Search results for: treatment of image
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10812

Search results for: treatment of image

10092 MRI Quality Control Using Texture Analysis and Spatial Metrics

Authors: Kumar Kanudkuri, A. Sandhya

Abstract:

Typically, in a MRI clinical setting, there are several protocols run, each indicated for a specific anatomy and disease condition. However, these protocols or parameters within them can change over time due to changes to the recommendations by the physician groups or updates in the software or by the availability of new technologies. Most of the time, the changes are performed by the MRI technologist to account for either time, coverage, physiological, or Specific Absorbtion Rate (SAR ) reasons. However, giving properly guidelines to MRI technologist is important so that they do not change the parameters that negatively impact the image quality. Typically a standard American College of Radiology (ACR) MRI phantom is used for Quality Control (QC) in order to guarantee that the primary objectives of MRI are met. The visual evaluation of quality depends on the operator/reviewer and might change amongst operators as well as for the same operator at various times. Therefore, overcoming these constraints is essential for a more impartial evaluation of quality. This makes quantitative estimation of image quality (IQ) metrics for MRI quality control is very important. So in order to solve this problem, we proposed that there is a need for a robust, open-source, and automated MRI image control tool. The Designed and developed an automatic analysis tool for measuring MRI image quality (IQ) metrics like Signal to Noise Ratio (SNR), Signal to Noise Ratio Uniformity (SNRU), Visual Information Fidelity (VIF), Feature Similarity (FSIM), Gray level co-occurrence matrix (GLCM), slice thickness accuracy, slice position accuracy, High contrast spatial resolution) provided good accuracy assessment. A standardized quality report has generated that incorporates metrics that impact diagnostic quality.

Keywords: ACR MRI phantom, MRI image quality metrics, SNRU, VIF, FSIM, GLCM, slice thickness accuracy, slice position accuracy

Procedia PDF Downloads 168
10091 A Comprehensive Study and Evaluation on Image Fashion Features Extraction

Authors: Yuanchao Sang, Zhihao Gong, Longsheng Chen, Long Chen

Abstract:

Clothing fashion represents a human’s aesthetic appreciation towards everyday outfits and appetite for fashion, and it reflects the development of status in society, humanity, and economics. However, modelling fashion by machine is extremely challenging because fashion is too abstract to be efficiently described by machines. Even human beings can hardly reach a consensus about fashion. In this paper, we are dedicated to answering a fundamental fashion-related problem: what image feature best describes clothing fashion? To address this issue, we have designed and evaluated various image features, ranging from traditional low-level hand-crafted features to mid-level style awareness features to various current popular deep neural network-based features, which have shown state-of-the-art performance in various vision tasks. In summary, we tested the following 9 feature representations: color, texture, shape, style, convolutional neural networks (CNNs), CNNs with distance metric learning (CNNs&DML), AutoEncoder, CNNs with multiple layer combination (CNNs&MLC) and CNNs with dynamic feature clustering (CNNs&DFC). Finally, we validated the performance of these features on two publicly available datasets. Quantitative and qualitative experimental results on both intra-domain and inter-domain fashion clothing image retrieval showed that deep learning based feature representations far outweigh traditional hand-crafted feature representation. Additionally, among all deep learning based methods, CNNs with explicit feature clustering performs best, which shows feature clustering is essential for discriminative fashion feature representation.

Keywords: convolutional neural network, feature representation, image processing, machine modelling

Procedia PDF Downloads 138
10090 Comprehensive Evaluation of COVID-19 Through Chest Images

Authors: Parisa Mansour

Abstract:

The coronavirus disease 2019 (COVID-19) was discovered and rapidly spread to various countries around the world since the end of 2019. Computed tomography (CT) images have been used as an important alternative to the time-consuming RT. PCR test. However, manual segmentation of CT images alone is a major challenge as the number of suspected cases increases. Thus, accurate and automatic segmentation of COVID-19 infections is urgently needed. Because the imaging features of the COVID-19 infection are different and similar to the background, existing medical image segmentation methods cannot achieve satisfactory performance. In this work, we try to build a deep convolutional neural network adapted for the segmentation of chest CT images with COVID-19 infections. First, we maintain a large and novel chest CT image database containing 165,667 annotated chest CT images from 861 patients with confirmed COVID-19. Inspired by the observation that the boundary of an infected lung can be improved by global intensity adjustment, we introduce a feature variable block into the proposed deep CNN, which adjusts the global features of features to segment the COVID-19 infection. The proposed PV array can effectively and adaptively improve the performance of functions in different cases. We combine features of different scales by proposing a progressive atrocious space pyramid fusion scheme to deal with advanced infection regions with various aspects and shapes. We conducted experiments on data collected in China and Germany and showed that the proposed deep CNN can effectively produce impressive performance.

Keywords: chest, COVID-19, chest Image, coronavirus, CT image, chest CT

Procedia PDF Downloads 55
10089 Wastewater Treatment Sludge as a Potential Source of Heavy Metal Contamination in Livestock

Authors: Glynn K. Pindihama, Rabelani Mudzielwana, Ndamulelo Lilimu

Abstract:

Wastewater treatment effluents, particularly sludges, are known to be potential sources of heavy metal contamination in the environment, depending on how the sludge is managed. Maintenance of wastewater treatment infrastructure in developing countries such as South Africa has become an issue of grave concern, with many wastewater treatment facilities in dilapidating states. Among the problems is the vandalism of the periphery fence to many wastewater treatment facilities, resulting in livestock, such as cows from neighboring villages, grazing within the facilities. This raises human health risks since dried sludge from the treatment plants is usually spread on the grass around the plant, resulting in heavy metal contamination. Animal products such as meat and milk from these cows thus become an indirect route to heavy metals to humans. This study assessed heavy metals in sludges from 3 wastewater treatment plants in Limpopo Province of South Africa. In addition, cow dung and sludge liquors were collected from these plants and evaluated for their heavy metal content. The sludge and cow dung were microwave-digested using the aqua-regia method, and all samples were analyzed for heavy metals using ICP-OES. The loadings of heavy metals in the sludge were in the order Cu>Zn>Ni>Cr>Cd>As>Hg. In cow dung, the heavy metals were in the order Fe>Cu>Mn>Zn>Cr>Pb>Co>Cd. The levels of Zn and Cu in the sludge liquors where the animals were observed drinking were, in some cases, above the permissible limit for livestock consumption. Principal component and correlation analysis are yet to be done to determine if there is a correlation between the heavy metals in the cow dung and sludge and sludge liquors.

Keywords: cow dung, heavy metals, sludge, wastewater treatment plants, sludge.

Procedia PDF Downloads 64
10088 Refining Sexual Assault Treatment: Recovered Survivors and Expert Therapists Concur on Effective Therapy Components

Authors: Avigail Moor, Michal Otmazgin, Hagar Tsiddon, Avivit Mahazri

Abstract:

The goal of the present study was to refine sexual assault therapy through the examination of the level of agreement between survivor and therapist assessments of key recovery-promoting therapeutic interventions. This is the first study to explore the level of agreement between those who partake in the treatment process from either position. Semi structured interviews were conducted in this qualitative study with 10 survivors and 10 experienced therapists. The results document considerable concurrence between them regarding relational and trauma processing treatment components alike. Together, these reports outline key effective interventions, both common and specific in nature, concomitantly supported by both groups.

Keywords: sexual assault, rape treatment, therapist training, psychotherapy

Procedia PDF Downloads 55
10087 Advanced Oxidation Processes as a Pre-oxidation Step for Biological Treatment of Leachate from Technical Landfills

Authors: Ala Abdessemed, Mohamed Seddik Oussama Belahmadi, Nabil Charchar, Abdefettah Gherib, Bradai Fares, Boussadia Chouaib Nour El-Islem

Abstract:

Algerian cities are confronted with large quantities of waste generated by the disposal of household and similar residues in technical landfills (CET), such as the one in the location of Batna. The interaction between waste components and incoming water generates leachates rich in organic matter and trace elements, which require treatment before discharge. The aim of this study was to propose an effective process for treating the leachates, which were subjected to an initial chemical treatment using the (H₂O₂/UV) system. Optimal treatment conditions were determined at [H₂O₂] of 0.3 M and pH of 8.6. Next, two hybrid biological treatment systems were applied: hybrid system I (H₂O₂/UV/bacteria) and hybrid system II (H₂O₂/UV/bacteria/microalgae). The three processes resulted in the following degradation rates, expressed in terms of total organic carbon (TOC) 27.4% for the (H₂O₂/UV) system; 58.1% for the hybrid system I (H₂O₂/UV/Bacteria); 67.86% for the hybrid system II (H₂O₂/UV/Bacteria/Microalgae). This study demonstrates that a hybrid approach combining advanced oxidation processes and biological treatments is a highly effective alternative to achieve satisfactory treatment.

Keywords: leachate, landfill, advanced oxidation processes, biological treatment, bacteria, microalgae, total organic carbon

Procedia PDF Downloads 68
10086 The Effect of Incorporating Animal Assisted Interventions with Trauma Focused Cognitive Behavioral Therapy

Authors: Kayla Renteria

Abstract:

This study explored the role animal-assisted psychotherapy (AAP) can play in treating Post-Traumatic Stress Disorder (PTSD) when incorporated into Trauma-informed cognitive behavioral therapy (TF-CBT). A review of the literature was performed to show how incorporating AAP could benefit TF-CBT since this treatment model often presents difficulties, such as client motivation and avoidance of the exposure element of the intervention. In addition, the fluidity of treatment goals during complex trauma cases was explored, as this issue arose in the case study. This study follows the course of treatment of a 12-year-old female presenting with symptoms of PTSD. Treatment consisted of traditional components of the TF-CBT model, with the added elements of AAP to address typical treatment obstacles in TF-CBT. A registered therapy dog worked with the subject in all sessions throughout her treatment. The therapy dog was incorporated into components such as relaxation and coping techniques, narrative therapy techniques, and psychoeducation on the cognitive triangle. Throughout the study, the client’s situation and clinical needs required the therapist to switch goals to focus on current safety and stability. The therapy dog provided support and neurophysiological benefits to the client through AAP during this shift in treatment. The client was assessed quantitatively using the Child PTSD Symptom Scale Self Report for DSM-5 (CPSS-SR-5) before and after therapy and qualitatively through a feedback form given after treatment. The participant showed improvement in CPSS-SR-V scores, and she reported that the incorporation of the therapy animal improved her therapy. The results of this study show how the use of AAP provided the client a solid, consistent relationship with the therapy dog that supported her through processing various types of traumas. Implications of the results of treatment and for future research are discussed.

Keywords: animal-assisted therapy, trauma-focused cognitive behavioral therapy, PTSD in children, trauma treatment

Procedia PDF Downloads 215
10085 Classification of Digital Chest Radiographs Using Image Processing Techniques to Aid in Diagnosis of Pulmonary Tuberculosis

Authors: A. J. S. P. Nileema, S. Kulatunga , S. H. Palihawadana

Abstract:

Computer aided detection (CAD) system was developed for the diagnosis of pulmonary tuberculosis using digital chest X-rays with MATLAB image processing techniques using a statistical approach. The study comprised of 200 digital chest radiographs collected from the National Hospital for Respiratory Diseases - Welisara, Sri Lanka. Pre-processing was done to remove identification details. Lung fields were segmented and then divided into four quadrants; right upper quadrant, left upper quadrant, right lower quadrant, and left lower quadrant using the image processing techniques in MATLAB. Contrast, correlation, homogeneity, energy, entropy, and maximum probability texture features were extracted using the gray level co-occurrence matrix method. Descriptive statistics and normal distribution analysis were performed using SPSS. Depending on the radiologists’ interpretation, chest radiographs were classified manually into PTB - positive (PTBP) and PTB - negative (PTBN) classes. Features with standard normal distribution were analyzed using an independent sample T-test for PTBP and PTBN chest radiographs. Among the six features tested, contrast, correlation, energy, entropy, and maximum probability features showed a statistically significant difference between the two classes at 95% confidence interval; therefore, could be used in the classification of chest radiograph for PTB diagnosis. With the resulting value ranges of the five texture features with normal distribution, a classification algorithm was then defined to recognize and classify the quadrant images; if the texture feature values of the quadrant image being tested falls within the defined region, it will be identified as a PTBP – abnormal quadrant and will be labeled as ‘Abnormal’ in red color with its border being highlighted in red color whereas if the texture feature values of the quadrant image being tested falls outside of the defined value range, it will be identified as PTBN–normal and labeled as ‘Normal’ in blue color but there will be no changes to the image outline. The developed classification algorithm has shown a high sensitivity of 92% which makes it an efficient CAD system and with a modest specificity of 70%.

Keywords: chest radiographs, computer aided detection, image processing, pulmonary tuberculosis

Procedia PDF Downloads 125
10084 Nutritional Allowance Support Affecting Treatment Compliance among TB Patients in Western, Nepal

Authors: Yadav R. K., Baral S.

Abstract:

Introduction: Nepal is one of the world’s least developed countries and has a high incidence of tuberculosis (TB). The TB prevalence survey in 2019 showed 69,000 Nepalese is developing TB and 4,000 die every year. Given its disproportionate impact on the impoverished segments of society, TB often thrusts patients into extreme poverty or exacerbates their existing economic struggles. Consequently, not only the patients but also their families suffer from the loss of livelihood. This study aims to assess the support of nutritional allowance on treatment compliance among retreatment tuberculosis patients in Nepal. This is a secondary analysis of data from HMIS (Health Management Information System) to investigate treatment compliance among tuberculosis patients and its association with nutritional allowance. The study population consisted of all individuals (N=2972) who had received services from July 16, 2021, to December 14, 2022. The SPSS 21version was used to conduct descriptive and bivariate analysis. Out of the total TB patients (n=2972), a third-fourth (65.9%) of TB patients were male. More than one-tenth (12.3%) of respondents received a nutrition support allowance. The TB treatment compliance rate was more (89.91%) in the nutrition support allowance group compared to the non-nutritional support group (87.98%). TB patients who received the nutritional support allowance were nearly twice as likely to have a higher TB treatment compliance rate compared to those who did not receive the nutritional support allowance. Providing nutritional allowance support to tuberculosis (TB) patients can play a significant role in improving treatment compliance and outcomes. Age and the type of TB are important factors that have shown statistical significance in relation to treatment compliance. Therefore, it is recommended to provide nutritional allowance support to both new and retreatment TB patients. To enhance treatment compliance among TB patients, it is beneficial to provide timely nutrition allowances and arrange home visits by TB focal persons.

Keywords: nutrition, support, treatment compliance, TB, Nepal

Procedia PDF Downloads 140
10083 Removal of Deposits and Improvement of Shelf Life in CO₂-Rich Mineral Water by Ozone-Microbubbles

Authors: Un Hwa Choe, Jong Hyon Choe, Yong Jun Kim

Abstract:

The aim of this study was to effectively remove Fe2+ by using ozone microbubbles in bottled mineral water to prevent sediment from occurring during storage and increase shelf life. By considering the characteristics of mineral water with low solubility of ozone and high CO2 content, a suitable ozone injection step was chosen and a new mineral water treatment method using microbubbles was proposed. As a result of the treatment of the bottled mineral water with ozone microbubbles, the iron ion concentration was reduced from 0.14 mg/L to 0.01 mg/L, and the shelf life increased to 360 days. During the treatment, the concentrations of K+ and Na+ were almost unchanged, and the deposition time was reduced to one-third compared to the natural oxidation.

