Search results for: compact schemes
306 The Impact of Rapid Urbanisation on Public Transport Systems in the Gauteng Region of South Africa
Authors: J. Chakwizira, P. Bikam, T. A. Adeboyejo
Abstract:
This paper seeks to illustrate the impact of rapid urbanization (in terms of both increase in people and vehicles) in the Gauteng region (which includes Johannesburg, Pretoria and Ekurhuleni). The impact that existing transport systems and options place on the capacity of residents from low income areas to travel and conduct various socio-economic activities is discussed. The findings are drawn from a 2013 analysis of a random transport household survey of 1550 households carried out in Gauteng province. 91.4% of the study respondents had access to public transport, while 8.6% had no access to public transport. Of the 91.4% who used public transport, the main reason used to explain this state of affairs was that it was affordable (54.3%), convenient (15.9%), Accessible (11.9%), lack of alternatives (6.4%) and reliable at 4.1%. Recommendations advanced revolve around the need to reverse land use and transportation effects of apartheid planning, growing and developing a sustainable critical mass of public transport interventions supported by appropriate transport systems that are environmentally sustainable through proper governance. 38.5% of the respondents indicated that developing compact, smart and integrated urban land spaces was key to reducing travel challenges in the study area. 23.4% indicated that the introduction and upgrading of BRT buses to cover all areas in the study area was a step in the right direction because it has great potential in shifting travel patterns to favor public modes of transport. 15.1% indicated that all open spaces should be developed so that fragmentation of land uses can be addressed. This would help to fight disconnected and fragmented space and trip making challenges in Gauteng. 13.4% indicated that improving the metro rail services was critical since this is a mass mover of commuters. 9.6% of the respondents highlighted that the bus subsidy policy has to be retained in the short to medium term since the spatial mismatches and challenges created by apartheid are yet to be fully reversed.Keywords: urbanisation, population, public, transport systems, Gauteng
Procedia PDF Downloads 287305 Magnetohydrodynamic Flow of Viscoelastic Nanofluid and Heat Transfer over a Stretching Surface with Non-Uniform Heat Source/Sink and Non-Linear Radiation
Authors: Md. S. Ansari, S. S. Motsa
Abstract:
In this paper, an analysis has been made on the flow of non-Newtonian viscoelastic nanofluid over a linearly stretching sheet under the influence of uniform magnetic field. Heat transfer characteristics is analyzed taking into the effect of nonlinear radiation and non-uniform heat source/sink. Transport equations contain the simultaneous effects of Brownian motion and thermophoretic diffusion of nanoparticles. The relevant partial differential equations are non-dimensionalized and transformed into ordinary differential equations by using appropriate similarity transformations. The transformed, highly nonlinear, ordinary differential equations are solved by spectral local linearisation method. The numerical convergence, error and stability analysis of iteration schemes are presented. The effects of different controlling parameters, namely, radiation, space and temperature-dependent heat source/sink, Brownian motion, thermophoresis, viscoelastic, Lewis number and the magnetic force parameter on the flow field, heat transfer characteristics and nanoparticles concentration are examined. The present investigation has many industrial and engineering applications in the fields of coatings and suspensions, cooling of metallic plates, oils and grease, paper production, coal water or coal–oil slurries, heat exchangers’ technology, and materials’ processing and exploiting.Keywords: magnetic field, nonlinear radiation, non-uniform heat source/sink, similar solution, spectral local linearisation method, Rosseland diffusion approximation
Procedia PDF Downloads 372304 Efficient Implementation of Finite Volume Multi-Resolution Weno Scheme on Adaptive Cartesian Grids
Authors: Yuchen Yang, Zhenming Wang, Jun Zhu, Ning Zhao
Abstract:
An easy-to-implement and robust finite volume multi-resolution Weighted Essentially Non-Oscillatory (WENO) scheme is proposed on adaptive cartesian grids in this paper. Such a multi-resolution WENO scheme is combined with the ghost cell immersed boundary method (IBM) and wall-function technique to solve Navier-Stokes equations. Unlike the k-exact finite volume WENO schemes which involve large amounts of extra storage, repeatedly solving the matrix generated in a least-square method or the process of calculating optimal linear weights on adaptive cartesian grids, the present methodology only adds very small overhead and can be easily implemented in existing edge-based computational fluid dynamics (CFD) codes with minor modifications. Also, the linear weights of this adaptive finite volume multi-resolution WENO scheme can be any positive numbers on condition that their sum is one. It is a way of bypassing the calculation of the optimal linear weights and such a multi-resolution WENO scheme avoids dealing with the negative linear weights on adaptive cartesian grids. Some benchmark viscous problems are numerical solved to show the efficiency and good performance of this adaptive multi-resolution WENO scheme. Compared with a second-order edge-based method, the presented method can be implemented into an adaptive cartesian grid with slight modification for big Reynolds number problems.Keywords: adaptive mesh refinement method, finite volume multi-resolution WENO scheme, immersed boundary method, wall-function technique.
