Search results for: biological wastewater treatment plant
5067 Full Length Transcriptome Sequencing and Differential Expression Gene Analysis of Hybrid Larch under PEG Stress
Authors: Zhang Lei, Zhao Qingrong, Wang Chen, Zhang Sufang, Zhang Hanguo
Abstract:
Larch is the main afforestation and timber tree species in Northeast China, and drought is one of the main factors limiting the growth of Larch and other organisms in Northeast China. In order to further explore the mechanism of Larch drought resistance, PEG was used to simulate drought stress. The full-length sequencing of Larch embryogenic callus under PEG simulated drought stress was carried out by combining Illumina-Hiseq and SMRT-seq. A total of 20.3Gb clean reads and 786492 CCS reads were obtained from the second and third generation sequencing. The de-redundant transcript sequences were predicted by lncRNA, 2083 lncRNAs were obtained, and the target genes were predicted, and a total of 2712 target genes were obtained. The de-redundant transcripts were further screened, and 1654 differentially expressed genes (DEGs )were obtained. Among them, different DEGs respond to drought stress in different ways, such as oxidation-reduction process, starch and sucrose metabolism, plant hormone pathway, carbon metabolism, lignin catabolic/biosynthetic process and so on. This study provides basic full-length sequencing data for the study of Larch drought resistance, and excavates a large number of DEGs in response to drought stress, which helps us to further understand the function of Larch drought resistance genes and provides a reference for in-depth analysis of the molecular mechanism of Larch drought resistance.Keywords: larch, drought stress, full-length transcriptome sequencing, differentially expressed genes
Procedia PDF Downloads 1725066 Effects of a School-Based Mindfulness Intervention on Stress and Emotions on Students Enrolled in an Independent School
Authors: Tracie Catlett
Abstract:
Students enrolled in high-achieving schools are under tremendous pressure to perform at high levels inside and outside the classroom. Achievement pressure is a prevalent source of stress for students enrolled in high-achieving schools, and female students in particular experience a higher frequency and higher levels of stress compared to their male peers. The practice of mindfulness in a school setting is one tool that has been linked to improved self-regulation of emotions, increased positive emotions, and stress reduction. A mixed methods randomized pretest-posttest no-treatment control trial, evaluated the effects of a six-session mindfulness intervention taught during a regularly scheduled life skills period in an independent day school, one type of high-achieving school. Twenty-nine students in Grades 10 and 11 were randomized by class where Grade 11 students were in the intervention group (n = 14) and Grade 10 students were in the control group (n = 15). Findings from the study produced mixed results. There was no evidence that the mindfulness program reduced participants’ stress levels and negative emotions. In fact, contrary to what was expected, students enrolled in the intervention group experienced higher levels of stress and increased negative emotions at posttreatment when compared to pretreatment. Neither the within-group nor the between-groups changes in stress level were statistically significant, p > .05, and the between-groups effect size was small, d = .2. The study found evidence that the mindfulness program may have had a positive impact on students’ ability to regulate their emotions. The within-group comparison and the between-groups comparison at posttreatment found that students in the mindfulness course experienced statistically significant improvement in the in their ability to regulate their emotions at posttreatment, p = .009 < .05 and p =. 034 < .05, respectively. The between-groups effect size was medium, d =.7, suggesting that the positive differences in emotion regulation difficulties were substantial and have practical implications. The analysis of gender differences as they relate to stress and emotions revealed that female students perceive higher levels of stress and report experiencing stress more often than males. There were no gender differences when analyzing sources of stress experienced by the student participants. Both females and males experience regular achievement pressures related to their school performance and worry about their future, college acceptance, grades, and parental expectations. Females reported an increased awareness of their stress and actively engaged in practicing mindfulness to manage their stress. Students in the treatment group expressed that the practice of mindfulness resulted in feelings of relaxation and calmness.Keywords: achievement pressure, adolescents, emotion regulation, emotions, high-achieving schools, independent schools, mindfulness, negative affect, positive affect, stress
Procedia PDF Downloads 715065 Environmental Effect on Corrosion Fatigue Behaviors of Steam Generator Forging in Simulated Pressurized Water Reactor Environment
Authors: Yakui Bai, Chen Sun, Ke Wang
Abstract:
An experimental investigation of environmental effect on fatigue behavior in SA508 Gr.3 Cl.2 Steam Generator Forging CAP1400 nuclear power plant has been carried out. In order to simulate actual loading condition, a range of strain amplitude was applied in different low cycle fatigue (LCF) tests. The current American Society of Mechanical Engineers (ASME) design fatigue code does not take full account of the interactions of environmental, loading, and material's factors. A range of strain amplitude was applied in different low cycle fatigue (LCF) tests at a strain rate of 0.01%s⁻¹. A design fatigue model was constructed by taking environmentally assisted fatigue effects into account, and the corresponding design curves were given for the convenience of engineering applications. The corrosion fatigue experiment was performed in a strain control mode in 320℃ borated and lithiated water environment to evaluate the effects of a mixed environment on fatigue life. Stress corrosion cracking (SCC) in steam generator large forging in primary water of pressurized water reactor was also observed. In addition, it is found that the CF life of SA508 Gr.3 Cl.2 decreases with increasing temperature in the water environment. The relationship between the reciprocal of temperature and the logarithm of fatigue life was found to be linear. Through experiments and subsequent analysis, the mechanisms of reduced low cycle fatigue life have been investigated for steam generator forging.Keywords: failure behavior, low alloy steel, steam generator forging, stress corrosion cracking
