemical analyzes were performed. Vascular congestion and inflammatory cell infiltration in pulmonary interstitium, thickness in interalveolar septum, cytoplasmic vacuolation in some macrophages and galactin-3 positive cells were observed in histological examination of tobacco smoke group. In addition to these findings, hemorrhage in pulmonary interstitium and bronchial lumen was detected in tobacco smoke + corn oil group. Reduced vascular congestion and hemorrhage in pulmoner interstitium and rarely thickness in interalveolar septum were shown in tobacco smoke + EA group. Compared to group-I, group-II GSH level was decreased and MDA level was increased significantly. Nevertheless group-IV GSH level was higher and MDA level was lower than group-II. The results indicate that ellagic acid could protect the lung tissue from the tobacco smoke harmful effects.

Keywords: ellagic acid, lung, rat, tobacco smoke

Procedia PDF Downloads 197
146 Design-Based Elements to Sustain Participant Activity in Massive Open Online Courses: A Case Study

Authors: C. Zimmermann, E. Lackner, M. Ebner

Abstract:

Massive Open Online Courses (MOOCs) are increasingly popular learning hubs that are boasting considerable participant numbers, innovative technical features, and a multitude of instructional resources. Still, there is a high level of evidence showing that almost all MOOCs suffer from a declining frequency of participant activity and fairly low completion rates. In this paper, we would like to share the lessons learned in implementing several design patterns that have been suggested in order to foster participant activity. Our conclusions are based on experiences with the ‘Dr. Internet’ MOOC, which was created as an xMOOC to raise awareness for a more critical approach to online health information: participants had to diagnose medical case studies. There is a growing body of recommendations (based on Learning Analytics results from earlier xMOOCs) as to how the decline in participant activity can be alleviated. One promising focus in this regard is instructional design patterns, since they have a tremendous influence on the learner’s motivation, which in turn is a crucial trigger of learning processes. Since Medieval Age storytelling, micro-learning units and specific comprehensible, narrative structures were chosen to animate the audience to follow narration. Hence, MOOC participants are not likely to abandon a course or information channel when their curiosity is kept at a continuously high level. Critical aspects that warrant consideration in this regard include shorter course duration, a narrative structure with suspense peaks (according to the ‘storytelling’ approach), and a course schedule that is diversified and stimulating, yet easy to follow. All of these criteria have been observed within the design of the Dr. Internet MOOC: 1) the standard eight week course duration was shortened down to six weeks, 2) all six case studies had a special quiz format and a corresponding resolution video which was made available in the subsequent week, 3) two out of six case studies were split up in serial video sequences to be presented over the span of two weeks, and 4) the videos were generally scheduled in a less predictable sequence. However, the statistical results from the first run of the MOOC do not indicate any strong influences on the retention rate, so we conclude with some suggestions as to why this might be and what aspects need further consideration.

Keywords: case study, Dr. internet, experience, MOOCs, design patterns

Procedia PDF Downloads 242
145 Evaluation of Buckwheat Genotypes to Different Planting Geometries and Fertility Levels in Northern Transition Zone of Karnataka

Authors: U. K. Hulihalli, Shantveerayya

Abstract:

Buckwheat (Fagopyrum esculentum Moench) is an annual crop belongs to family Poligonaceae. The cultivated buckwheat species are notable for their exceptional nutritive values. It is an important source of carbohydrates, fibre, macro, and microelements such as K, Ca, Mg, Na and Mn, Zn, Se, and Cu. It also contains rutin, flavonoids, riboflavin, pyridoxine and many amino acids which have beneficial effects on human health, including lowering both blood lipid and sugar levels. Rutin, quercetin and some other polyphenols are potent carcinogens against colon and other cancers. Buckwheat has significant nutritive value and plenty of uses. Cultivation of buckwheat in Sothern part of India is very meager. Hence, a study was planned with an objective to know the performance of buckwheat genotypes to different planting geometries and fertility levels. The field experiment was conducted at Main Agriculture Research Station, University of Agriculture Sciences, Dharwad, India, during 2017 Kharif. The experiment was laid-out in split-plot design with three replications having three planting geometries as main plots, two genotypes as sub plots and three fertility levels as sub-sub plot treatments. The soil of the experimental site was vertisol. The standard procedures are followed to record the observations. The planting geometry of 30*10 cm was recorded significantly higher seed yield (893 kg/ha⁻¹), stover yield (1507 kg ha⁻¹), clusters plant⁻¹ (7.4), seeds clusters⁻¹ (7.9) and 1000 seed weight (26.1 g) as compared to 40*10 cm and 20*10 cm planting geometries. Between the genotypes, significantly higher seed yield (943 kg ha⁻¹) and harvest index (45.1) was observed with genotype IC-79147 as compared to PRB-1 genotype (687 kg ha⁻¹ and 34.2, respectively). However, the genotype PRB-1 recorded significantly higher stover yield (1344 kg ha⁻¹) as compared to genotype IC-79147 (1173 kg ha⁻¹). The genotype IC-79147 was recorded significantly higher clusters plant⁻¹ (7.1), seeds clusters⁻¹ (7.9) and 1000 seed weight (24.5 g) as compared PRB-1 (5.4, 5.8 and 22.3 g, respectively). Among the fertility levels tried, the fertility level of 60:30 NP kg ha⁻¹ recorded significantly higher seed yield (845 kg ha-1) and stover yield (1359 kg ha⁻¹) as compared to 40:20 NP kg ha-1 (808 and 1259 kg ha⁻¹ respectively) and 20:10 NP kg ha-1 (793 and 1144 kg ha⁻¹ respectively). Within the treatment combinations, IC 79147 genotype having 30*10 cm planting geometry with 60:30 NP kg ha⁻¹ recorded significantly higher seed yield (1070 kg ha⁻¹), clusters plant⁻¹ (10.3), seeds clusters⁻¹ (9.9) and 1000 seed weight (27.3 g) compared to other treatment combinations.