Procedia PDF Downloads 148303 Genetic Algorithm for In-Theatre Military Logistics Search-and-Delivery Path Planning
Authors: Jean Berger, Mohamed Barkaoui
Abstract:
Discrete search path planning in time-constrained uncertain environment relying upon imperfect sensors is known to be hard, and current problem-solving techniques proposed so far to compute near real-time efficient path plans are mainly bounded to provide a few move solutions. A new information-theoretic –based open-loop decision model explicitly incorporating false alarm sensor readings, to solve a single agent military logistics search-and-delivery path planning problem with anticipated feedback is presented. The decision model consists in minimizing expected entropy considering anticipated possible observation outcomes over a given time horizon. The model captures uncertainty associated with observation events for all possible scenarios. Entropy represents a measure of uncertainty about the searched target location. Feedback information resulting from possible sensor observations outcomes along the projected path plan is exploited to update anticipated unit target occupancy beliefs. For the first time, a compact belief update formulation is generalized to explicitly include false positive observation events that may occur during plan execution. A novel genetic algorithm is then proposed to efficiently solve search path planning, providing near-optimal solutions for practical realistic problem instances. Given the run-time performance of the algorithm, natural extension to a closed-loop environment to progressively integrate real visit outcomes on a rolling time horizon can be easily envisioned. Computational results show the value of the approach in comparison to alternate heuristics.Keywords: search path planning, false alarm, search-and-delivery, entropy, genetic algorithm
Procedia PDF Downloads 360302 Deriving Framework for Slum Rehabilitation through Environmental Perspective: Case of Mumbai
Authors: Ashwini Bhosale, Yogesh Patil
Abstract:
Urban areas are extremely complicated environmental settings, where health and well-being of an individual and population are governed by a large number of bio-physical, socio-economical, and inclusive aspects. Although poverty and slums are the prime issues under UN-HABITAT agenda of environmental sustainability, slums, the inevitable part of urban environment, have not accounted for inclusive city planning. Developing nations, where about 60 % of world slum population resides, are increasingly under pressure to uplift the urban poor, particularly slum dwellers. From a point of advantage, these new slum redevelopment projects have succeeded in providing legitimized and more permanent and stable shelter for the low income people, as well as individualized sanitation and water supply. However, they unfortunately follow the “one type fits all" approach and exhibit no response to the climatic design needs on Mumbai. The thesis focuses on the study of environmental perspectives in the context of Daylight, natural ventilation and social aspects in the design process of Slum-Rehabilitation schemes (SRS) – case of Mumbai. It attempts to investigate into Indian approaches about SRS and concludes upon strategies to be incorporated in SRS to improve the overall SRS environment. The main objectives of this work have been to identify and study the spatial configuration and possibilities of daylight and natural ventilation in Slum Rehabilitated buildings. The performance of the proposed method was evaluated by comparison with the daylight luminance simulated by lighting software, namely ECOTECT, and with measurements under real skies whereas for the ventilation study purpose, software named FLOW DESIGN was used.Keywords: urban environment, slum-rehabilitation, daylight, natural-ventilation, architectural consequences
Procedia PDF Downloads 387301 Different Orientations of Shape Memory Alloy Wire in Automotive Sector Product
Authors: Srishti Bhatt, Vaibhav Bhavsar, Adil Hussain, Aashay Mhaske, S. C. Bali, T. S. Srikanth
Abstract:
Shape Memory Alloys (SMA) are widely known for their unique shape recovery properties. SMA based actuation systems have high-force to weight ratio, light weight and also bio-compatible material. Which is why they are being used in different fields of aerospace, robotics, automotive and biomedical industries. However, in the automotive industry plenty of patents are available but commercially viable products are very few in market. This could be due to SMA material limitations like small stroke, direct dependability of lifecycle on stroke, pull load of the wire and high cycle time. In automotive sector, SMA being considered as an actuator which is required to have high stroke and constraint arises to accommodate a long length of wire (to compensate maximum 4 % strain as per better fatigue life cycle) not only increases complexity but also adds on the cost. More than 200 different types of actuators are used in an automobile, few of them whose efficiency can highly increase by replacing them with SMA based actuators which include latch lock mechanism, glove box, Head lamp leveling, side mirror and rear mirror leveling, tailgate opener and fuel lid cap actuator. To overcome the limitation of available space for required stroke of an actuator which leads to study the effect of different loading positions on SMA wires, different orientations of SMA wire by using pulleys and lever based systems to achieve maximum stroke. This investigation summarizes the loading under the V shape orientation the required stroke and carrying load capacity in more compact in comparison with straight orientation of wire. Similarly, the U shape orientation its showing higher load carrying capacity but reduced stroke which is aligned with concept of bundled wire method. Life-cycle of these orientations were also evaluated.Keywords: actuators, automotive, nitinol, shape memory alloy, SMA wire orientations
Procedia PDF Downloads 86300 Sustainable Cities: Viability of a Hybrid Aeroponic/Nutrient Film Technique System for Cultivation of Tomatoes
Authors: D. Dannehl, Z. Taylor, J. Suhl, L. Miranda, R., Ulrichs, C., Salazar, E. Fitz-Rodriguez, I. Lopez-Cruz, A. Rojano-Aguilar, G. Navas-Gomez, U. Schmidt
Abstract:
Growing environmental and sustainability concerns have driven continual modernization of horticultural practices, especially for urban farming. Controlled environment and soilless production methods are increasing in popularity because of their efficient resource use and intensive cropping capabilities. However, some popular substrates used for hydroponic cultivation, particularly rock wool, represent a large environmental burden in regard to their manufacture and disposal. Substrate-less hydroponic systems are effective in producing short cropping cycle plants such as lettuce or herbs, but less information is available for the production of plants with larger root-systems and longer cropping times. Here, we investigated the viability of a hybrid aeroponic/nutrient film technique (AP/NFT) system for the cultivation of greenhouse tomatoes (Solanum lycopersicum ‘Panovy’). The plants grown in the AP/NFT system had a more compact phenotype, accumulated more Na+ and less P and S than the rock wool grown counterparts. Due to forced irrigation interruptions, we propose that the differences observed were cofounded by the differing severity of water-stress for plants with and without substrate. They may also be caused by a higher root zone temperature predominant in plants exposed to AP/NFT. However, leaf area, stem diameter, and number of trusses did not differ significantly. The same was found for leaf pigments and plant photosynthetic efficiency. Overall, the AP/NFT system appears to be viable for the production of greenhouse tomato, enabling the environment to be relieved by way of lessening rock wool usage.Keywords: closed aeroponic systems, fruit quality, nutrient dynamics, substrate waste reduction, urban farming systems, water savings