Procedia PDF Downloads 1255064 Ultrasonography of Low Extremities Veins Before and After Replacement of Knee Joint by Endoprosthesis
Authors: A. V. Alabut, V. D. Sikilinda, N. J. Nelasov, O. L. Eroshenko, M. N. Morgunov, I. V. Koroleva
Abstract:
We have analyzed the results of treatment of 204 patients with knee prosthetic arthroplasty. For the purpose of active delineation of vascular pathology triplex sonography of arterial and venous vessels of low extremities was performed in all cases in the preoperative period. When it was necessary, reconstructive vascular surgery was implemented to improve peripheral circulation and reduce the hazard of thrombosis after knee replacement. The combination of specific and nonspecific methods of thromboprophylaxis was used in perioperative period. On 7-10 day and 2.5-3 month after prosthetic arthroplasty, all patients iteratively underwent triple sonography. In case of detection of floating thrombus, urgent venous ligation was performed. Active diagnostics of venous thrombosis gave the opportunity to avoid fatal pulmonary embolism.Keywords: knee replacement, venous thrombosis, pulmonary embolism, vascular surgery
Procedia PDF Downloads 3695063 Effect of Three Drying Methods on Antioxidant Efficiency and Vitamin C Content of Moringa oleifera Leaf Extract
Authors: Kenia Martínez, Geniel Talavera, Juan Alonso
Abstract:
Moringa oleifera is a plant containing many nutrients that are mostly concentrated within the leaves. Commonly, the separation process of these nutrients involves solid-liquid extraction followed by evaporation and drying to obtain a concentrated extract, which is rich in proteins, vitamins, carbohydrates, and other essential nutrients that can be used in the food industry. In this work, three drying methods were used, which involved very different temperature and pressure conditions, to evaluate the effect of each method on the vitamin C content and the antioxidant efficiency of the extracts. Solid-liquid extractions of Moringa leaf (LE) were carried out by employing an ethanol solution (35% v/v) at 50 °C for 2 hours. The resulting extracts were then dried i) in a convective oven (CO) at 100 °C and at an atmospheric pressure of 750 mbar for 8 hours, ii) in a vacuum evaporator (VE) at 50 °C and at 300 mbar for 2 hours, and iii) in a freeze-drier (FD) at -40 °C and at 0.050 mbar for 36 hours. The antioxidant capacity (EC50, mg solids/g DPPH) of the dry solids was calculated by the free radical inhibition method employing DPPH˙ at 517 nm, resulting in a value of 2902.5 ± 14.8 for LE, 3433.1 ± 85.2 for FD, 3980.1 ± 37.2 for VE, and 8123.5 ± 263.3 for CO. The calculated antioxidant efficiency (AE, g DPPH/(mg solids·min)) was 2.920 × 10-5 for LE, 2.884 × 10-5 for FD, 2.512 × 10-5 for VE, and 1.009 × 10-5 for CO. Further, the content of vitamin C (mg/L) determined by HPLC was 59.0 ± 0.3 for LE, 49.7 ± 0.6 for FD, 45.0 ± 0.4 for VE, and 23.6 ± 0.7 for CO. The results indicate that the convective drying preserves vitamin C and antioxidant efficiency to 40% and 34% of the initial value, respectively, while vacuum drying to 76% and 86%, and freeze-drying to 84% and 98%, respectively.Keywords: antioxidant efficiency, convective drying, freeze-drying, Moringa oleifera, vacuum drying, vitamin C content
Procedia PDF Downloads 2695062 Influence of Argon Gas Concentration in N2-Ar Plasma for the Nitridation of Si in Abnormal Glow Discharge
Authors: K. Abbas, R. Ahmad, I. A. Khan, S. Saleem, U. Ikhlaq
Abstract:
Nitriding of p-type Si samples by pulsed DC glow discharge is carried out for different Ar concentrations (30% to 90%) in nitrogen-argon plasma whereas the other parameters like pressure (2 mbar), treatment time (4 hr) and power (175 W) are kept constant. The phase identification, crystal structure, crystallinity, chemical composition, surface morphology and topography of the nitrided layer are studied using X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), optical microscopy (OM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) respectively. The XRD patterns reveal the development of different diffraction planes of Si3N4 confirming the formation of polycrystalline layer. FTIR spectrum confirms the formation of bond between Si and N. Results reveal that addition of Ar into N2 plasma plays an important role to enhance the production of active species which facilitate the nitrogen diffusion.Keywords: crystallinity, glow discharge, nitriding, sputtering
Procedia PDF Downloads 4195061 Investigation of Type and Concentration Effects of Solvent on Chemical Properties of Saffron Edible Extract
Authors: Sharareh Mohseni
Abstract:
Purpose: The objective of this study was to find a suitable solvent to produce saffron edible extract with improved chemical properties. Design/methodology/approach: Dried and pulverized stigmas of C. sativus L. (10g) was extracted with 300 ml of solvents including: distillated water (DW), ethanol/DW, methanol/DW, propylene glycol/DW, heptan/DW, and hexan/DW, for 3 days at 25°C and then centrifuged at 3000 rpm. Then the extracts were evaporated using rotary evaporator at 40°C. The fiber and solvent-free extracts were then analyzed by UV spectrophotometer to detect saffron quality parameters including crocin, picrocrocin and safranal. Findings: Distilled water/ethanol mixture as the extraction solvent, caused larger amounts of the plant constituents to diffuse out to the extract compared to other treatments and also control. Polar solvents including distilled water, ethanol, and propylene glycol (except methanol) were more effective in extracting crocin, picrocrocin, and saffranal than non-polar solvents. Social implications: Due to an enhancement of color and flavor, saffron extract is economical compared to natural saffron. Saffron Extract saves on preparation time and reduces the amount of saffron required for imparting the same flavor, as compared to dry saffron. Liquid extract is easier to use and standardize in food preparations compared to dry stamens and can be dosed precisely compared to natural saffron. Originality/value: No research had been done on production of saffron edible extract using the solvent studied in this survey. The novelty of this research is high and the results can be used industrially.Keywords: Crocus sativus L., saffron extract, solvent extraction, distilled water