Keywords: buckwheat, planting geometry, genotypes, fertility levels

Procedia PDF Downloads 158
144 Relatively High Heart-Rate Variability Predicts Greater Survival Chances in Patients with Covid-19

Authors: Yori Gidron, Maartje Mol, Norbert Foudraine, Frits Van Osch, Joop Van Den Bergh, Moshe Farchi, Maud Straus

Abstract:

Background: The worldwide pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-COV2), which began in 2019, also known as Covid-19, has infected over 136 million people and tragically took the lives of over 2.9 million people worldwide. Many of the complications and deaths are predicted by the inflammatory “cytokine storm.” One way to progress in the prevention of death is by finding a predictive and protective factor that inhibits inflammation, on the one hand, and which also increases anti-viral immunity on the other hand. The vagal nerve does precisely both actions. This study examined whether vagal nerve activity, indexed by heart-rate variability (HRV), predicts survival in patients with Covid-19. Method: We performed a pseudo-prospective study, where we retroactively obtained ECGs of 271 Covid-19 patients arriving at a large regional hospital in The Netherlands. HRV was indexed by the standard deviation of the intervals between normal heartbeats (SDNN). We examined patients’ survival at 3 weeks and took into account multiple confounders and known prognostic factors (e.g., age, heart disease, diabetes, hypertension). Results: Patients’ mean age was 68 (range: 25-95) and nearly 22% of the patients had died by 3 weeks. Their mean SDNN (17.47msec) was far below the norm (50msec). Importantly, relatively higher HRV significantly predicted a higher chance of survival, after statistically controlling for patients’ age, cardiac diseases, hypertension and diabetes (relative risk, H.R, and 95% confidence interval (95%CI): H.R = 0.49, 95%CI: 0.26 – 0.95, p < 0.05). However, since HRV declines rapidly with age and since age is a profound predictor in Covid-19, we split the sample by median age (40). Subsequently, we found that higher HRV significantly predicted greater survival in patients older than 70 (H.R = 0.35, 95%CI: 0.16 – 0.78, p = 0.01), but HRV did not predict survival in patients below age 70 years (H.R = 1.11, 95%CI: 0.37 – 3.28, p > 0.05). Conclusions: To the best of our knowledge, this is the first study showing that higher vagal nerve activity, as indexed by HRV, is an independent predictor of higher chances for survival in Covid-19. The results are in line with the protective role of the vagal nerve in diseases and extend this to a severe infectious illness. Studies should replicate these findings and then test in controlled trials whether activating the vagus nerve may prevent mortality in Covid-19.

Keywords: Covid-19, heart-rate Variability, prognosis, survival, vagal nerve

Procedia PDF Downloads 157
143 Using Photogrammetric Techniques to Map the Mars Surface

Authors: Ahmed Elaksher, Islam Omar

Abstract:

For many years, Mars surface has been a mystery for scientists. Lately with the help of geospatial data and photogrammetric procedures researchers were able to capture some insights about this planet. Two of the most imperative data sources to explore Mars are the The High Resolution Imaging Science Experiment (HiRISE) and the Mars Orbiter Laser Altimeter (MOLA). HiRISE is one of six science instruments carried by the Mars Reconnaissance Orbiter, launched August 12, 2005, and managed by NASA. The MOLA sensor is a laser altimeter carried by the Mars Global Surveyor (MGS) and launched on November 7, 1996. In this project, we used MOLA-based DEMs to orthorectify HiRISE optical images for generating a more accurate and trustful surface of Mars. The MOLA data was interpolated using the kriging interpolation technique. Corresponding tie points were digitized from both datasets. These points were employed in co-registering both datasets using GIS analysis tools. In this project, we employed three different 3D to 2D transformation models. These are the parallel projection (3D affine) transformation model; the extended parallel projection transformation model; the Direct Linear Transformation (DLT) model. A set of tie-points was digitized from both datasets. These points were split into two sets: Ground Control Points (GCPs), used to evaluate the transformation parameters using least squares adjustment techniques, and check points (ChkPs) to evaluate the computed transformation parameters. Results were evaluated using the RMSEs between the precise horizontal coordinates of the digitized check points and those estimated through the transformation models using the computed transformation parameters. For each set of GCPs, three different configurations of GCPs and check points were tested, and average RMSEs are reported. It was found that for the 2D transformation models, average RMSEs were in the range of five meters. Increasing the number of GCPs from six to ten points improve the accuracy of the results with about two and half meters. Further increasing the number of GCPs didn’t improve the results significantly. Using the 3D to 2D transformation parameters provided three to two meters accuracy. Best results were reported using the DLT transformation model. However, increasing the number of GCPS didn’t have substantial effect. The results support the use of the DLT model as it provides the required accuracy for ASPRS large scale mapping standards. However, well distributed sets of GCPs is a key to provide such accuracy. The model is simple to apply and doesn’t need substantial computations.

Keywords: mars, photogrammetry, MOLA, HiRISE

Procedia PDF Downloads 46
142 Use of Shipping Containers as Office Buildings in Brazil: Thermal and Energy Performance for Different Constructive Options and Climate Zones

Authors: Lucas Caldas, Pablo Paulse, Karla Hora

Abstract:

Shipping containers are present in different Brazilian cities, firstly used for transportation purposes, but which become waste materials and an environmental burden in their end-of-life cycle. In the last decade, in Brazil, some buildings made partly or totally from shipping containers started to appear, most of them for commercial and office uses. Although the use of a reused container for buildings seems a sustainable solution, it is very important to measure the thermal and energy aspects when they are used as such. In this context, this study aims to evaluate the thermal and energy performance of an office building totally made from a 12-meter-long, High Cube 40’ shipping container in different Brazilian Bioclimatic Zones. Four different constructive solutions, mostly used in Brazil were chosen: (1) container without any covering; (2) with internally insulated drywall; (3) with external fiber cement boards; (4) with both drywall and fiber cement boards. For this, the DesignBuilder with EnergyPlus was used for the computational simulation in 8760 hours. The EnergyPlus Weather File (EPW) data of six Brazilian capital cities were considered: Curitiba, Sao Paulo, Brasilia, Campo Grande, Teresina and Rio de Janeiro. Air conditioning appliance (split) was adopted for the conditioned area and the cooling setpoint was fixed at 25°C. The coefficient of performance (CoP) of air conditioning equipment was set as 3.3. Three kinds of solar absorptances were verified: 0.3, 0.6 and 0.9 of exterior layer. The building in Teresina presented the highest level of energy consumption, while the one in Curitiba presented the lowest, with a wide range of differences in results. The constructive option of external fiber cement and drywall presented the best results, although the differences were not significant compared to the solution using just drywall. The choice of absorptance showed a great impact in energy consumption, mainly compared to the case of containers without any covering and for use in the hottest cities: Teresina, Rio de Janeiro, and Campo Grande. This study brings as the main contribution the discussion of constructive aspects for design guidelines for more energy-efficient container buildings, considering local climate differences, and helps the dissemination of this cleaner constructive practice in the Brazilian building sector.