Procedia PDF Downloads 266299 Flood Modeling in Urban Area Using a Well-Balanced Discontinuous Galerkin Scheme on Unstructured Triangular Grids
Authors: Rabih Ghostine, Craig Kapfer, Viswanathan Kannan, Ibrahim Hoteit
Abstract:
Urban flooding resulting from a sudden release of water due to dam-break or excessive rainfall is a serious threatening environment hazard, which causes loss of human life and large economic losses. Anticipating floods before they occur could minimize human and economic losses through the implementation of appropriate protection, provision, and rescue plans. This work reports on the numerical modelling of flash flood propagation in urban areas after an excessive rainfall event or dam-break. A two-dimensional (2D) depth-averaged shallow water model is used with a refined unstructured grid of triangles for representing the urban area topography. The 2D shallow water equations are solved using a second-order well-balanced discontinuous Galerkin scheme. Theoretical test case and three flood events are described to demonstrate the potential benefits of the scheme: (i) wetting and drying in a parabolic basin (ii) flash flood over a physical model of the urbanized Toce River valley in Italy; (iii) wave propagation on the Reyran river valley in consequence of the Malpasset dam-break in 1959 (France); and (iv) dam-break flood in October 1982 at the town of Sumacarcel (Spain). The capability of the scheme is also verified against alternative models. Computational results compare well with recorded data and show that the scheme is at least as efficient as comparable second-order finite volume schemes, with notable efficiency speedup due to parallelization.Keywords: dam-break, discontinuous Galerkin scheme, flood modeling, shallow water equations
Procedia PDF Downloads 175298 LIZTOXD: Inclusive Lizard Toxin Database by Using MySQL Protocol
Authors: Iftikhar A. Tayubi, Tabrej Khan, Mansoor M. Alsubei, Fahad A. Alsaferi
Abstract:
LIZTOXD provides a single source of high-quality information about proteinaceous lizard toxins that will be an invaluable resource for pharmacologists, neuroscientists, toxicologists, medicinal chemists, ion channel scientists, clinicians, and structural biologists. We will provide an intuitive, well-organized and user-friendly web interface that allows users to explore the detail information of Lizard and toxin proteins. It includes common name, scientific name, entry id, entry name, protein name and length of the protein sequence. The utility of this database is that it can provide a user-friendly interface for users to retrieve the information about Lizard, toxin and toxin protein of different Lizard species. These interfaces created in this database will satisfy the demands of the scientific community by providing in-depth knowledge about Lizard and its toxin. In the next phase of our project we will adopt methodology and by using A MySQL and Hypertext Preprocessor (PHP) which and for designing Smart Draw. A database is a wonderful piece of equipment for storing large quantities of data efficiently. The users can thus navigate from one section to another, depending on the field of interest of the user. This database contains a wealth of information on species, toxins, toxins, clinical data etc. LIZTOXD resource that provides comprehensive information about protein toxins from lizard toxins. The combination of specific classification schemes and a rich user interface allows researchers to easily locate and view information on the sequence, structure, and biological activity of these toxins. This manually curated database will be a valuable resource for both basic researchers as well as those interested in potential pharmaceutical and agricultural applications of lizard toxins.Keywords: LIZTOXD, MySQL, PHP, smart draw
Procedia PDF Downloads 162297 Induction of Different Types of Callus and Somatic Embryogenesis in Various Explants of Taraxacum Kok-Saghyz Rodin
Authors: Kairat Uteulin, Azhar Iskakova, Serik Mukhambetzhanov, Bayan Yesbolayeva, Gabit Bari, Aslan Zheksenbai, Kabyl Zhambakin, Chingis Dzhabykbayev, Vladimir Piven, Izbasar Rakhimbaiev
Abstract:
To explore the potential for in vitro rapid regeneration of Russian dandelion (Taraxacum kok-saghyz Rodin), different concentrations of 6-Benzylaminopurine (BAP), 2,4-Dichlorophenoxyacetic acid (2.4-D) and BAP combined with Indole-3-acetic acid (IAA) were evaluated for their effects on the induction of somatic embryos from leaf, seed stem and root explants. Different explants were cultured on MS medium supplemented with various concentrations (0, 0.5, 1, 1.5, 2, 2.5 and 3 mg/l) of each kind of hormone. Callus induction percentage, fresh weight, color and texture of the callus were assessed after 14 and 28 days of culture. The optimum medium for the proliferation of embryogenic calli from leaf and root explants was MS supplemented with 2.5 mg/L BAP and 0.5 mg/L 2.4-D. Concentrations of 2.5 mg/L BAP and 1.5 mg/L IAA also had a remarkable effect on root and stem explants. The best concentration to produce callus from stem explants was 0.5 mg/L BAP and 1 mg/L IAA. Results of mean comparison showed that BAP and 2.4-D were more effective on different explants than BAP and IAA. Results of the double staining method proved that somatic embryogenesis occurred in the most concentrations of BAP and 2.4-D. Under microscopic observations, the different developmental stages of the embryos (globular, heart, torpedo and cotyledonary) were revealed together in callus cells, indicating that the most tested hormone combinations were effective for somatic embryogenesis formation in this species. Seed explants formed torpedo and cotyledonary stages faster than leaf and root explants in the most combinations. Most calli from seed explants were cream colored and friable, while calli were compact and light green from leaf and root explants. Some combinations gave direct regeneration and (3 mg/L BAP and 2 mg/L IAA) in seed explants and (0.5 mg/L BAP and 2.5 mg/L IAA) in leaf explants had the highest number of shoots with average of 21 and 27 shoots per callus. The developed protocol established the production of different callus types from seed, leaf, and root explants and plant regeneration through somatic embryogenesis.Keywords: taraxacum kok-saghyz Rodin, callus, somatic embryogenesis
Procedia PDF Downloads 372296 Cocoon Characterization of Sericigenous Insects in North-East India and Prospects
Authors: Tarali Kalita, Karabi Dutta
Abstract:
The North Eastern Region of India, with diverse climatic conditions and a wide range of ecological habitats, makes an ideal natural abode for a good number of silk-producing insects. Cocoon is the economically important life stage from where silk of economic importance is obtained. In recent years, silk-based biomaterials have gained considerable attention, which is dependent on the structure and properties of the silkworm cocoons as well as silk yarn. The present investigation deals with the morphological study of cocoons, including cocoon color, cocoon size, shell weight and shell ratio of eleven different species of silk insects collected from different regions of North East India. The Scanning Electron Microscopic study and X-ray photoelectron spectroscopy were performed to know the arrangement of silk threads in cocoons and the atomic elemental analysis, respectively. Further, collected cocoons were degummed and reeled/spun on a reeling machine or spinning wheel to know the filament length, linear density and tensile strength by using Universal Testing Machine. The study showed significant variation in terms of cocoon color, cocoon shape, cocoon weight and filament packaging. XPS analysis revealed the presence of elements (Mass %) C, N, O, Si and Ca in varying amounts. The wild cocoons showed the presence of Calcium oxalate crystals which makes the cocoons hard and needs further treatment to reel. In the present investigation, the highest percentage of strain (%) and toughness (g/den) were observed in Antheraea assamensis, which implies that the muga silk is a more compact packing of molecules. It is expected that this study will be the basis for further biomimetic studies to design and manufacture artificial fiber composites with novel morphologies and associated material properties.Keywords: cocoon characterization, north-east India, prospects, silk characterization