Procedia PDF Downloads 4485060 Ecological Studies on Bulinus truncatus Snail the Intermediate Host of Schistosoma haematobium, in White Nile State, Sudan
Authors: Mohammed Hussein Eltoum Salih
Abstract:
This study was conducted in four villages, namely: Jadeed, Alandraba, Um Gaar, and EL Shetabe in the White Nile State Sudan, to determine the ecological factors; water vegetations, physical and chemical properties of the water in Snails habitat. Bulinus truncatus, which act as an intermediate host for S. haematobium, were collected from water bodies adjacent to study villages where the residents were suspected to swim, and humans get in contact with water for various purposes. Water samples from the stretches were collected and then measured for parameters that are indicative of the quality of water and sustaining the survival of snails and would confirm even further if the contact between humans and water had taken place. The parameters measured included water conductivity, pH, dissolved oxygen, calcium, and magnesium content. Also, a single water sample from each contact site was collected for microbiological tests. The result revealed that the B. truncatus showed that these animals were fewer and free of infection and their sites of the collection were dense with different plant species making them suitable to harbor snails. Moreover, the results of microbial tests showed that there was higher bacterial contamination. Also, physical and chemical analysis of water sample of contact sites revealed that there were significant differences (p < 0.05) in water pH, calcium, and magnesium content between sites of study villages, and these were discussed in relation to factors suitable for the intermediate hosts and thus for the transmission of the S. haematobium disease.Keywords: health, parasitology, Schistosoma, snails
Procedia PDF Downloads 1475059 Secondary Metabolites from Turkish Marine-Derived Fungi Hypocrea nigricans
Authors: H. Heydari, B. Konuklugil, P. Proksch
Abstract:
Marine-derived fungi can produce interesting bioactive secondary metabolites that can be considered the potential for drug development. Turkey is a country of a peninsula surrounded by the Black Sea at the north, the Aegean Sea at the west, and the Mediterranean Sea at the south. Despite the approximately 8400 km of coastline, studies on marine secondary metabolites and their biological activity are limited. In our ongoing search for new natural products with different bioactivities produced by the marine-derived fungi, we have investigated secondary metabolites of Turkish collection of the marine sea slug (Peltodoris atromaculata) associated fungi Hypocrea nigricans collected from Seferihisar in the Egean sea. According to the author’s best knowledge, no study was found on this fungal species in terms of secondary metabolites. Isolated from ethyl acetate extract of the culture of Hypocrea nigricans were (isodihydroauroglaucin,tetrahydroauroglaucin and dihydroauroglaucin. The structures of the compounds were established based on an NMR and MS analysis. Structural elucidation of another isolated secondary metabolite/s continues.Keywords: Hypocrea nigricans, isolation, marine fungi, secondary metabolites
Procedia PDF Downloads 1625058 Amino Acid Based Biodegradable Amphiphilic Polymers and Micelles as Drug Delivery Systems: Synthesis and Study
Authors: Sophio Kobauri, Vladimir P. Torchilin, David Tugushi, Ramaz Katsarava
Abstract:
Nanotherapy is an actual newest mode of treatment numerous diseases using nanoparticles (NPs) loading with different pharmaceuticals. NPs of biodegradable polymeric micelles (PMs) are gaining increased attention for their numerous and attractive abilities to be used in a variety of applications in the various fields of medicine. The present paper deals with the synthesis of a class of biodegradable micelle-forming polymers, namely ABA triblock-copolymer in which A-blocks represent amino-poly(ethylene glycol) (H2N-PEG) and B-block is biodegradable amino acid-based poly(ester amide) constituted of α-amino acid – L-phenylalanine. The obtained copolymer formed micelles of 70±4 nm size at 10 mg/mL concentration.Keywords: amino acids, biodegradable poly (ester amide), amphiphilic triblock-copolymer, micelles
Procedia PDF Downloads 1915057 The Comparison of Chromium Ions Release for Stainless Steel between Artificial Saliva and Breadfruit Leaf Extracts
Authors: Mirna Febriani
Abstract:
The use of stainless steel wires in the field of dentistry is widely used, especially for orthodontic and prosthodontic treatment using stainless steel wire. The oral cavity is the ideal environment for corrosion, which can be caused by saliva. Prevention of corrosion on stainless steel wires can be done by using an organic or non-organic corrosion inhibitor. One of the organic inhibitors that can be used to prevent corrosion is the leaves of breadfruit. The method used for this research using Atomic Absorption Spectrophotometric test. The results showed that the difference of chromium ion releases on soaking in saliva and breadfruit leaf extracts on days 1, 3, 7 and 14. Statically calculation with independent T-test with p < 0,05 showed the significant difference. The conclusion of this study shows that breadfruit leaf extract can inhibit the corrosion rate of stainless steel wires.Keywords: chromium ion, stainless steel, artificial saliva, breadfruit leaf
Procedia PDF Downloads 1695056 Bioremediation Effect on Shear Strength of Contaminated Soils
Authors: Samira Abbaspour
Abstract:
Soil contamination by oil industry is unavoidable issue; irrespective of environmental impact, which occurs during the process of soil contaminating and remediating. Effect of this phenomenon on the geotechnical properties of the soil has not been investigated thoroughly. Some researchers studied the environmental aspects of these phenomena more than geotechnical point of view. In this research, compaction and unconfined compression tests were conducted on samples of natural, contaminated and treated soil after 50 days of bio-treatment. The results manifest that increasing the amount of crude oil, leads to decreased values of maximum dry density and optimum water content and increased values of unconfined compression strength (UCS). However, almost 65% of this contamination terminated by using a Bioremer as a bioremediation agent. Foremost, as bioremediation takes place, values of maximum dry density, unconfined compression strength and failure strain increase.Keywords: contamination, shear strength, compaction, oil contamination