Keywords: CO₂-rich mineral water, ozone-micro bubble, shelf life, bottled mineral water, water treatment

Procedia PDF Downloads 80
10082 Ischemic Stroke Detection in Computed Tomography Examinations

Authors: Allan F. F. Alves, Fernando A. Bacchim Neto, Guilherme Giacomini, Marcela de Oliveira, Ana L. M. Pavan, Maria E. D. Rosa, Diana R. Pina

Abstract:

Stroke is a worldwide concern, only in Brazil it accounts for 10% of all registered deaths. There are 2 stroke types, ischemic (87%) and hemorrhagic (13%). Early diagnosis is essential to avoid irreversible cerebral damage. Non-enhanced computed tomography (NECT) is one of the main diagnostic techniques used due to its wide availability and rapid diagnosis. Detection depends on the size and severity of lesions and the time spent between the first symptoms and examination. The Alberta Stroke Program Early CT Score (ASPECTS) is a subjective method that increases the detection rate. The aim of this work was to implement an image segmentation system to enhance ischemic stroke and to quantify the area of ischemic and hemorrhagic stroke lesions in CT scans. We evaluated 10 patients with NECT examinations diagnosed with ischemic stroke. Analyzes were performed in two axial slices, one at the level of the thalamus and basal ganglion and one adjacent to the top edge of the ganglionic structures with window width between 80 and 100 Hounsfield Units. We used different image processing techniques such as morphological filters, discrete wavelet transform and Fuzzy C-means clustering. Subjective analyzes were performed by a neuroradiologist according to the ASPECTS scale to quantify ischemic areas in the middle cerebral artery region. These subjective analysis results were compared with objective analyzes performed by the computational algorithm. Preliminary results indicate that the morphological filters actually improve the ischemic areas for subjective evaluations. The comparison in area of the ischemic region contoured by the neuroradiologist and the defined area by computational algorithm showed no deviations greater than 12% in any of the 10 examination tests. Although there is a tendency that the areas contoured by the neuroradiologist are smaller than those obtained by the algorithm. These results show the importance of a computer aided diagnosis software to assist neuroradiology decisions, especially in critical situations as the choice of treatment for ischemic stroke.

Keywords: ischemic stroke, image processing, CT scans, Fuzzy C-means

Procedia PDF Downloads 366
10081 Toward Subtle Change Detection and Quantification in Magnetic Resonance Neuroimaging

Authors: Mohammad Esmaeilpour

Abstract:

One of the important open problems in the field of medical image processing is detection and quantification of small changes. In this poster, we try to investigate that, how the algebraic decomposition techniques can be used for semiautomatically detecting and quantifying subtle changes in Magnetic Resonance (MR) neuroimaging volumes. We mostly focus on the low-rank values of the matrices achieved from decomposing MR image pairs during a period of time. Besides, a skillful neuroradiologist will help the algorithm to distinguish between noises and small changes.

Keywords: magnetic resonance neuroimaging, subtle change detection and quantification, algebraic decomposition, basis functions

Procedia PDF Downloads 472
10080 Scar Removal Stretegy for Fingerprint Using Diffusion

Authors: Mohammad A. U. Khan, Tariq M. Khan, Yinan Kong

Abstract:

Fingerprint image enhancement is one of the most important step in an automatic fingerprint identification recognition (AFIS) system which directly affects the overall efficiency of AFIS. The conventional fingerprint enhancement like Gabor and Anisotropic filters do fill the gaps in ridge lines but they fail to tackle scar lines. To deal with this problem we are proposing a method for enhancing the ridges and valleys with scar so that true minutia points can be extracted with accuracy. Our results have shown an improved performance in terms of enhancement.