Keywords: bioclimatic zones, Brazil, shipping containers, thermal and energy performance

Procedia PDF Downloads 154
141 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation

Authors: Jonathan Gong

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning

Procedia PDF Downloads 111
140 Psychosocial Support in Disaster Situations in the Philippines and Indonesia: A Critical Literature Review

Authors: Fuad Hamsyah

Abstract:

Since last two decades, major disasters have happened in the Philippines and Indonesia as two countries that are located in the pacific ring of fire territory. While in Southeast Asian countries, the process of psychosocial support provision is facing various constraints such as limited number of mental health professionals and the limited knowledge about the provision of psychosocial support for disaster survivors. Yet after the tsunami disaster in 2004, many Asian countries begin to develop policies about the provision of psychosocial interventions as an effort for future disasters preparedness. In addition, mental health professionals have to consider the local cultural values and beliefs in order to provide people with effective psychosocial support since cultural values and beliefs play a significant role in the diversity of psychological distress that forms symptoms formation, and people’s way to seek for psychological assistance. This study is a critical literature review on 130 relevant selected documents and literatures. IASC MHPSS guideline is used as the research framework in doing critical analysis. The purpose of this study is to conduct a critical analysis on the mental health and psychosocial support provision in the Philippines and Indonesia with three main objectives: 1) To describe strengths, weaknesses, and challenges in the process of psychosocial supports given by public and private organizations in emergency settings of disaster in the Philippines and Indonesia, 2) To compare psychosocial support practices between the Philippines and Indonesia, and to identify the good practices among these countries, 3) To learn how cultural values influence the implementation of psychosocial supports in emergency settings of disaster. This research indicated that almost every function from IASC MHPSS guidelines has been implemented effectively in the Philippines and Indonesia, yet not in every detail of IASC MHPSS guidelines. Several similarities and differences are indicated in this study also based on the IASC MHPSS guidelines as the analysis framework. Further, both countries have some good practices that can be useful as an example of a comprehensive psychosocial support implementation. Apart from the IASC MHPSS guideline, cultural values and beliefs in the Philippines such as kanya-kanya syndrome, pakikipakapwa, utang na loob, bahala na, pagkaya are indicated as several cultural values that have strong influences towards people’s attitude and behavior in disaster situations. While in Indonesia, several cultural values such as sabar and nrimo become two important attitudes to cope disaster situations.

Keywords: disaster, Indonesia, psychosocial support, Philippines

Procedia PDF Downloads 371
139 Switching of Series-Parallel Connected Modules in an Array for Partially Shaded Conditions in a Pollution Intensive Area Using High Powered MOSFETs

Authors: Osamede Asowata, Christo Pienaar, Johan Bekker

Abstract:

Photovoltaic (PV) modules may become a trend for future PV systems because of their greater flexibility in distributed system expansion, easier installation due to their nature, and higher system-level energy harnessing capabilities under shaded or PV manufacturing mismatch conditions. This is as compared to the single or multi-string inverters. Novel residential scale PV arrays are commonly connected to the grid by a single DC–AC inverter connected to a series, parallel or series-parallel string of PV panels, or many small DC–AC inverters which connect one or two panels directly to the AC grid. With an increasing worldwide interest in sustainable energy production and use, there is renewed focus on the power electronic converter interface for DC energy sources. Three specific examples of such DC energy sources that will have a role in distributed generation and sustainable energy systems are the photovoltaic (PV) panel, the fuel cell stack, and batteries of various chemistries. A high-efficiency inverter using Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) for all active switches is presented for a non-isolated photovoltaic and AC-module applications. The proposed configuration features a high efficiency over a wide load range, low ground leakage current and low-output AC-current distortion with no need for split capacitors. The detailed power stage operating principles, pulse width modulation scheme, multilevel bootstrap power supply, and integrated gate drivers for the proposed inverter is described. Experimental results of a hardware prototype, show that not only are MOSFET efficient in the system, it also shows that the ground leakage current issues are alleviated in the proposed inverter and also a 98 % maximum associated driver circuit is achieved. This, in turn, provides the need for a possible photovoltaic panel switching technique. This will help to reduce the effect of cloud movements as well as improve the overall efficiency of the system.

Keywords: grid connected photovoltaic (PV), Matlab efficiency simulation, maximum power point tracking (MPPT), module integrated converters (MICs), multilevel converter, series connected converter

Procedia PDF Downloads 105
138 The Evaporation Study of 1-ethyl-3-methylimidazolium chloride

Authors: Kirill D. Semavin, Norbert S. Chilingarov, Eugene.V. Skokan

Abstract:

The ionic liquids (ILs) based on imidazolium cation are well known nowadays. The changing anions and substituents in imidazolium ring may lead to different physical and chemical properties of ILs. It is important that such ILs with halogen as anion are characterized by a low thermal stability. The data about thermal stability of 1-ethyl-3-methylimidazolium chloride are ambiguous. In the works of last years, thermal stability of this IL was investigated by thermogravimetric analysis and obtained results are contradictory. Moreover, in the last study, it was shown that the observed temperature of the beginning of decomposition significantly depends on the experimental conditions, for example, the heating rate of the sample. The vapor pressure of this IL is not presented at the literature. In this study, the vapor pressure of 1-ethyl-3-methylimidazolium chloride was obtained by Knudsen effusion mass-spectrometry (KEMS). The samples of [ЕMIm]Cl (purity > 98%) were supplied by Sigma–Aldrich and were additionally dried at dynamic vacuum (T = 60 0C). Preliminary procedures with Il were derived into glove box. The evaporation studies of [ЕMIm]Cl were carried out by KEMS with using original research equipment based on commercial MI1201 magnetic mass spectrometer. The stainless steel effusion cell had an effective evaporation/effusion area ratio of more than 6000. The cell temperature, measured by a Pt/Pt−Rh (10%) thermocouple, was controlled by a Termodat 128K5 device with an accuracy of ±1 K. In first step of this study, the optimal temperature of experiment and heating rate of samples were customized: 449 K and 5 K/min, respectively. In these conditions the sample is decomposed, but the experimental measurements of the vapor pressures are possible. The thermodynamic activity of [ЕMIm]Cl is close to 1 and products of decomposition don’t affect it at firstly 50 hours of experiment. Therefore, it lets to determine the saturated vapor pressure of IL. The electronic ionization mass-spectra shows that the decomposition of [ЕMIm]Cl proceeds with two ways. Nonetheless, the MALDI mass spectra of the starting sample and residue in the cell were similar. It means that the main decomposition products are gaseous under experimental conditions. This result allows us to obtain information about the kinetics of [ЕMIm]Cl decomposition. Thus, the original KEMS-based procedure made it possible to determine the IL vapor pressure under decomposition conditions. Also, the loss of sample mass due to the evaporation was obtained.