Procedia PDF Downloads 1845055 Co-Existence of Central Serous Retinopathy and Diabetic Retinopathy: A Diagnostic Dilemma
Authors: Avantika Verma
Abstract:
Diabetic retinopathy (DR) and Central serous retinopathy (CSR) are 2 distinct entities, with difference in age of presentation, eitiopathogenesis and clinical features, but when occurring together, can be a diagnostic dilemma and requires careful evaluation. Case study of 3 patients with long standing diabetes (>15yrs) and features of Central serous retinopathy was done at Bangalore West Lions Superspeciality Eye Hospital, Bangalore, India in 2013. Even though diabetic retinopathy and CSR have different pathologies, they can coexist. The reason for coexistence could be the following: A patient with CSR as a young adult could develop DR in later years. Stress could be the contributing factor in older patient with diabetes.Stress could be a common factor for both, as it is one of the important factors in the pathogenesis of Maturity Onset Diabetes Miletus (MODY). In any situation, a careful evaluation is necessary to differentiate the cause of fundus picture, as treatment differs for the two diseases.Keywords: central serous retinopathy, diabetic retinopathy, existence, stress
Procedia PDF Downloads 2285054 Molecular Timeline Analysis of Acropora: Review of Coral Development, Growth and Environmental Resilience
Authors: Ariadna Jalife Gómez, Claudia Rangel Escareño
Abstract:
The Acropora coral genus has experienced impactful consequences of climate change, especially in terms of population reduction related to limited thermal tolerance, however, comprehensive resources for genetic responses of these corals to phenomena are lacking. Thus, this study aims to identify key genes expressed across different developmental stages and conditions of Acropora spp. highlighted in published studies given the shared tissue and polyp-level characteristics among the species comprising the genus, as it is hypothesized that common reproductive, developmental, and stress response mechanisms are conserved. The presented resources, aiming to streamline the genus’ biology, elucidate several signaling pathways of development and stress response that contribute to the understanding of researchers of overall biological responses, while providing a genetic framework for potential further studies that might contribute to reef preservation strategies.Keywords: acropora, development, genes, transcriptomics
Procedia PDF Downloads 105053 A Source Point Distribution Scheme for Wave-Body Interaction Problem
Authors: Aichun Feng, Zhi-Min Chen, Jing Tang Xing
Abstract:
A two-dimensional linear wave-body interaction problem can be solved using a desingularized integral method by placing free surface Rankine sources over calm water surface and satisfying boundary conditions at prescribed collocation points on the calm water surface. A new free-surface Rankine source distribution scheme, determined by the intersection points of free surface and body surface, is developed to reduce numerical computation cost. Associated with this, a new treatment is given to the intersection point. The present scheme results are in good agreement with traditional numerical results and measurements.Keywords: source point distribution, panel method, Rankine source, desingularized algorithm
Procedia PDF Downloads 3655052 Efficiency of Modified Granular Activated Carbon Coupled with Membrane Bioreactor for Trace Organic Contaminants Removal
Authors: Mousaab Alrhmoun, Magali Casellas, Michel Baudu, Christophe Dagot
Abstract:
The aim of the study is to improve removal of trace organic contaminants dissolved in activated sludge by the process of filtration with membrane bioreactor combined with modified activated carbon, for a maximum removal of organic compounds characterized by low molecular weight. Special treatment was conducted in laboratory on activated carbon. Tow reaction parameters: The pH of aqueous middle and the type of granular activated carbon were very important to improve the removal and to motivate the electrostatic Interactions of organic compounds with modified activated carbon in addition to physical adsorption, ligand exchange or complexation on the surface activated carbon. The results indicate that modified activated carbon has a strong impact in removal 21 of organic contaminants and in percentage of 100% of the process.Keywords: activated carbon, organic micropolluants, membrane bioreactor, carbon
Procedia PDF Downloads 3235051 Structure and Properties of Intermetallic NiAl-Based Coatings Produced by Magnetron Sputtering Technique
Authors: Tatiana S. Ogneva
Abstract:
Aluminum and nickel-based intermetallic compounds have attracted the attention of scientific community as promising materials for heat-resistant and wear-resistant coatings in such manufacturing areas as microelectronics, aircraft and rocket building and chemical industries. Magnetron sputtering makes possible to coat materials without formation of liquid phase and improves the mechanical and functional properties of nickel aluminides due to the possibility of nanoscale structure formation. The purpose of the study is the investigation of structure and properties of intermetallic coatings produced by magnetron sputtering technique. The feature of this work is the using of composite targets for sputtering, which were consisted of two semicircular sectors of cp-Ni and cp-Al. Plates of alumina, silicon, titanium and steel alloys were used as substrates. To estimate sputtering conditions on structure of intermetallic coatings, a series of samples were produced and studied in detail using scanning and transition electron microcopy and X-Ray diffraction. Besides, nanohardness and scratching tests were carried out. The varying parameters were the distance from the substrate to the target, the duration and the power of the sputtering. The thickness of the obtained intermetallic coatings varied from 0.05 to 0.5 mm depending on the sputtering conditions. The X-ray diffraction data indicated that the formation of intermetallic compounds occurred after sputtering without additional heat treatment. Sputtering at a distance not closer than 120 mm led to the formation of NiAl phase. Increase in the power of magnetron from 300 to 900 W promoted the increase of heterogeneity