Procedia PDF Downloads 90295 Microfluidic Impedimetric Biochip and Related Methods for Measurement Chip Manufacture and Counting Cells
Authors: Amina Farooq, Nauman Zafar Butt
Abstract:
This paper is about methods and tools for counting particles of interest, such as cells. A microfluidic system with interconnected electronics on a flexible substrate, inlet-outlet ports and interface schemes, sensitive and selective detection of cells specificity, and processing of cell counting at polymer interfaces in a microscale biosensor for use in the detection of target biological and non-biological cells. The development of fluidic channels, planar fluidic contact ports, integrated metal electrodes on a flexible substrate for impedance measurements, and a surface modification plasma treatment as an intermediate bonding layer are all part of the fabrication process. Magnetron DC sputtering is used to deposit a double metal layer (Ti/Pt) over the polypropylene film. Using a photoresist layer, specified and etched zones are established. Small fluid volumes, a reduced detection region, and electrical impedance measurements over a range of frequencies for cell counts improve detection sensitivity and specificity. The procedure involves continuous flow of fluid samples that contain particles of interest through the microfluidic channels, counting all types of particles in a portion of the sample using the electrical differential counter to generate a bipolar pulse for each passing cell—calculating the total number of particles of interest originally in the fluid sample by using MATLAB program and signal processing. It's indeed potential to develop a robust and economical kit for cell counting in whole-blood samples using these methods and similar devices.Keywords: impedance, biochip, cell counting, microfluidics
Procedia PDF Downloads 160294 Evidence Theory Enabled Quickest Change Detection Using Big Time-Series Data from Internet of Things
Authors: Hossein Jafari, Xiangfang Li, Lijun Qian, Alexander Aved, Timothy Kroecker
Abstract:
Traditionally in sensor networks and recently in the Internet of Things, numerous heterogeneous sensors are deployed in distributed manner to monitor a phenomenon that often can be model by an underlying stochastic process. The big time-series data collected by the sensors must be analyzed to detect change in the stochastic process as quickly as possible with tolerable false alarm rate. However, sensors may have different accuracy and sensitivity range, and they decay along time. As a result, the big time-series data collected by the sensors will contain uncertainties and sometimes they are conflicting. In this study, we present a framework to take advantage of Evidence Theory (a.k.a. Dempster-Shafer and Dezert-Smarandache Theories) capabilities of representing and managing uncertainty and conflict to fast change detection and effectively deal with complementary hypotheses. Specifically, Kullback-Leibler divergence is used as the similarity metric to calculate the distances between the estimated current distribution with the pre- and post-change distributions. Then mass functions are calculated and related combination rules are applied to combine the mass values among all sensors. Furthermore, we applied the method to estimate the minimum number of sensors needed to combine, so computational efficiency could be improved. Cumulative sum test is then applied on the ratio of pignistic probability to detect and declare the change for decision making purpose. Simulation results using both synthetic data and real data from experimental setup demonstrate the effectiveness of the presented schemes.Keywords: CUSUM, evidence theory, kl divergence, quickest change detection, time series data
Procedia PDF Downloads 334293 Unveiling Subconscious Autopoietic Reflexive Feedback Mechanisms of Second Order Governance from the Narration of Cognitive Autobiography of an ICT Lab during the Digital Revolution
Authors: Gianni Jacucci
Abstract:
We present a retrospective on the development of a research group over the past 30+ years. We reflect on a change in observing the experience (1990-2024) of a university sociotechnical research group dedicated to instill change for innovation in client organisations and enterprises. Its cognitive and action trajectory is influenced by subjective factors: intention and interpretation. Continuity and change are both present: the trajectory of the group exhibits the dynamic interplay of two components of subjectivity, a change of focus in persistence of scheme, and a tension between stability and change. The paper illustrates the meanings the group gave to their practice while laying down mission-critical theoretical considerations – autopoiesis-. The aim of the work is to experience a fragment of phenomenological understanding (PU) of the cognitive dynamics of an STS-aware ICT uptake Laboratory during the digital revolution. PU is an intuitive going along the meaning, while staying close and present to the total situation of the phenomenon. Reading the codes that we observers invent in order to codify what nature is about, thus unveiling subconscious, autopoietic, reflexive feedback mechanisms of second order governance from work published over three decades by the ICT Lab, as if it were the narration of its cognitive autobiography. The paper brings points of discussion and insights of relevance for the STS community. It could be helpful in understanding the history of the community and in providing a platform for discussions on future developments. It can also serve as an inspiration and a historical capture for those entering the field.Keywords: phenomenology, subjectivity, autopoiesis, interpretation schemes, change for innovation, socio technical research, social study of information systems
Procedia PDF Downloads 31292 Productivity Effect of Urea Deep Placement Technology: An Empirical Analysis from Irrigation Rice Farmers in the Northern Region of Ghana
Authors: Shaibu Baanni Azumah, Ignatius Tindjina, Stella Obanyi, Tara N. Wood
Abstract:
This study examined the effect of Urea Deep Placement (UDP) technology on the output of irrigated rice farmers in the northern region of Ghana. Multi-stage sampling technique was used to select 142 rice farmers from the Golinga and Bontanga irrigation schemes, around Tamale. A treatment effect model was estimated at two stages; firstly, to determine the factors that influenced farmers’ decision to adopt the UDP technology and secondly, to determine the effect of the adoption of the UDP technology on the output of rice farmers. The significant variables that influenced rice farmers’ adoption of the UPD technology were sex of the farmer, land ownership, off-farm activity, extension service, farmer group participation and training. The results also revealed that farm size and the adoption of UDP technology significantly influenced the output of rice farmers in the northern region of Ghana. In addition to the potential of the technology to improve yields, it also presents an employment opportunity for women and youth, who are engaged in the deep placement of Urea Super Granules (USG), as well as in the transplantation of rice. It is recommended that the government of Ghana work closely with the IFDC to embed the UDP technology in the national agricultural programmes and policies. The study also recommends an effective collaboration between the government, through the Ministry of Food and Agriculture (MoFA) and the International Fertilizer Development Center (IFDC) to train agricultural extension agents on UDP technology in the rice producing areas of the country.Keywords: Northern Ghana, output , irrigation rice farmers, treatment effect model, urea deep placement