Keywords: ionic liquids, Knudsen effusion mass spectrometry, thermal stability, vapor pressure

Procedia PDF Downloads 172
137 Measuring Human Perception and Negative Elements of Public Space Quality Using Deep Learning: A Case Study of Area within the Inner Road of Tianjin City

Authors: Jiaxin Shi, Kaifeng Hao, Qingfan An, Zeng Peng

Abstract:

Due to a lack of data sources and data processing techniques, it has always been difficult to quantify public space quality, which includes urban construction quality and how it is perceived by people, especially in large urban areas. This study proposes a quantitative research method based on the consideration of emotional health and physical health of the built environment. It highlights the low quality of public areas in Tianjin, China, where there are many negative elements. Deep learning technology is then used to measure how effectively people perceive urban areas. First, this work suggests a deep learning model that might simulate how people can perceive the quality of urban construction. Second, we perform semantic segmentation on street images to identify visual elements influencing scene perception. Finally, this study correlated the scene perception score with the proportion of visual elements to determine the surrounding environmental elements that influence scene perception. Using a small-scale labeled Tianjin street view data set based on transfer learning, this study trains five negative spatial discriminant models in order to explore the negative space distribution and quality improvement of urban streets. Then it uses all Tianjin street-level imagery to make predictions and calculate the proportion of negative space. Visualizing the spatial distribution of negative space along the Tianjin Inner Ring Road reveals that the negative elements are mainly found close to the five key districts. The map of Tianjin was combined with the experimental data to perform the visual analysis. Based on the emotional assessment, the distribution of negative materials, and the direction of street guidelines, we suggest guidance content and design strategy points of the negative phenomena in Tianjin street space in the two dimensions of perception and substance. This work demonstrates the utilization of deep learning techniques to understand how people appreciate high-quality urban construction, and it complements both theory and practice in urban planning. It illustrates the connection between human perception and the actual physical public space environment, allowing researchers to make urban interventions.

Keywords: human perception, public space quality, deep learning, negative elements, street images

Procedia PDF Downloads 92
136 Alveolar Ridge Preservation in Post-extraction Sockets Using Concentrated Growth Factors: A Split-Mouth, Randomized, Controlled Clinical Trial

Authors: Sadam Elayah

Abstract:

Background: One of the most critical competencies in advanced dentistry is alveolar ridge preservation after exodontia. The aim of this clinical trial was to assess the impact of autologous concentrated growth factor (CGF) as a socket-filling material and its ridge preservation properties following the lower third molar extraction. Materials and Methods: A total of 60 sides of 30 participants who had completely symmetrical bilateral impacted lower third molars were enrolled. The short-term outcome variables were wound healing, swelling and pain, clinically assessed at different time intervals (1st, 3rd & 7th days). While the long-term outcome variables were bone height & width, bone density and socket surface area in the coronal section. Cone beam computed tomography images were obtained immediately after surgery and three months after surgery as a temporal measure. Randomization was achieved by opaque, sealed envelopes. Follow-up data were compared to baseline using Paired & Unpaired t-tests. Results: The wound healing index was significantly better in the test sides (P =0.001). Regarding the facial swelling, the test sides had significantly fewer values than the control sides, particularly on the 1st (1.01±.57 vs 1.55 ±.56) and 3rd days (1.42±0.8 vs 2.63±1.2) postoperatively. Nonetheless, the swelling disappeared within the 7th day on both sides. The pain scores of the visual analog scale were not a statistically significant difference between both sides on the 1st day; meanwhile, the pain scores were significantly lower on the test sides compared with the control sides, especially on the 3rd (P=0.001) and 7th days (P˂0.001) postoperatively. Regarding long-term outcomes, CGF sites had higher values in height and width when compared to Control sites (Buccal wall 32.9±3.5 vs 29.4±4.3 mm, Lingual wall 25.4±3.5 vs 23.1±4 mm, and Alveolar bone width 21.07±1.55vs19.53±1.90 mm) respectively. Bone density showed significantly higher values in CGF sites than in control sites (Coronal half 200±127.3 vs -84.1±121.3, Apical half 406.5±103 vs 64.2±158.6) respectively. There was a significant difference between both sites in reducing periodontal pockets. Conclusion: CGF application following surgical extraction provides an easy, low-cost, and efficient option for alveolar ridge preservation. Thus, dentists may encourage using CGF during dental extractions, particularly when alveolar ridge preservation is required.

Keywords: platelet, extraction, impacted teeth, alveolar ridge, regeneration, CGF

Procedia PDF Downloads 49
135 The Representation of Young Sports Heroines in Cinema: Analysis of a Regressive Portrayal of Young Sportswomen on the Screen

Authors: David Sudre

Abstract:

Sport in cinema, like sport in society, has been mainly concerned with men and masculinity. Whether in the boxing ring, on the basketball playgrounds, or on the soccer fields, these films have mostly focused on the trials and tribulations of male athletes, for whom women have very generally played secondary, often devalued and devaluing roles, such as that of the loving and indispensable woman to the victorious athlete, that of the dangerous femme fatale, or that of the woman as a sexual object. For more than a century, this film genre has, on the contrary, symbolized the dominant values of patriotism, heroism and contributed at the same time to build an ideal of hegemonic masculinity. With the exception of films such as The Grand National (1944) and Million Dollar Baby (2004), the most commercially successful films tell the story of men's adventures in sports. Today, thanks in part to the struggles of the feminist movement and subsequent societal advances, we are seeing an increase in the number of women in increasingly prominent roles in sports films. Indeed, there seems to be a general shift in popular cinema toward women playing major characters in big-budget productions that have also achieved critical and commercial success. However, if, at first sight, the increase in the number of roles given to women suggests an evolution and a more positive image of them on the screen, it will be necessary to see how their representation is really characterized when they are young and occupy major roles in this type of film. In order to answer this question, we will rely on the results of research conducted on a corpus of 28 sports films in which a young woman plays the main role in the story. All of these productions are fictional (not documentary), mostly American, and distributed by major film studios. The chosen sports teen movies are among the biggest commercial successes of the genre and aim to make the maximum profit and occupy the most dominant positions within the "commercial pole" of the cinematic field. Therefore, this research will allow us, although a change has taken place in the last decades in the number of main roles granted to sportswomen, to decode the sociological subtext of these popular sports films for teenagers. The aim is to reveal how these sports films convey a conservative ideology that participates, on the one hand, in the maintenance of patriarchy and, on the other hand, in the dissemination of stereotyped, negative, and regressive images of young women athletes.