of the phase composition and the appearance of intermetallic phases NiAl, Ni₂Al₃, NiAl₃, and Al under the aluminum side, and NiAl, Ni₃Al, and Ni under the nickel side of the target. A similar trend is observed with increasing the distance of sputtering from 100 to 60 mm. The change in the phase composition correlates with the changing of the atomic composition of the coatings. Scanning electron microscopy revealed that the coatings have a nanoscale grain structure. In this case, the substrate material and the distance from the substrate to the magnetron have a significant effect on the structure formation process. The size of nanograins differs from 10 to 83 nm and depends not only on the sputtering modes but also on material of a substrate. Nanostructure of the material influences the level of mechanical properties. The highest level of nanohardness of the coatings deposited during 30 minutes on metallic substrates at a distance of 100 mm reached 12 GPa. It was shown that nanohardness depends on the grain size of the intermetallic compound. Scratching tests of the coatings showed a high level of adhesion of the coating to substrate without any delamination and cracking. The results of the study showed that magnetron sputtering of composite targets consisting of nickel and aluminum semicircles makes it possible to form intermetallic coatings with good mechanical properties directly in the process of sputtering without additional heat treatment.Keywords: intermetallic coatings, magnetron sputtering, mechanical properties, structure
Procedia PDF Downloads 1215050 The Impact of Using Microlearning to Enhance Students' Programming Skills and Learning Motivation
Authors: Ali Alqarni
Abstract:
This study aims to explore the impact of microlearning on the development of the programming skills as well as on the motivation for learning of first-year high schoolers in Jeddah. The sample consists of 78 students, distributed as 40 students in the control group, and 38 students in the treatment group. The quasi-experimental method, which is a type of quantitative method, was used in this study. In addition to the technological tools used to create and deliver the digital content, the study utilized two tools to collect the data: first, an observation card containing a list of programming skills, and second, a tool to measure the student's motivation for learning. The findings indicate that microlearning positively impacts programming skills and learning motivation for students. The study, then, recommends implementing and expanding the use of microlearning in educational contexts both in the general education level and the higher education level.Keywords: educational technology, teaching strategies, online learning, microlearning
Procedia PDF Downloads 1285049 Design and Performance Evaluation of Plasma Spouted Bed Reactor for Converting Waste Plastic into Green Hydrogen
Authors: Palash Kumar Mollick, Leire Olazar, Laura Santamaria, Pablo Comendador, Gartzen Lopez, Martin Olazar
Abstract:
Average calorific value of a mixure of waste plastic is approximately 38 MJ/kg. Present work aims to extract maximum possible energy from a mixure of waste plastic using a DC thermal plasma in a spouted bed reactor. Plasma pyrolysis and steam reforming process has shown a potential to generate hydrogen from plastic with much below of legal limit of producing dioxins and furans as the carcinogenic gases. A spouted bed pyrolysis rector can continuously process plastic beads to produce organic volatiles, which later react with steam in presence of catalyst to results in syngas. lasma being the fourth state of matter, can carry high impact electrons to favour the activation energy of any chemical reactions. Computational Fluid Dynamic (CFD) simulation using COMSOL Multiphysics software has been performed to evaluate performance of a plasma spouted bed reactor in producing contamination free hydrogen as a green energy from waste plastic beads. The simulation results will showcase a design of a plasma spouted bed reactor for converting plastic waste into green hydrogen in a single step process. The high temperature hydrodynamics of spouted bed with plastic beads and the corresponding temperature distribution inside the reaction chamber will be critically examined for it’s near future installation of demonstration plant.Keywords: green hydrogen, plastic waste, synthetic gas, pyrolysis, steam reforming, spouted bed, reactor design, plasma, dc palsma, cfd simulation
Procedia PDF Downloads 1145048 Effect of Fermentation Time on Some Functional Properties of Moringa (Moringa oleifera) Seed Flour
Authors: Ocheme B. Ocheme, Omobolanle O. Oloyede, S. James, Eleojo V. Akpa
Abstract:
The effect of fermentation time on some functional properties of Moringa (Moringa oleifera) seed flour was examined. Fermentation, an effective processing method used to improve nutritional quality of plant foods, tends to affect the characteristics of food components and their behaviour in food systems just like other processing methods. Hence the need for this study. Moringa seeds were fermented naturally by soaking in potable water and allowing it to stand for 12, 24, 48 and 72 hours. At the end of fermentation, the seeds were oven dried at 600C for 12 hours and then milled into flour. Flour obtained from unfermented seeds served as control: hence a total of five flour samples. The functional properties were analyzed using standard methods. Fermentation significantly (p<0.05) increased the water holding capacity of Moringa seed flour from 0.86g/g - 2.31g/g. The highest value was observed after 48 hours of fermentation The same trend was observed for oil absorption capacity with values between 0.87 and 1.91g/g. Flour from unfermented Moringa seeds had a bulk density of 0.60g/cm3 which was significantly (p<0.05) higher than the bulk densities of flours from seeds fermented for 12, 24 and 48. Fermentation significantly (p<0.05) decreased the dispersibility of Moringa seed flours from 36% to 21, 24, 29 and 20% after 12, 24, 48 and 72 hours of fermentation respectively. The flours’ emulsifying capacities increased significantly (p<0.05) with increasing fermentation time with values between 50 – 68%. The flour obtained from seeds fermented for 12 hours had a significantly (p<0.05) higher foaming capacity of 16% while the flour obtained from seeds fermented for 0, 24 and 72 hours had the least foaming capacities of 9%. Flours from seeds fermented for 12 and 48 hours had better functional properties than flours from seeds fermented for 24 and 72 hours.Keywords: fermentation, flour, functional properties, Moringa