Keywords: fingerprint image enhancement, removing noise, coherence, enhanced diffusion

Procedia PDF Downloads 513
10079 UF as Pretreatment of RO for Tertiary Treatment of Biologically Treated Distillery Spentwash

Authors: Pinki Sharma, Himanshu Joshi

Abstract:

Distillery spentwash contains high chemical oxygen demand (COD), biological oxygen demand (BOD), color, total dissolved solids (TDS) and other contaminants even after biological treatment. The effluent can’t be discharged as such in the surface water bodies or land without further treatment. Reverse osmosis (RO) treatment plants have been installed in many of the distilleries at tertiary level. But at most of the places these plants are not properly working due to high concentration of organic matter and other contaminants in biologically treated spentwash. To make the membrane treatment proven and reliable technology, proper pre-treatment is mandatory. In the present study, ultra-filtration (UF) as pre-treatment of RO at tertiary stage was performed. Operating parameters namely initial pH (pHo: 2–10), trans-membrane pressure (TMP: 4-20 bars) and temperature (T: 15- 43°C) used for conducting experiments with UF system. Experiments were optimized at different operating parameters in terms of COD, color, TDS and TOC removal by using response surface methodology (RSM) with central composite design. The results showed that removal of COD, color and TDS by 62%, 93.5% and 75.5%, with UF, respectively at optimized conditions with increased permeate flux from 17.5 l/m2/h (RO) to 38 l/m2/h (UF-RO). The performance of the RO system was greatly improved both in term of pollutant removal as well as water recovery.

Keywords: bio-digested distillery spentwash, reverse osmosis, response surface methodology, ultra-filtration

Procedia PDF Downloads 346
10078 Small Text Extraction from Documents and Chart Images

Authors: Rominkumar Busa, Shahira K. C., Lijiya A.

Abstract:

Text recognition is an important area in computer vision which deals with detecting and recognising text from an image. The Optical Character Recognition (OCR) is a saturated area these days and with very good text recognition accuracy. However the same OCR methods when applied on text with small font sizes like the text data of chart images, the recognition rate is less than 30%. In this work, aims to extract small text in images using the deep learning model, CRNN with CTC loss. The text recognition accuracy is found to improve by applying image enhancement by super resolution prior to CRNN model. We also observe the text recognition rate further increases by 18% by applying the proposed method, which involves super resolution and character segmentation followed by CRNN with CTC loss. The efficiency of the proposed method shows that further pre-processing on chart image text and other small text images will improve the accuracy further, thereby helping text extraction from chart images.

Keywords: small text extraction, OCR, scene text recognition, CRNN

Procedia PDF Downloads 122
10077 A Comparative Study on Deep Learning Models for Pneumonia Detection

Authors: Hichem Sassi

Abstract:

Pneumonia, being a respiratory infection, has garnered global attention due to its rapid transmission and relatively high mortality rates. Timely detection and treatment play a crucial role in significantly reducing mortality associated with pneumonia. Presently, X-ray diagnosis stands out as a reasonably effective method. However, the manual scrutiny of a patient's X-ray chest radiograph by a proficient practitioner usually requires 5 to 15 minutes. In situations where cases are concentrated, this places immense pressure on clinicians for timely diagnosis. Relying solely on the visual acumen of imaging doctors proves to be inefficient, particularly given the low speed of manual analysis. Therefore, the integration of artificial intelligence into the clinical image diagnosis of pneumonia becomes imperative. Additionally, AI recognition is notably rapid, with convolutional neural networks (CNNs) demonstrating superior performance compared to human counterparts in image identification tasks. To conduct our study, we utilized a dataset comprising chest X-ray images obtained from Kaggle, encompassing a total of 5216 training images and 624 test images, categorized into two classes: normal and pneumonia. Employing five mainstream network algorithms, we undertook a comprehensive analysis to classify these diseases within the dataset, subsequently comparing the results. The integration of artificial intelligence, particularly through improved network architectures, stands as a transformative step towards more efficient and accurate clinical diagnoses across various medical domains.