Keywords: cinema, sport, gender, youth, representations, inequality, stereotypes

Procedia PDF Downloads 53
134 Exploring Coexisting Opportunity of Earthquake Risk and Urban Growth

Authors: Chang Hsueh-Sheng, Chen Tzu-Ling

Abstract:

Earthquake is an unpredictable natural disaster and intensive earthquakes have caused serious impacts on social-economic system, environmental and social resilience, and further increase vulnerability. Due to earthquakes do not kill people, buildings do. When buildings located nearby earthquake-prone areas and constructed upon poorer soil areas might result in earthquake-induced ground damage. In addition, many existing buildings built before any improved seismic provisions began to be required in building codes and inappropriate land usage with highly dense population might result in much serious earthquake disaster. Indeed, not only do earthquake disaster impact seriously on urban environment, but urban growth might increase the vulnerability. Since 1980s, ‘Cutting down risks and vulnerability’ has been brought up in both urban planning and architecture and such concept has way beyond retrofitting of seismic damages, seismic resistance, and better anti-seismic structures, and become the key action on disaster mitigation. Land use planning and zoning are two critical non-structural measures on controlling physical development while it is difficult for zoning boards and governing bodies restrict development of questionable lands to uses compatible with the hazard without credible earthquake loss projection. Therefore, identifying potential earthquake exposure, vulnerability people and places, and urban development areas might become strongly supported information for decision makers. Taiwan locates on the Pacific Ring of Fire where a seismically active zone is. Some of the active faults have been found close by densely populated and highly developed built environment in the cities. Therefore, this study attempts to base on the perspective of carrying capacity and draft out micro-zonation according to both vulnerability index and urban growth index while considering spatial variances of multi factors via geographical weighted principle components (GWPCA). The purpose in this study is to construct supported information for decision makers on revising existing zoning in high-risk areas for a more compatible use and the public on managing risks.

Keywords: earthquake disaster, vulnerability, urban growth, carrying capacity, /geographical weighted principle components (GWPCA), bivariate spatial association statistic

Procedia PDF Downloads 236
133 Modelling High Strain Rate Tear Open Behavior of a Bilaminate Consisting of Foam and Plastic Skin Considering Tensile Failure and Compression

Authors: Laura Pytel, Georg Baumann, Gregor Gstrein, Corina Klug

Abstract:

Premium cars often coat the instrument panels with a bilaminate consisting of a soft foam and a plastic skin. The coating is torn open during the passenger airbag deployment under high strain rates. Characterizing and simulating the top coat layer is crucial for predicting the attenuation that delays the airbag deployment, effecting the design of the restrain system and to reduce the demand of simulation adjustments through expensive physical component testing.Up to now, bilaminates used within cars either have been modelled by using a two-dimensional shell formulation for the whole coating system as one which misses out the interaction of the two layers or by combining a three-dimensional formulation foam layer with a two-dimensional skin layer but omitting the foam in the significant parts like the expected tear line area and the hinge where high compression is expected. In both cases, the properties of the coating causing the attenuation are not considered. Further, at present, the availability of material information, as there are failure dependencies of the two layers, as well as the strain rate of up to 200 1/s, are insufficient. The velocity of the passenger airbag flap during an airbag shot has been measured with about 11.5 m/s during first ripping; the digital image correlation evaluation showed resulting strain rates of above 1500 1/s. This paper provides a high strain rate material characterization of a bilaminate consisting of a thin polypropylene foam and a thermoplasctic olefins (TPO) skin and the creation of validated material models. With the help of a Split Hopkinson tension bar, strain rates of 1500 1/s were within reach. The experimental data was used to calibrate and validate a more physical modelling approach of the forced ripping of the bilaminate. In the presented model, the three-dimensional foam layer is continuously tied to the two-dimensional skin layer, allowing failure in both layers at any possible position. The simulation results show a higher agreement in terms of the trajectory of the flaps and its velocity during ripping. The resulting attenuation of the airbag deployment measured by the contact force between airbag and flaps increases and serves usable data for dimensioning modules of an airbag system.

Keywords: bilaminate ripping behavior, High strain rate material characterization and modelling, induced material failure, TPO and foam

Procedia PDF Downloads 57
132 Effect of Planting Date on Quantitative and Qualitative Characteristics of Different Bread Wheat and Durum Cultivars

Authors: Mahdi Nasiri Tabrizi, A. Dadkhah, M. Khirkhah

Abstract:

In order to study the effect of planting on yield, yield components and quality traits in bread and durum wheat varieties, a field split-plot experiment based on complete randomized design with three replications was conducted in Agricultural and Natural Resources Research Center of Razavi Khorasan located in city of Mashhad during 2013-2014. Main factor were consisted of five sowing dates (first October, fifteenth December, first March, tenth March, twentieth March) and as sub-factors consisted of different bread wheat (Bahar, Pishgam, Pishtaz, Mihan, Falat and Karim) and two durum wheat (Dena and Dehdasht). According to results of analysis variance the effect of planting date was significant on all examined traits (grain yield, biological yield, harvest index, number of grain per spike, thousands kernel weight, number of spike per square meter, plant height, the number of days to heading, the number of days to maturity, during the grain filling period, percentage of wet gluten, percentage of dry gluten, gluten index, percentage of protein). By delay in planting, majority of traits significantly decreased, except quality traits (percentage of wet gluten, percentage of dry gluten and percentage of protein). Results of means comparison showed, among planting date the highest grain yield and biological yield were related to first planting date (Octobr) with mean of production of 5/6 and 1/17 tons per hectare respectively and the highest bread quality (gluten index) with mean of 85 and percentage of protein with mean of 13% to fifth planting date also the effect of genotype was significant on all traits. The highest grain yield among of studied wheat genotypes was related to Dehdasht cultivar with an average production of 4.4 tons per hectare. The highest protein percentage and bread quality (gluten index) were related to Dehdasht cultivar with 13.4% and Falat cultivar with number of 90 respectively. The interaction between cultivar and planting date was significant on all traits and different varieties had different trend for these traits. The highest grain yield was related to first planting date (October) and Falat cultivar with an average of production of 6/7 tons per hectare while in grain yield did not show a significant different with Pishtas and Mihan cultivars also the most of gluten index (bread quality index) and protein percentage was belonged to the third planting date and Karim cultivar with 7.98 and Dena cultivar with 7.14% respectively.