Procedia PDF Downloads 6885047 Study of Mechanical Properties of Glutarylated Jute Fiber Reinforced Epoxy Composites
Authors: V. Manush Nandan, K. Lokdeep, R. Vimal, K. Hari Hara Subramanyan, C. Aswin, V. Logeswaran
Abstract:
Natural fibers have attained the potential market in the composite industry because of the huge environmental impact caused by synthetic fibers. Among the natural fibers, jute fibers are the most abundant plant fibers which are manufactured mainly in countries like India. Even though there is a good motive to utilize the natural supplement, the strength of the natural fiber composites is still a topic of discussion. In recent days, many researchers are showing interest in the chemical modification of the natural fibers to increase various mechanical and thermal properties. In the present study, jute fibers have been modified chemically using glutaric anhydride at different concentrations of 5%, 10%, 20%, and 30%. The glutaric anhydride solution is prepared by dissolving the different quantity of glutaric anhydride in benzene and dimethyl-sulfoxide using sodium formate catalyst. The jute fiber mats have been treated by the method of retting at various time intervals of 3, 6, 12, 24, and 36 hours. The modification structure of the treated fibers has been confirmed with infrared spectroscopy. The degree of modification increases with an increase in retention time, but higher retention time has damaged the fiber structure. The unmodified fibers and glutarylated fibers at different retention times are reinforced with epoxy matrix under room temperature. The tensile strength and flexural strength of the composites are analyzed in detail. Among these, the composite made with glutarylated fiber has shown good mechanical properties when compared to those made of unmodified fiber.Keywords: flexural properties, glutarylation, glutaric anhydride, tensile properties
Procedia PDF Downloads 1925046 The Sawdust Cultivation of Lentinula edodes with Broussonetia kazinoki
Authors: Yeun Sug Jeong, Yeongseon Jang, Rhim Ryoo, Donha Choi, Sung-Suk Lee, Kang-Hyeon Ka
Abstract:
Broussonetia kazinoki (paper mulberry) is a plant native to Asia, and it grows at the foot of a mountain. Its bark is used as a raw material of Hanji, traditional Korean paper, and fruit is used as a medicinal material. However, inside the bark (woody part) is not used and discarded. We tried to use it for Lentinula edodes (oak mushroom) cultivation. It is commonly cultivated using oak trees and sawdust, but it could be grown with other trees. The woody part of paper mulberry was ground and mixed with oak sawdust by five different ratios. The 1.2 kg cylindrical bag media were prepared and water contents were adjusted to 65%. The media were autoclaved at 100℃ for 60 min and 121℃ for 90 min. Two strains of oak mushroom, NIFoS 2462 and NIFoS 2778 were inoculated and cultivated for 90 days in dark condition, and 40 days in light condition. Compared to the control, the mycelial growth period was long and the hardness of the media was low when paper mulberry sawdust was added. After incubation period, fruiting was stimulated at 18℃ and more than 85% humidity. After each flush, there was a resting period of 2 weeks. In the first flush, mushrooms were small, and a lot of small mushrooms were harvested. On the other hand, no mushrooms of 5 g or less were harvested in the secondary flush. The highest productivity was obtained in a 3:1 ratio of paper mulberry and oak sawdust. The size of NIFoS 2778 was uniform in each condition. On the other hand, NIFoS 2462 had smaller mushrooms in the media containing paper mulberry sawdust, but the appearance was not significantly different. This study showed that paper mulberry wood could be used to grow oak mushrooms and some oak sawdust could be substituted.Keywords: Broussonetia kazinoki, cultivation, Lentinula edodes, oak mushroom
Procedia PDF Downloads 2195045 Exogenous Application of Silicon through the Rooting Medium Modulate Growth, Ion Uptake, and Antioxidant Activity of Barley (Hordeum vulgare L.) Under Salt Stress
Authors: Sibgha Noreen, Muhammad Salim Akhter, Seema Mahmood
Abstract:
Salt stress is an abiotic stress that causes a heavy toll on growth and development and also reduces the productivity of arable and horticultural crops. Globally, a quarter of total arable land has fallen prey to this menace, and more is being encroached because of the usage of brackish water for irrigation purposes. Though barley is categorized as salt-tolerant crop, but cultivars show a wide genetic variability in response to it. In addressing salt stress, silicon nutrition would be a facile tool for enhancing salt tolerant to sustain crop production. A greenhouse study was conducted to evaluate the response of barley (Hordeum vulgare L.) cultivars to silicon nutrition under salt stress. The treatments included [(a) four barley cultivars (Jou-87, B-14002, B-14011, B-10008); (b) two salt levels (0, 200 mM, NaCl); and (c) two silicon levels (0, 200ppm, K2SiO3. nH2O), arranged in a factorial experiment in a completely randomized design with 16 treatments and repeated 4 times. Plants were harvested at 15 days after exposure to different experimental salinity and silicon foliar conditions. Results revealed that various physiological and biochemical attributes differed significantly (p<0.05) in response to different treatments and their interactive effects. Cultivar “B-10008” excelled in biological yield, chlorophyll constituents, antioxidant enzymes, and grain yield compared to other cultivars. The biological yield of shoot and root organs was reduced by 27.3 and 26.5 percent under salt stress, while it was increased by 14.5 and 18.5 percent by exogenous application of silicon over untreated check, respectively. The imposition of salt stress at 200 mM caused a reduction in total chlorophyll content, chl ‘a’ , ‘b’ and ratio a/b by 10.6,16.8,17.1 and 7.1, while spray of 200 ppm silicon improved the quantum of the constituents by 10.4,12.1,10.2,10.3 over untreated check, respectively. The quantum of free amino acids and protein content was enhanced in response to salt stress and the spray of silicon nutrients. The amounts of superoxide dismutase, catalases, peroxidases, hydrogen peroxide, and malondialdehyde contents rose to 18.1, 25.7, 28.1, 29.5, and 17.6 percent over non-saline conditions under salt stress. However, the values of these antioxidants were reduced in proportion to salt stress by 200 ppm silicon applied as rooting medium on barley crops. The salt stress caused a reduction in the number of tillers, number of grains per spike, and 100-grain weight to the amount of 29.4, 8.6, and 15.8 percent; however, these parameters were improved by 7.1, 10.3, and 9.6 percent by foliar spray of silicon over untreated crop, respectively. It is concluded that the barley cultivar “B-10008” showed greater tolerance and adaptability to saline conditions. The yield of barley crops could be potentiated by a foliar spray of 200 ppm silicon at the vegetative growth stage under salt stress.Keywords: salt stress, silicon nutrition, chlorophyll constituents, antioxidant enzymes, barley crop