Procedia PDF Downloads 436291 Automatic Generation of Census Enumeration Area and National Sampling Frame to Achieve Sustainable Development Goals
Authors: Sarchil H. Qader, Andrew Harfoot, Mathias Kuepie, Sabrina Juran, Attila Lazar, Andrew J. Tatem
Abstract:
The need for high-quality, reliable, and timely population data, including demographic information, to support the achievement of the sustainable development goals (SDGs) in all countries was recognized by the United Nations' 2030 Agenda for sustainable development. However, many low and middle-income countries lack reliable and recent census data. To achieve reliable and accurate census and survey outputs, up-to-date census enumeration areas and digital national sampling frames are critical. Census enumeration areas (EAs) are the smallest geographic units for collection, disseminating, and analyzing census data and are often used as a national sampling frame to serve various socio-economic surveys. Even for countries that are wealthy and stable, creating and updating EAs is a difficult yet crucial step in preparing for a national census. Such a process is commonly done manually, either by digitizing small geographic units on high-resolution satellite imagery or walking the boundaries of units, both of which are extremely expensive. We have developed a user-friendly tool that could be employed to generate draft EA boundaries automatically. The tool is based on high-resolution gridded population and settlement datasets, GPS household locations, building footprints and uses publicly available natural, man-made and administrative boundaries. Initial outputs were produced in Burkina Faso, Paraguay, Somalia, Togo, Niger, Guinea, and Zimbabwe. The results indicate that the EAs are in line with international standards, including boundaries that are easily identifiable and follow ground features, have no overlaps, are compact and free of pockets and disjoints, and the boundaries are nested within administrative boundaries.Keywords: enumeration areas, national sampling frame, gridded population data, preEA tool
Procedia PDF Downloads 144290 Sludge Densification: Emerging and Efficient Way to Look at Biological Nutrient Removal Treatment
Authors: Raj Chavan
Abstract:
Currently, there are over 14,500 Water Resource Recovery Facilities (WRRFs) in the United States, with ~35% of them having some type of nutrient limits in place. These WRRFs account for about 1% of overall power demand and 2% of total greenhouse gas emissions (GHG) in the United States and contribute for 10 to 15% of the overall nutrient load to surface rivers in the United States. The evolution of densification technologies toward more compact and energy-efficient nutrient removal processes has been impacted by a number of factors. Existing facilities that require capacity expansion or biomass densification for higher treatability within the same footprint are being subjected to more stringent requirements relating to nutrient removal prior to surface water discharge. Densification of activated sludge has received recent widespread interest as a means for achieving process intensification and nutrient removal at WRRFs. At the core of the technology are the aerobic sludge granules where the biological processes occur. There is considerable interest in the prospect of producing granular sludge in continuous (or traditional) activated sludge processes (CAS) or densification of biomass by moving activated sludge flocs to a denser aggregate of biomass as a highly effective technique of intensification. This presentation will provide a fundamental understanding of densification by presenting insights and practical issues. The topics that will be discussed include methods used to generate and retain densified granules; the mechanisms that allow biological flocs to densify; the role that physical selectors play in the densification of biological flocs; some viable ways for managing biological flocs that have become densified; effects of physical selection design parameters on the retention of densified biological flocs and finally some operational solutions for customizing the flocs and granules required to meet performance and capacity targets. In addition, it will present some case studies where biological and physical parameters were used to generate aerobic granular sludge in the continuous flow system.Keywords: densification, aerobic granular sludge, nutrient removal, intensification
Procedia PDF Downloads 186289 Preserving Urban Cultural Heritage with Deep Learning: Color Planning for Japanese Merchant Towns
Authors: Dongqi Li, Yunjia Huang, Tomo Inoue, Kohei Inoue
Abstract:
With urbanization, urban cultural heritage is facing the impact and destruction of modernization and urbanization. Many historical areas are losing their historical information and regional cultural characteristics, so it is necessary to carry out systematic color planning for historical areas in conservation. As an early focus on urban color planning, Japan has a systematic approach to urban color planning. Hence, this paper selects five merchant towns from the category of important traditional building preservation areas in Japan as the subject of this study to explore the color structure and emotion of this type of historic area. First, the image semantic segmentation method identifies the buildings, roads, and landscape environments. Their color data were extracted for color composition and emotion analysis to summarize their common features. Second, the obtained Internet evaluations were extracted by natural language processing for keyword extraction. The correlation analysis of the color structure and keywords provides a valuable reference for conservation decisions for this historic area in the town. This paper also combines the color structure and Internet evaluation results with generative adversarial networks to generate predicted images of color structure improvements and color improvement schemes. The methods and conclusions of this paper can provide new ideas for the digital management of environmental colors in historic districts and provide a valuable reference for the inheritance of local traditional culture.Keywords: historic districts, color planning, semantic segmentation, natural language processing
Procedia PDF Downloads 88288 Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network
Authors: Ziying Wu, Danfeng Yan
Abstract:
Multi-Access Edge Computing (MEC) is one of the key technologies of the future 5G network. By deploying edge computing centers at the edge of wireless access network, the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios. Meanwhile, with the development of IOV (Internet of Vehicles) technology, various delay-sensitive and compute-intensive in-vehicle applications continue to appear. Compared with traditional internet business, these computation tasks have higher processing priority and lower delay requirements. In this paper, we design a 5G-based Vehicle-Aware Multi-Access Edge Computing Network (VAMECN) and propose a joint optimization problem of minimizing total system cost. In view of the problem, a deep reinforcement learning-based joint computation offloading and task migration optimization (JCOTM) algorithm is proposed, considering the influences of multiple factors such as concurrent multiple computation tasks, system computing resources distribution, and network communication bandwidth. And, the mixed integer nonlinear programming problem is described as a Markov Decision Process. Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption, optimize computing offloading and resource allocation schemes, and improve system resource utilization, compared with other computing offloading policies.Keywords: multi-access edge computing, computation offloading, 5th generation, vehicle-aware, deep reinforcement learning, deep q-network