Keywords: yield component, yield, planting date, cultivar, quality traits, wheat

Procedia PDF Downloads 413
131 Reconstructing the Segmental System of Proto-Graeco-Phrygian: a Bottom-Up Approach

Authors: Aljoša Šorgo

Abstract:

Recent scholarship on Phrygian has begun to more closely examine the long-held belief that Greek and Phrygian are two very closely related languages. It is now clear that Graeco-Phrygian can be firmly postulated as a subclade of the Indo-European languages. The present paper will focus on the reconstruction of the phonological and phonetic segments of Proto-Graeco-Phrygian (= PGPh.) by providing relevant correspondence sets and reconstructing the classes of segments. The PGPh. basic vowel system consisted of ten phonemic oral vowels: */a e o ā ē ī ō ū/. The correspondences of the vowels are clear and leave little open to ambiguity. There were four resonants and two semi-vowels in PGPh.: */r l m n i̯ u̯/, which could appear in both a consonantal and a syllabic function, with the distribution between the two still being phonotactically predictable. Of note is the fact that the segments *m and *n seem to have merged when their phonotactic position would see them used in a syllabic function. Whether the segment resulting from this merger was a nasalized vowel (most likely *[ã]) or a syllabic nasal *[N̥] (underspecified for place of articulation) cannot be determined at this stage. There were three fricatives in PGPh.: */s h ç/. *s and *h are easily identifiable. The existence of *ç, which may seem unexpected, is postulated on the basis of the correspondence Gr. ὄς ~ Phr. yos/ιος. It is of note that Bozzone has previously proposed the existence of *ç ( < PIE *h₁i̯-) in an early stage of Greek even without taking into account Phrygian data. Finally, the system of stops in PGPh. distinguished four places of articulation (labial, dental, velar, and labiovelar) and three phonation types. The question of which three phonation types were actually present in PGPh. is one of great importance for the ongoing debate on the realization of the three series in PIE. Since the matter is still very much in dispute, we ought to, at this stage, endeavour to reconstruct the PGPh. system without recourse to the other IE languages. The three series of correspondences are: 1. Gr. T (= tenuis) ~ Phr. T; 2. Gr. D (= media) ~ Phr. T; 3. Gr. TA (= tenuis aspirata) ~ Phr. M. The first series must clearly be reconstructed as composed of voiceless stops. The second and third series are more problematic. With a bottom-up approach, neither the second nor the third series of correspondences are compatible with simple modal voicing, and the reflexes differ greatly in voice onset time. Rather, the defining feature distinguishing the two series was [±spread glottis], with ancillary vibration of the vocal cords. In PGPh. the second series was undergoing further spreading of the glottis. As the two languages split, this process would continue, but be affected by dissimilar changes in VOT, which was ultimately phonemicized in both languages as the defining feature distinguishing between their series of stops.

Keywords: bottom-up reconstruction, Proto-Graeco-Phrygian, spread glottis, syllabic resonant

Procedia PDF Downloads 33
130 Computational Modelling of pH-Responsive Nanovalves in Controlled-Release System

Authors: Tomilola J. Ajayi

Abstract:

A category of nanovalves system containing the α-cyclodextrin (α-CD) ring on a stalk tethered to the pores of mesoporous silica nanoparticles (MSN) is theoretically and computationally modelled. This functions to control opening and blocking of the MSN pores for efficient targeted drug release system. Modeling of the nanovalves is based on the interaction between α-CD and the stalk (p-anisidine) in relation to pH variation. Conformational analysis was carried out prior to the formation of the inclusion complex, to find the global minimum of both neutral and protonated stalk. B3LYP/6-311G**(d, p) basis set was employed to attain all theoretically possible conformers of the stalk. Six conformers were taken into considerations, and the dihedral angle (θ) around the reference atom (N17) of the p-anisidine stalk was scanned from 0° to 360° at 5° intervals. The most stable conformer was obtained at a dihedral angle of 85.3° and was fully optimized at B3LYP/6-311G**(d, p) level of theory. The most stable conformer obtained from conformational analysis was used as the starting structure to create the inclusion complexes. 9 complexes were formed by moving the neutral guest into the α-CD cavity along the Z-axis in 1 Å stepwise while keeping the distance between dummy atom and OMe oxygen atom on the stalk restricted. The dummy atom and the carbon atoms on α-CD structure were equally restricted for orientation A (see Scheme 1). The generated structures at each step were optimized with B3LYP/6-311G**(d, p) methods to determine their energy minima. Protonation of the nitrogen atom on the stalk occurs at acidic pH, leading to unsatisfactory host-guest interaction in the nanogate; hence there is dethreading. High required interaction energy and conformational change are theoretically established to drive the release of α-CD at a certain pH. The release was found to occur between pH 5-7 which agreed with reported experimental results. In this study, we applied the theoretical model for the prediction of the experimentally observed pH-responsive nanovalves which enables blocking, and opening of mesoporous silica nanoparticles pores for targeted drug release system. Our results show that two major factors are responsible for the cargo release at acidic pH. The higher interaction energy needed for the complex/nanovalve formation to exist after protonation as well as conformational change upon protonation are driving the release due to slight pH change from 5 to 7.

Keywords: nanovalves, nanogate, mesoporous silica nanoparticles, cargo

Procedia PDF Downloads 104
129 Impact of an Eight-Week High-Intensity Interval Training with Sodium Nitrite Supplementation on TNF-α, MURF1, and PI3K in Type 2 Diabetic Rats

Authors: Samane Eftekhari Ranjbar

Abstract:

Diabetes mellitus, a metabolic disorder characterized by elevated blood glucose levels, ranks among the leading causes of adult mortality. This study investigates the impact of an eight-week high-intensity interval training (HIIT) program combined with sodium nitrite supplementation on TNF- α, MURF1, and PI3K in a type 2 diabetes rodent model. Elevated TNF-α levels have been associated with insulin resistance, while MURF1 and PI3K play roles in muscle atrophy and insulin signaling pathways, respectively. In this experimental study, 15 eight-week-old rats from the Sara Laboratory Center in Tabriz were assigned to one of five groups: healthy control, diabetic control, diabetic with sodium nitrite supplementation, diabetic with eight weeks of intermittent exercise, and diabetic with eight weeks of interval training plus sodium nitrite supplementation. The HIIT protocol was designed to span eight weeks, with five weekly sessions at specified intensities and durations. Sodium nitrite, known for its vasodilatory and cytoprotective properties, was administered via injection. The findings revealed that the HIIT program and sodium nitrite supplementation influenced the examined biomarkers. ANOVA test outcomes indicated statistically significant differences in TNF- α (P=0.001), MURF1 (P=0.001), and PI3K (P=0.001) concentrations among the various groups. The healthy control group exhibited substantially decreased TNF- α, and MURF1 levels, as well as elevated PI3K levels compared to the diabetic control group. The exercise group, in conjunction with sodium nitrite supplementation, demonstrated a significant rise in PI3K levels (P=0.001) and a decline in TNF- α levels (P=0.018) relative to the diabetic control group. These results suggest that the combined intervention may help improve insulin sensitivity and reduce inflammation. However, MURF1 levels, which are related to muscle atrophy, showed no significant difference (P=0.24). In conclusion, in type 2 diabetic rats, an eight-week high-intensity interval training program with sodium nitrite supplementation does not affect MURF1 levels but does influence PI3K and TNF- α levels. This combination may hold potential for improving insulin sensitivity and reducing inflammation in type 2 diabetes patients, warranting further investigation and potential translation to human clinical trials.