Procedia PDF Downloads 385044 Analytics Model in a Telehealth Center Based on Cloud Computing and Local Storage
Authors: L. Ramirez, E. Guillén, J. Sánchez
Abstract:
Some of the main goals about telecare such as monitoring, treatment, telediagnostic are deployed with the integration of applications with specific appliances. In order to achieve a coherent model to integrate software, hardware, and healthcare systems, different telehealth models with Internet of Things (IoT), cloud computing, artificial intelligence, etc. have been implemented, and their advantages are still under analysis. In this paper, we propose an integrated model based on IoT architecture and cloud computing telehealth center. Analytics module is presented as a solution to control an ideal diagnostic about some diseases. Specific features are then compared with the recently deployed conventional models in telemedicine. The main advantage of this model is the availability of controlling the security and privacy about patient information and the optimization on processing and acquiring clinical parameters according to technical characteristics.Keywords: analytics, telemedicine, internet of things, cloud computing
Procedia PDF Downloads 3255043 Restored CO₂ from Flue Gas and Utilization by Converting to Methanol by 3 Step Processes: Steam Reforming, Reverse Water Gas Shift and Hydrogenation
Authors: Rujira Jitrwung, Kuntima Krekkeitsakul, Weerawat Patthaveekongka, Chiraphat Kumpidet, Jarukit Tepkeaw, Krissana Jaikengdee, Anantachai Wannajampa
Abstract:
Flue gas discharging from coal fired or gas combustion power plant contains around 12% Carbon dioxide (CO₂), 6% Oxygen (O₂), and 82% Nitrogen (N₂).CO₂ is a greenhouse gas which has been concerned to the global warming. Carbon Capture, Utilization, and Storage (CCUS) is a topic which is a tool to deal with this CO₂ realization. Flue gas is drawn down from the chimney and filtered, then it is compressed to build up the pressure until 8 bar. This compressed flue gas is sent to three stages Pressure Swing Adsorption (PSA), which is filled with activated carbon. Experiments were showed the optimum adsorption pressure at 7bar, which CO₂ can be adsorbed step by step in 1st, 2nd, and 3rd stage, obtaining CO₂ concentration 29.8, 66.4, and 96.7 %, respectively. The mixed gas concentration from the last step is composed of 96.7% CO₂,2.7% N₂, and 0.6%O₂. This mixed CO₂product gas obtained from 3 stages PSA contained high concentration CO₂, which is ready to use for methanol synthesis. The mixed CO₂ was experimented in 5 Liter/Day of methanol synthesis reactor skid by 3 step processes as followed steam reforming, reverse water gas shift, and then hydrogenation. The result showed that proportional of mixed CO₂ and CH₄ 70/30, 50/50, 30/70 % (v/v), and 10/90 yielded methanol 2.4, 4.3, 5.6, and 6.0 Liter/day and save CO₂ 40, 30, 20, and 5 % respectively. The optimum condition resulted both methanol yield and CO₂ consumption using CO₂/CH₄ ratio 43/57 % (v/v), which yielded 4.8 Liter/day methanol and save CO₂ 27% comparing with traditional methanol production from methane steam reforming (5 Liter/day)and absent CO₂ consumption.Keywords: carbon capture utilization and storage, pressure swing adsorption, reforming, reverse water gas shift, methanol
Procedia PDF Downloads 1875042 Response of Briquettes Application with Different Coating Materials on Yield and Quality of Cucumber [Cucumis sativus (L.)]
Authors: H. B. Torane, M. C. Kasture, S. S. Prabhudesai, P. B. Sanap, V. N. Palsande, J. J. Palkar
Abstract:
The present investigation entitled “Response of briquettes application with different coating materials on yield and quality of Cucumber [Cucumis sativus (L.)]” was conducted at Central Experiment Center, Wakawali during kharif season 2013. The field experiment was laid out in Factorial Randomized Block Design with three replicate. The four coating materials viz., Co – Non coating, C1 – Wax coating, C2 – Jaggary coating, and C3 – Tar coating was applied to Konkan Annapurna Briquette along with three sub treatments of application time i.e B1 – ½ at sowing, B2 - ½ at sowing and ½ at 30 days after sowing and B3 - 1/3 at sowing, 1/3 at 30 days after sowing and 1/3 at 60 days after sowing. It was observed that the application of tar coated Konkan Annapurna Briquettes (KAB) in three times @1/3 quantity of briquettes at sowing time, 1/3 quantity of briquettes at 30 days after sowing and 1/3 quantity of briquettes at 60 days after sowing was found promising to enhancing the cucumber fruit yield, higher vine length, number of fruits vine-1, girth of fruit, length of fruit. It was also observed that the quality of the cucumber fruit increased in terms of ascorbic acid. UB-Godavari forms of briquettes .i.e. are promising source of N, P2O5 and K2O fertilizers as compared to straight fertilizers for enhancing green cucumber fruit yield of Sheetal variety of cucumber in lateritic soil. Amongst the three types of coated briquettes, the tar coated briquettes application was found to be superior for increasing cucumber fruit yield applied in three times @1/3 quantity of briquettes at sowing time, 1/3 quantity of briquettes at 30 days after sowing and 1/3 quantity of briquettes at 60 days after sowing @ 5 briquettes per plant at an interval of 30 days after sowing.Keywords: briquettes, coating, yield, tar, wax and quality
Procedia PDF Downloads 5165041 Behavioral and Electroantennographic Responses of the Tea Shot Hole Borer, Euwallacea fornicatus, Eichhoff (Scolytidae: Coleoptera) to Volatiles Compounds of Montanoa bipinnatifida (Compositae: Asteraceae) and Development of a Kairomone Trap