Procedia PDF Downloads 117287 Formulation of Hybrid Nanopowder-Molecular Ink for Fabricating Critical Material-Free Cu₂ZnSnS₄ Thin Film Solar Absorber
Authors: Anies Mutiari, Neha Bansal, Martin Artner, Veronika Mayer, Juergen Roth, Mathias Weil, Rachmat Adhi Wibowo
Abstract:
Cu₂ZnSnS₄ (CZTS) compound (mineral name kesterite) has attracted considerable interests for photovoltaic application owing to its optoelectrical properties. Moreover, its elemental abundance in Earth’s crust offers a comparative advantage for envisaged large-scale photovoltaic deployment without any material shortage issues. In this contribution, we present an innovative route to prepare CZTS solar absorber layer for photovoltaic application from low-cost and up-scalable process. CZTS layers were spin coated on the Molybdenum-coated glass from two inks composed of different solvents; dimethylsulfoxide (DMSO) and ultrapure water. Into each solvent; 0.57M CuCl₂, 0.39M ZnCl₂, 0.53M SnCl₂, and 1.85M Thiourea or Na₂S₂O₃, as well as pre-synthesized CZTS nanopowder, were added as sources of Cu, Zn, Sn and S in the ink. The crystallisation of ink into CZTS dense layers was carried out by firstly annealing the as-deposited CZTS layer in open air at 300°C for 1 minute, followed by sulfurisation at 560–620°C under atmospheric pressure for 120 minutes. Complementary electron microscopy, grazing incidence X-ray diffraction and Raman spectroscopy investigations suggest that both solvents can be used for preparing high quality and device relevant CZTS solar absorber layers. The sulphurisation crystallizes the as-deposited CZTS into highly polycrystalline CZTS layer with tetragonal structure demonstrated by the presence of tetrahedrally-shaped grains with the size of 1 µm. An advancement of the CZTS layer preparation was made by gradual substitution of volatile organic compound solvent of DMSO with ultrapure water. It is revealed that by using similar air annealing and sulphurisation process, dense and compact CZTS layers can also be fabricated from an ink with reduced volatile organic compound content.Keywords: kesterite, solar ink, spin coating, photovoltaics
Procedia PDF Downloads 171286 Study of Evapotranspiration for Pune District
Authors: Ranjeet Sable, Mahotsavi Patil, Aadesh Nimbalkar, Prajakta Palaskar, Ritu Sagar
Abstract:
The exact amount of water used by various crops in different climatic conditions is necessary to step for design, planning, and management of irrigation schemes, water resources, scheduling of irrigation systems. Evaporation and transpiration are combinable called as evapotranspiration. Water loss from trees during photosynthesis is called as transpiration and when water gets converted into gaseous state is called evaporation. For calculation of correct evapotranspiration, we have to choose the method in such way that is should be suitable and require minimum climatic data also it should be applicable for wide range of climatic conditions. In hydrology, there are multiple correlations and regression is generally used to develop relationships between three or more hydrological variables by knowing the dependence between them. This research work includes the study of various methods for calculation of evapotranspiration and selects reasonable and suitable one Pune region (Maharashtra state). As field methods are very costly, time-consuming and not give appropriate results if the suitable climate is not maintained. Observation recorded at Pune metrological stations are used to calculate evapotranspiration with the help of Radiation Method (RAD), Modified Penman Method (MPM), Thornthwaite Method (THW), Blaney-Criddle (BCL), Christiansen Equation (CNM), Hargreaves Method (HGM), from which Hargreaves and Thornthwaite are temperature based methods. Performance of all these methods are compared with Modified Penman method and method which showing less variation with standard Modified Penman method (MPM) is selected as the suitable one. Evapotranspiration values are estimated on a monthly basis. Comparative analysis in this research used for selection for raw data-dependent methods in case of missing data.Keywords: Blaney-Criddle, Christiansen equation evapotranspiration, Hargreaves method, precipitations, Penman method, water use efficiency
Procedia PDF Downloads 271285 Optimizing the Design Parameters of Acoustic Power Transfer Model to Achieve High Power Intensity and Compact System
Authors: Ariba Siddiqui, Amber Khan
Abstract:
The need for bio-implantable devices in the field of medical sciences has been increasing day by day; however, the charging of these devices is a major issue. Batteries, a very common method of powering the implants, have a limited lifetime and bulky nature. Therefore, as a replacement of batteries, acoustic power transfer (APT) technology is being accepted as the most suitable technique to wirelessly power the medical implants in the present scenario. The basic model of APT consists of piezoelectric transducers that work on the principle of converse piezoelectric effect at the transmitting end and direct piezoelectric effect at the receiving end. This paper provides mechanistic insight into the parameters affecting the design and efficient working of acoustic power transfer systems. The optimum design considerations have been presented that will help to compress the size of the device and augment the intensity of the pressure wave. A COMSOL model of the PZT (Lead Zirconate Titanate) transducer was developed. The model was simulated and analyzed on a frequency spectrum. The simulation results displayed that the efficiency of these devices is strongly dependent on the frequency of operation, and a wrong choice of the operating frequency leads to the high absorption of acoustic field inside the tissue (medium), poor power strength, and heavy transducers, which in effect influence the overall configuration of the acoustic systems. Considering all the tradeoffs, the simulations were performed again by determining an optimum frequency (900 kHz) that resulted in the reduction of the transducer's thickness to 1.96 mm and augmented the power strength with an intensity of 432 W/m². Thus, the results obtained after the second simulation contribute to lesser attenuation, lightweight systems, high power intensity, and also comply with safety limits provided by the U.S Food and Drug Administration (FDA). It was also found that the chosen operating frequency enhances the directivity of the acoustic wave at the receiver side.Keywords: acoustic power, bio-implantable, COMSOL, Lead Zirconate Titanate, piezoelectric, transducer
Procedia PDF Downloads 174284 Comparing Energy Labelling of Buildings in Spain
Authors: Carolina Aparicio-Fernández, Alejandro Vilar Abad, Mar Cañada Soriano, Jose-Luis Vivancos
Abstract:
The building sector is responsible for 40% of the total energy consumption in the European Union (EU). Thus, implementation of strategies for quantifying and reducing buildings energy consumption is indispensable for reaching the EU’s carbon neutrality and energy efficiency goals. Each Member State has transposed the European Directives according to its own peculiarities: existing technical legislation, constructive solutions, climatic zones, etc. Therefore, in accordance with the Energy Performance of Buildings Directive, Member States have developed different Energy Performance Certificate schemes, using proposed energy simulation software-tool for each national or regional area. Energy Performance Certificates provide a powerful and comprehensive information to predict, analyze and improve the energy demand of new and existing buildings. Energy simulation software and databases allow a better understanding of the current constructive reality of the European building stock. However, Energy Performance Certificates still have to face several issues to consider them as a reliable and global source of information since different calculation tools are used that do not allow the connection between them. In this document, TRNSYS (TRaNsient System Simulation program) software is used to calculate the energy demand of a building, and it is compared with the energy labeling obtained with Spanish Official software-tools. We demonstrate the possibility of using not official software-tools to calculate the Energy Performance Certificate. Thus, this approach could be used throughout the EU and compare the results in all possible cases proposed by the EU Member States. To implement the simulations, an isolated single-family house with different construction solutions is considered. The results are obtained for every climatic zone of the Spanish Technical Building Code.Keywords: energy demand, energy performance certificate EPBD, trnsys, buildings