Keywords: high-intensity interval training, sodium nitrate supplementation, type 2 diabetes, tumor necrosis factor-alpha, phosphatidylinositol-3-kinase, muscle RING-finger protein-1

Procedia PDF Downloads 61
128 Walking Cadence to Attain a Minimum of Moderate Aerobic Intensity in People at Risk of Cardiovascular Diseases

Authors: Fagner O. Serrano, Danielle R. Bouchard, Todd A. Duhame

Abstract:

Walking cadence (steps/min) is an effective way to prescribe exercise so an individual can reach a moderate intensity, which is recommended to optimize health benefits. To our knowledge, there is no study on the required walking cadence to reach a moderate intensity for people that present chronic conditions or risk factors for chronic conditions such as Cardiovascular Diseases (CVD). The objectives of this study were: 1- to identify the walking cadence needed for people at risk of CVD to a reach moderate intensity, and 2- to develop and test an equation using clinical variables to help professionals working with individuals at risk of CVD to estimate the walking cadence needed to reach moderate intensity. Ninety-one people presenting a minimum of two risk factors for CVD completed a medically supervised graded exercise test to assess maximum oxygen consumption at the first visit. The last visit consisted of recording walking cadence using a foot pod Garmin FR-60 and a Polar heart rate monitor, aiming to get participants to reach 40% of their maximal oxygen consumption using a portable metabolic cart on an indoor flat surface. The equation to predict the walking cadence needed to reach moderate intensity in this sample was developed as follows: The sample was randomly split in half and the equation was developed with one half of the participants, and validated using the other half. Body mass index, height, stride length, leg height, body weight, fitness level (VO2max), and self-selected cadence (over 200 meters) were measured using objective measured. Mean walking cadence to reach moderate intensity for people age 64.3 ± 10.3 years old at risk of CVD was 115.8  10.3 steps per minute. Body mass index, height, body weight, fitness level, and self-selected cadence were associated with walking cadence at moderate intensity when evaluated in bivariate analyses (r ranging from 0.22 to 0.52; all P values ≤0.05). Using linear regression analysis including all clinical variables associated in the bivariate analyses, body weight was the significant predictor of walking cadence for reaching a moderate intensity (ß=0.24; P=.018) explaining 13% of walking cadence to reach moderate intensity. The regression model created was Y = 134.4-0.24 X body weight (kg).Our findings suggest that people presenting two or more risk factors for CVD are reaching moderate intensity while walking at a cadence above the one officially recommended (116 steps per minute vs. 100 steps per minute) for healthy adults.

Keywords: cardiovascular disease, moderate intensity, older adults, walking cadence

Procedia PDF Downloads 427
127 In situ Grazing Incidence Small Angle X-Ray Scattering Study of Permalloy Thin Film Growth on Nanorippled Si

Authors: Sarathlal Koyiloth Vayalil, Stephan V. Roth, Gonzalo Santoro, Peng Zhang, Matthias Schwartzkopf, Bjoern Beyersdorff

Abstract:

Nanostructured magnetic thin films have gained significant relevance due to its applications in magnetic storage and recording media. Self-organized arrays of nanoparticles and nanowires can be produced by depositing metal thin films on nano-rippled substrates. The substrate topography strongly affects the film growth giving rise to anisotropic properties (optical, magnetic, electronic transport). Ion-beam erosion (IBE) method can provide large-area patterned substrates with the valuable possibility to widely modify pattern length scale by simply acting on ion beam parameters (i.e. energy, ions, geometry, etc.). In this work, investigation of the growth mechanism of Permalloy thin films on such nano-rippled Si (100) substrates using in situ grazing incidence small angle x-ray scattering measurements (GISAXS) have been done. In situ GISAXS measurements during the deposition of thin films have been carried out at the P03/MiNaXS beam line of PETRA III storage ring of DESY, Hamburg. Nanorippled Si substrates prepared by low energy ion beam sputtering with an average wavelength of 33 nm and 1 nm have been used as templates. It has been found that the film replicates the morphology up to larger thickness regimes and also the growth is highly anisotropic along and normal to the ripple wave vectors. Various growth regimes have been observed. Further, magnetic measurements have been done using magneto-optical Kerr effect by rotating the sample in the azimuthal direction. Strong uniaxial magnetic anisotropy with its easy axis in a direction normal to the ripple wave vector has been observed. The strength of the magnetic anisotropy is found to be decreasing with increasing thin film thickness values. The mechanism of the observed strong uniaxial magnetic anisotropy and its depends on the thickness of the film has been explained by correlating it with the GISAXS results. In conclusion, we have done a detailed growth analysis of Permalloy thin films deposited on nanorippled Si templates and tried to explain the correlation between structure, morphology to the observed magnetic properties.