Authors: Sachin Paul James, Selvasundaram Rajagopal, Muraleedharan Nair, Babu Azariah
Abstract:
The shot hole borer (SHB), Euwallacea fornicatus (= Xyleborus fornicatus) (Scolytidae: Coleoptera) is one of the major pests of tea in southern India and Sri Lanka. The partially dried cut stem of a jungle plant, Montanoa bipinnatifida (C.Koch) (Compositae: Asteraceae) reported to attract shot hole borer beetles in the field. Collection, isolation, identification and quantification of the emitted volatiles from the partially dried cut stems of M. bipinnatifida using dynamic head space and GC-MS revealed the presence of seven compounds viz. α- pinene, β- phellandrene, β - pinene, D- limonene, trans-caryophyllene, iso- caryophyllene and germacrene– D. Behavioural bioassays using electroantennogram (EAG) and wind tunnel proved that, among these identified compounds only α - pinene, trans-caryophyllene, β – phellandrene and germacrene-D evoked significant behavioral response and maximum response was obtained to a specific blend of these four compounds @ 10:1:0.1:3. Field trapping experiments of this blend conducted in the SHB infested field using multiple funnel traps further proved the efficiency of the blend with a mean trap catch of 176.7 ± 13.1 beetles. Mass trapping studies in the field helped to develop a kairomone trap for the management of SHB in the tea fields of southern India.Keywords: electroantennogram, kairomone trap, Montanoa bipinnatifida, tea shot hole borer
Procedia PDF Downloads 2235040 The Effect of Additive Acid on the Phytoremediation Efficiency
Authors: G. Hosseini, A. Sadighzadeh, M. Rahimnejad, N. Hosseini, Z. Jamalzadeh
Abstract:
Metal pollutants, especially heavy metals from anthropogenic sources such as metallurgical industries’ waste including mining, smelting, casting or production of nuclear fuel, including mining, concentrate production and uranium processing ends in the environment contamination (water and soil) and risk to human health around the facilities of this type of industrial activity. There are different methods that can be used to remove these contaminants from water and soil. These are very expensive and time-consuming. In this case, the people have been forced to leave the area and the decontamination is not done. For example, in the case of Chernobyl accident, an area of 30 km around the plant was emptied of human life. A very efficient and cost-effective method for decontamination of the soil and the water is phytoremediation. In this method, the plants preferentially native plants which are more adaptive to the regional climate are well used. In this study, three types of plants including Alfalfa, Sunflower and wheat were used to Barium decontamination. Alfalfa and Sunflower were not grown good enough in Saghand mine’s soil sample. This can be due to non-native origin of these plants. But, Wheat rise in Saghand Uranium Mine soil sample was satisfactory. In this study, we have investigated the effect of 4 types of acids inclusive nitric acid, oxalic acid, acetic acid and citric acid on the removal efficiency of Barium by Wheat. Our results indicate the increase of Barium absorption in the presence of citric acid in the soil. In this paper, we will present our research and laboratory results.Keywords: phytoremediation, heavy metal, wheat, soil
Procedia PDF Downloads 3385039 Preclinical Evidence of Pharmacological Effect from Medicinal Hemp
Authors: Muhammad nor Farhan Sa'At, Xin Y. Lim, Terence Y. C. Tan, Siti Hajar M. Rosli, Syazwani S. Ali, Ami F. Syed Mohamed
Abstract:
INTRODUCTION: Hemp (Cannabis sativa subsp. sativa), commonly used for industrial purposes, differs from marijuana by containing lower levels of delta-9-tetrahydronannabidiol- the principal psychoactive constituent in cannabis. Due to its non-psychoactive nature, there has been growing interest in hemp’s therapeutic potential, which has been investigated through pre-clinical and clinical study modalities. OBJECTIVE: To provide an overview of the current landscape of hemp research, through recent scientific findings specific to the pharmacological effects of the medicinal hemp plant and its derived compounds. METHODS: This review was conducted through a systematic search strategy according to the preferred reporting items for systematic review and meta-analysis-ScR (PRISMA-ScR) checklist on electronic databases including MEDLINE, OVID (OVFT, APC Journal Club, EBM Reviews), Cochrane Library Central and Clinicaltrials.gov. RESULTS: From 65 primary articles reviewed, there were 47 pre-clinical studies related to medicinal hemp. Interestingly, the hemp derivatives showed several potential activities such as anti-oxidative, anti-hypertensive, anti-inflammatory, anti-diabetic, anti-neuroinflammatory, anti-arthritic, anti-acne, and anti-microbial activities. Renal protective effects and estrogenic properties were also exhibited in vitro. CONCLUSION: Medicinal hemp possesses various pharmacological effects tested in vitro and in vivo. Information provided in this review could be used as tool to strengthen the study design of future clinical trial research.Keywords: Preclinical, Herbal Medicine, Hemp, Cannabis
Procedia PDF Downloads 1365038 Preparation of Low-Molecular-Weight 6-Amino-6-Deoxychitosan (LM6A6DC) for Immobilization of Growth Factor
Authors: Koo-Yeon Kim, Eun-Hye Kim, Tae-Il Son
Abstract:
Epidermal Growth Factor (EGF, Mw=6,045) has been reported to have high efficiency of wound repair and anti-wrinkle effect. However, the half-life of EGF in the body is too short to exert the biological activity effectively when applied in free form. Growth Factors can be stabilized by immobilization with carbohydrates from thermal and proteolytic degradation. Low molecular weight chitosan (LMCS) and its derivate prepared by hydrogen peroxide has high solubility. LM6A6DC was successfully prepared as a reactive carbohydrate for the stabilization of EGF by the reactions of LMCS with alkalization, tosylation, azidation and reduction. The structure of LM6A6DC was confirmed by FT-IR, 1H NMR and elementary analysis. For enhancing the stability of free EGF, EGF was attached with LM6A6DC by using water-soluble carbodiimide. EGF-LM6A6DC conjugates did not show any cytotoxicity on the Normal Human Dermal Fibroblast(NHDF) 3T3 proliferation at least under 100 ㎍/㎖. In the result, it was considered that LM6A6DC is suitable to immobilize of growth factor.Keywords: epidermal growth factor (EGF), low-molecular-weight chitosan, immobilization
Procedia PDF Downloads 473