Procedia PDF Downloads 126283 Performance Analysis of Pumps-as-Turbine Under Cavitating Conditions
Authors: Calvin Stephen, Biswajit Basu, Aonghus McNabola
Abstract:
Market liberalization in the power sector has led to the emergence of micro-hydropower schemes that are dependent on the use of pumps-as-turbines in applications that were not suitable as potential hydropower sites in earlier years. These applications include energy recovery in water supply networks, sewage systems, irrigation systems, alcohol breweries, underground mining and desalination plants. As a result, there has been an accelerated adoption of pumpsas-turbine technology due to the economic advantages it presents in comparison to the conventional turbines in the micro-hydropower space. The performance of this machines under cavitation conditions, however, is not well understood as there is a deficiency of knowledge in literature focused on their turbine mode of operation. In hydraulic machines, cavitation is a common occurrence which needs to be understood to safeguard them and prolong their operation life. The overall purpose of this study is to investigate the effects of cavitation on the performance of a pumps-as-turbine system over its entire operating range. At various operating speeds, the cavitating region is identified experimentally while monitoring the effects this has on the power produced by the machine. Initial results indicate occurrence of cavitation at higher flow rates for lower operating speeds and at lower flow rates at higher operating speeds. This implies that for cavitation free operation, low speed pumps-as-turbine must be used for low flow rate conditions whereas for sites with higher flow rate conditions high speed turbines should be adopted. Such a complete understanding of pumps-as-turbine suction performance can aid avoid cavitation induced failures hence improved reliability of the micro-hydropower plant.Keywords: cavitation, micro-hydropower, pumps-as-turbine, system design
Procedia PDF Downloads 118282 Disarmament and Rehabilitation of Women Maoists: A Case Study of Chhattisgarh, India
Authors: Pinal Patel
Abstract:
The study defines the problems and issues of women in Maoist groups, also referred as ‘Naxalites’, in Chhattisgarh, India. It analyses the causes and consequences of increasing number of women joining Maoists groups and measures taken by the central and state government to retreat them. The main aspect of the study is, how to counter the challenges to resolve the issues and restore normalcy in the life of women Maoists to resettle them in mainstream once they become physically inactive and wish to become part of the society. The rationale behind this study is that women Maoists once inactive, has no place either with Maoist camps/rebel groups or particularly in society. The problems faced by the women Maoists, in society as well as in Maoists camps, can be studied through social, economic, cultural, political and humanitarian aspects. The methodology of the study is dependent on primary sources of information which includes a research survey in majorly affected areas, statistical analysis. Secondary sources of information are helpful for understanding the background of the problem. Government’s strategy of rewarding with cash and providing resettlement and rehabilitation benefits including houses and jobs to ex-women Maoists and their families is a well formulated and feasible policy and effectively implemented by the concerned authorities. But, the survey results show that the policy has not been able to have impacts as it was intended. Because inactive and physically disabled women are still left deserted in deep forests to die and police or authorities are not able to reach them and bring them back. The difficult terrain and dense forest areas are major hurdles to reach to Maoists camps. Moreover, to make people aware of government’s surrendering and rehabilitation schemes and policies as communication networks are very poor due to the lack of development in the state.Keywords: maoists, women, government, policy
Procedia PDF Downloads 121281 Microstructure Dependent Fatigue Crack Growth in Aluminum Alloy
Authors: M. S. Nandana, K. Udaya Bhat, C. M. Manjunatha
Abstract:
In this study aluminum alloy 7010 was subjected to three different ageing treatments i.e., peak ageing (T6), over-ageing (T7451) and retrogression and re ageing (RRA) to study the influence of precipitate microstructure on the fatigue crack growth rate behavior. The microstructural modification was studied by using transmission electron microscope (TEM) to examine the change in the size and morphology of precipitates in the matrix and on the grain boundaries. The standard compact tension (CT) specimens were fabricated and tested under constant amplitude fatigue crack growth tests to evaluate the influence of heat treatment on the fatigue crack growth rate properties. The tests were performed in a computer-controlled servo-hydraulic test machine applying a load ratio, R = 0.1 at a loading frequency of 10 Hz as per ASTM E647. The fatigue crack growth was measured by adopting compliance technique using a CMOD gauge attached to the CT specimen. The average size of the matrix precipitates were found to be of 16-20 nm in T7451, 5-6 nm in RRA and 2-3 nm in T6 conditions respectively. The grain boundary precipitate which was continuous in T6, was disintegrated in RRA and T7451 condition. The PFZ width was lower in RRA compared to T7451 condition. The crack growth rate was higher in T7451 and lowest in RRA treated alloy. The RRA treated alloy also exhibits an increase in threshold stress intensity factor range (∆Kₜₕ). The ∆Kₜₕ measured was 11.1, 10.3 and 5.7 MPam¹/² in RRA, T6 and T7451 alloys respectively. The fatigue crack growth rate in RRA treated alloy was nearly 2-3 times lower than that in T6 and was one order lower than that observed in T7451 condition. The surface roughness of RRA treated alloy was more pronounced when compared to the other conditions. The reduction in fatigue crack growth rate in RRA alloy was majorly due to the increase in roughness and partially due to increase in spacing between the matrix precipitates. The reduction in crack growth rate and increase in threshold stress intensity range is expected to benefit the damage tolerant capability of aircraft structural components under service loads.Keywords: damage tolerance, fatigue, heat treatment, PFZ, RRA
Procedia PDF Downloads 153280 Review of Strategies for Hybrid Energy Storage Management System in Electric Vehicle Application
Authors: Kayode A. Olaniyi, Adeola A. Ogunleye, Tola M. Osifeko
Abstract:
Electric Vehicles (EV) appear to be gaining increasing patronage as a feasible alternative to Internal Combustion Engine Vehicles (ICEVs) for having low emission and high operation efficiency. The EV energy storage systems are required to handle high energy and power density capacity constrained by limited space, operating temperature, weight and cost. The choice of strategies for energy storage evaluation, monitoring and control remains a challenging task. This paper presents review of various energy storage technologies and recent researches in battery evaluation techniques used in EV applications. It also underscores strategies for the hybrid energy storage management and control schemes for the improvement of EV stability and reliability. The study reveals that despite the advances recorded in battery technologies there is still no cell which possess both the optimum power and energy densities among other requirements, for EV application. However combination of two or more energy storages as hybrid and allowing the advantageous attributes from each device to be utilized is a promising solution. The review also reveals that State-of-Charge (SoC) is the most crucial method for battery estimation. The conventional method of SoC measurement is however questioned in the literature and adaptive algorithms that include all model of disturbances are being proposed. The review further suggests that heuristic-based approach is commonly adopted in the development of strategies for hybrid energy storage system management. The alternative approach which is optimization-based is found to be more accurate but is memory and computational intensive and as such not recommended in most real-time applications.Keywords: battery state estimation, hybrid electric vehicle, hybrid energy storage, state of charge, state of health
Procedia PDF Downloads 242279 Bench-scale Evaluation of Alternative-to-Chlorination Disinfection Technologies for the Treatment of the Maltese Tap-water
Authors: Georgios Psakis, Imren Rahbay, David Spiteri, Jeanice Mallia, Martin Polidano, Vasilis P. Valdramidis
Abstract:
Absence of surface water and progressive groundwater quality deterioration have exacerbated scarcity rapidly, making the Mediterranean island of Malta one of the most water-stressed countries in Europe. Water scarcity challenges have been addressed by reverse osmosis desalination of seawater, 60% of which is blended with groundwater to form the current potable tap-water supply. Chlorination has been the adopted method of water disinfection prior to distribution. However, with the Malteseconsumer chlorine sensory-threshold being as low as 0.34 ppm, presence of chorine residuals and chlorination by-products in the distributed tap-water impacts negatively on its organoleptic attributes, deterring the public from consuming it. As part of the PURILMA initiative, and with the aim of minimizing the impact of chlorine residual on the quality of the distributed water, UV-C, and hydrosonication, have been identified as cost- and energy-effective decontamination alternatives, paving the way for more sustainable water management. Bench-scale assessment of the decontamination efficiency of UV-C (254 nm), revealed 4.7-Log10 inactivation for both Escherichia coli and Enterococcus faecalis at 36 mJ/cm2. At >200 mJ/cm2fluence rates, there was a systematic 2-Log10 difference in the reductions exhibited by E. coli and E. faecalis to suggest that UV-C disinfection was more effective against E. coli. Hybrid treatment schemes involving hydrosonication(at 9.5 and 12.5 dm3/min flow rates with 1-5 MPa maximum pressure) and UV-C showed at least 1.1-fold greater bactericidal activity relative to the individualized UV-C treatments. The observed inactivation appeared to have stemmed from additive effects of the combined treatments, with hydrosonication-generated reactive oxygen species enhancing the biocidal activity of UV-C.Keywords: disinfection, groundwater, hydrosonication, UV-C
Procedia PDF Downloads 172278 Climate Smart Agriculture: Nano Technology in Solar Drying
Authors: Figen Kadirgan, M. A. Neset Kadirgan, Gokcen A. Ciftcioglu
Abstract:
Addressing food security and climate change challenges have to be done in an integrated manner. To increase food production and to reduce emissions intensity, thus contributing to mitigate climate change, food systems have to be more efficient in the use of resources. To ensure food security and adapt to climate change they have to become more resilient. The changes required in agricultural and food systems will require the creation of supporting institutions and enterprises to provide services and inputs to smallholders, fishermen and pastoralists, and transform and commercialize their production more efficiently. Thus there is continously growing need to switch to green economy where simultaneously causes reduction in carbon emissions and pollution, enhances energy and resource-use efficiency; and prevents the loss of biodiversity and ecosystem services. Smart Agriculture takes into account the four dimensions of food security, availability, accessibility, utilization, and stability. It is well known that, the increase in world population will strengthen the population-food imbalance. The emphasis on reduction of food losses makes a point on production, on farmers, on increasing productivity and income ensuring food security. Where also small farmers enhance their income and stabilize their budget. The use of solar drying for agricultural, marine or meat products is very important for preservation. Traditional sun drying is a relatively slow process where poor food quality is seen due to an infestation of insects, enzymatic reactions, microorganism growth and micotoxin development. In contrast, solar drying has a sound solution to all these negative effects of natural drying and artificial mechanical drying. The technical directions in the development of solar drying systems for agricultural products are compact collector design with high efficiency and low cost. In this study, using solar selective surface produced in Selektif Teknoloji Co. Inc. Ltd., solar dryers with high efficiency will be developed and a feasibility study will be realized.Keywords: energy, renewable energy, solar collector, solar drying
Procedia PDF Downloads 224277 Multi-Impairment Compensation Based Deep Neural Networks for 16-QAM Coherent Optical Orthogonal Frequency Division Multiplexing System
Authors: Ying Han, Yuanxiang Chen, Yongtao Huang, Jia Fu, Kaile Li, Shangjing Lin, Jianguo Yu
Abstract:
In long-haul and high-speed optical transmission system, the orthogonal frequency division multiplexing (OFDM) signal suffers various linear and non-linear impairments. In recent years, researchers have proposed compensation schemes for specific impairment, and the effects are remarkable. However, different impairment compensation algorithms have caused an increase in transmission delay. With the widespread application of deep neural networks (DNN) in communication, multi-impairment compensation based on DNN will be a promising scheme. In this paper, we propose and apply DNN to compensate multi-impairment of 16-QAM coherent optical OFDM signal, thereby improving the performance of the transmission system. The trained DNN models are applied in the offline digital signal processing (DSP) module of the transmission system. The models can optimize the constellation mapping signals at the transmitter and compensate multi-impairment of the OFDM decoded signal at the receiver. Furthermore, the models reduce the peak to average power ratio (PAPR) of the transmitted OFDM signal and the bit error rate (BER) of the received signal. We verify the effectiveness of the proposed scheme for 16-QAM Coherent Optical OFDM signal and demonstrate and analyze transmission performance in different transmission scenarios. The experimental results show that the PAPR and BER of the transmission system are significantly reduced after using the trained DNN. It shows that the DNN with specific loss function and network structure can optimize the transmitted signal and learn the channel feature and compensate for multi-impairment in fiber transmission effectively.Keywords: coherent optical OFDM, deep neural network, multi-impairment compensation, optical transmission
Procedia PDF Downloads 143