Keywords: grazing incidence small angle x-ray scattering, magnetic thin films, magnetic anisotropy, nanoripples

Procedia PDF Downloads 297
126 Index t-SNE: Tracking Dynamics of High-Dimensional Datasets with Coherent Embeddings

Authors: Gaelle Candel, David Naccache

Abstract:

t-SNE is an embedding method that the data science community has widely used. It helps two main tasks: to display results by coloring items according to the item class or feature value; and for forensic, giving a first overview of the dataset distribution. Two interesting characteristics of t-SNE are the structure preservation property and the answer to the crowding problem, where all neighbors in high dimensional space cannot be represented correctly in low dimensional space. t-SNE preserves the local neighborhood, and similar items are nicely spaced by adjusting to the local density. These two characteristics produce a meaningful representation, where the cluster area is proportional to its size in number, and relationships between clusters are materialized by closeness on the embedding. This algorithm is non-parametric. The transformation from a high to low dimensional space is described but not learned. Two initializations of the algorithm would lead to two different embeddings. In a forensic approach, analysts would like to compare two or more datasets using their embedding. A naive approach would be to embed all datasets together. However, this process is costly as the complexity of t-SNE is quadratic and would be infeasible for too many datasets. Another approach would be to learn a parametric model over an embedding built with a subset of data. While this approach is highly scalable, points could be mapped at the same exact position, making them indistinguishable. This type of model would be unable to adapt to new outliers nor concept drift. This paper presents a methodology to reuse an embedding to create a new one, where cluster positions are preserved. The optimization process minimizes two costs, one relative to the embedding shape and the second relative to the support embedding’ match. The embedding with the support process can be repeated more than once, with the newly obtained embedding. The successive embedding can be used to study the impact of one variable over the dataset distribution or monitor changes over time. This method has the same complexity as t-SNE per embedding, and memory requirements are only doubled. For a dataset of n elements sorted and split into k subsets, the total embedding complexity would be reduced from O(n²) to O(n²=k), and the memory requirement from n² to 2(n=k)², which enables computation on recent laptops. The method showed promising results on a real-world dataset, allowing to observe the birth, evolution, and death of clusters. The proposed approach facilitates identifying significant trends and changes, which empowers the monitoring high dimensional datasets’ dynamics.

Keywords: concept drift, data visualization, dimension reduction, embedding, monitoring, reusability, t-SNE, unsupervised learning

Procedia PDF Downloads 129
125 The Outcome of Using Machine Learning in Medical Imaging

Authors: Adel Edwar Waheeb Louka

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deeplearning, image processing, machine learningSarapin, intraarticular, chronic knee pain, osteoarthritisFNS, trauma, hip, neck femur fracture, minimally invasive surgery

Procedia PDF Downloads 45
124 Building on Previous Microvalving Approaches for Highly Reliable Actuation in Centrifugal Microfluidic Platforms

Authors: Ivan Maguire, Ciprian Briciu, Alan Barrett, Dara Kervick, Jens Ducrèe, Fiona Regan

Abstract:

With the ever-increasing myriad of applications of which microfluidic devices are capable, reliable fluidic actuation development has remained fundamental to the success of these microfluidic platforms. There are a number of approaches which can be taken in order to integrate liquid actuation on microfluidic platforms, which can usually be split into two primary categories; active microvalves and passive microvalves. Active microvalves are microfluidic valves which require a physical parameter change by external, or separate interaction, for actuation to occur. Passive microvalves are microfluidic valves which don’t require external interaction for actuation due to the valve’s natural physical parameters, which can be overcome through sample interaction. The purpose of this paper is to illustrate how further improvements to past microvalve solutions can largely enhance systematic reliability and performance, with both novel active and passive microvalves demonstrated. Covered within this scope will be two alternative and novel microvalve solutions for centrifugal microfluidic platforms; a revamped pneumatic-dissolvable film active microvalve (PAM) strategy and a spray-on Sol-Gel based hydrophobic passive microvalve (HPM) approach. Both the PAM and the HPM mechanisms were demonstrated on a centrifugal microfluidic platform consisting of alternating layers of 1.5 mm poly(methyl methacrylate) (PMMA) (for reagent storage) sheets and ~150 μm pressure sensitive adhesive (PSA) (for microchannel fabrication) sheets. The PAM approach differs from previous SOLUBON™ dissolvable film methods by introducing a more reliable and predictable liquid delivery mechanism to microvalve site, thus significantly reducing premature activation. This approach has also shown excellent synchronicity when performed in a multiplexed form. The HPM method utilises a new spray-on and low curing temperature (70°C) sol-gel material. The resultant double layer coating comprises a PMMA adherent sol-gel as the bottom layer and an ultra hydrophobic silica nano-particles (SNPs) film as the top layer. The optimal coating was integrated to microfluidic channels with varying cross-sectional area for assessing microvalve burst frequencies consistency. It is hoped that these microvalving solutions, which can be easily added to centrifugal microfluidic platforms, will significantly improve automation reliability.

Keywords: centrifugal microfluidics, hydrophobic microvalves, lab-on-a-disc, pneumatic microvalves

Procedia PDF Downloads 175
123 A User-Directed Approach to Optimization via Metaprogramming

Authors: Eashan Hatti

Abstract:

In software development, programmers often must make a choice between high-level programming and high-performance programs. High-level programming encourages the use of complex, pervasive abstractions. However, the use of these abstractions degrades performance-high performance demands that programs be low-level. In a compiler, the optimizer attempts to let the user have both. The optimizer takes high-level, abstract code as an input and produces low-level, performant code as an output. However, there is a problem with having the optimizer be a built-in part of the compiler. Domain-specific abstractions implemented as libraries are common in high-level languages. As a language’s library ecosystem grows, so does the number of abstractions that programmers will use. If these abstractions are to be performant, the optimizer must be extended with new optimizations to target them, or these abstractions must rely on existing general-purpose optimizations. The latter is often not as effective as needed. The former presents too significant of an effort for the compiler developers, as they are the only ones who can extend the language with new optimizations. Thus, the language becomes more high-level, yet the optimizer – and, in turn, program performance – falls behind. Programmers are again confronted with a choice between high-level programming and high-performance programs. To investigate a potential solution to this problem, we developed Peridot, a prototype programming language. Peridot’s main contribution is that it enables library developers to easily extend the language with new optimizations themselves. This allows the optimization workload to be taken off the compiler developers’ hands and given to a much larger set of people who can specialize in each problem domain. Because of this, optimizations can be much more effective while also being much more numerous. To enable this, Peridot supports metaprogramming designed for implementing program transformations. The language is split into two fragments or “levels”, one for metaprogramming, the other for high-level general-purpose programming. The metaprogramming level supports logic programming. Peridot’s key idea is that optimizations are simply implemented as metaprograms. The meta level supports several specific features which make it particularly suited to implementing optimizers. For instance, metaprograms can automatically deduce equalities between the programs they are optimizing via unification, deal with variable binding declaratively via higher-order abstract syntax, and avoid the phase-ordering problem via non-determinism. We have found that this design centered around logic programming makes optimizers concise and easy to write compared to their equivalents in functional or imperative languages. Overall, implementing Peridot has shown that its design is a viable solution to the problem of writing code which is both high-level and performant.

Keywords: optimization, metaprogramming, logic programming, abstraction

Procedia PDF Downloads 69