Keywords: deep learning, computer vision, pneumonia, models, comparative study

Procedia PDF Downloads 64
10076 Treatment and Characterization of Cadmium Metal From Textile Factory Wastewater by Electrochemical Process Using Aluminum Plate Electrode

Authors: Dessie Tibebe, Yeshifana Ayenew, Marye Mulugeta, Yezbie Kassa, Zerubabel Moges, Dereje Yenealem, Tarekegn Fentie, Agmas Amare, Hailu Sheferaw Ayele

Abstract:

Electrochemical treatment technology is a technique used for wastewater treatment due to its ability to eliminate impurities that are not easily removed by chemical processes. The objective of the study is the treatment and characterization of textile wastewater by an electrochemical process. The results obtained at various operational parameters indicated that at 20 minutes of electrochemical process at ( pH =7), initial concentration 10 mg/L, current density 37.5 mA/cm², voltage 9 v and temperature 25⁰C the highest removal efficiency was achieved. The kinetics of removal of selected metal by electrochemical treatment has been successfully described by the first-order rate equation. The results of microscopic techniques using SEM for the scarified electrode before treatment were uniform and smooth, but after the electrochemical process, the morphology was completely changed. This is due to the detection of the adsorbed aluminum hydroxide coming from adsorption of the conducting electrolyte, chemicals used in the experiments, alloying and the scrap impurities of the anode and cathode. The FTIR spectroscopic analysis broad bands at 3450 cm-¹ representing O-H functional groups, while the presence of H-O-H and Al-H groups are indicated by the bands at 2850-2750 cm-¹ and 1099 representing C-H functional groups.

Keywords: electrochemical, treatment, textile wastewater, kinetics, removal efficiency

Procedia PDF Downloads 94
10075 Enhancing the Rollability of Cu-Ge-Ni Alloy through Heat Treatment Methods

Authors: Morteza Hadi

Abstract:

This research investigates the potential enhancement of the rollability of Cu-Ge-Ni alloy through the mitigation of microstructural and compositional inhomogeneities via two distinct heat treatment methods: homogenization and solution treatment. To achieve this objective, the alloy with the desired composition was fabricated using a vacuum arc remelting furnace (VAR), followed by sample preparation for microstructural, compositional, and heat treatment analyses at varying temperatures and durations. Characterization was conducted employing optical and scanning electron microscopy (SEM), X-ray diffraction (XRD), and Vickers hardness testing. The results obtained indicate that a minimum duration of 10 hours is necessary for adequate homogenization of the alloy at 750°C. This heat treatment effectively removes coarse dendrites from the casting microstructure and significantly reduces elemental separations. However, despite these improvements, the presence of a second phase with markedly different hardness from the matrix results in poor rolling ability for the alloy. The optimal time for solution treatment at various temperatures was determined, with the most effective cycle identified as 750°C for 2 hours, followed by rapid quenching in water. This process induces the formation of a single-phase microstructure and complete elimination of the second  phase, as confirmed by X-ray diffraction analysis. Results demonstrate a reduction in hardness by 30 Vickers, and the elimination of microstructural unevenness enables successful thickness reduction by up to 50% through rolling without encountering cracking.

Keywords: Cu-Ge-Ni alloy, homogenization. solution treatment, rollability

Procedia PDF Downloads 51
10074 Modification and Surface Characterization of the Co20Cr15W10Ni Alloy for Application as Biomaterial

Authors: Fernanda A. Vechietti, Natália O. B. Muniz, Laura C. Treccani, Kurosch. Rezwan, Luis Alberto dos Santos

Abstract:

CoCr alloys are widely used in prosthetic implants due to their excellent mechanical properties, such as good tensile strength, elastic modulus and wear resistance. Their biocompatibility and lack of corrosion are also prominent features of this alloy. One of the most effective and simple ways to protect metal’s surfaces are treatments, such as electrochemical oxidation by passivation, which is used as a protect release of metallic ions. Another useful treatment is the electropolishing, which is used to reduce the carbide concentration and protrusion at the implanted surface. Electropolishing is a cheap and effective method for treatment of implants, which generally has complex geometries. The purpose of this study is surface modification of the alloy CoCr(ASTM F90-09) by different methods: polishing, electro polishing, passivation and heat treatment for application as biomaterials. The modification of the surface was studied and characterized by SEM, profilometry, wettability and compared to the surface of the samples untreated. The heat treatment and of passivation increased roughness (0.477 µm and 0.825 µm) the samples in relation the sample electropolished and polished(0.131 µm and 0.274 µm) and were observed the improve wettability’s with the increase the roughness.

Keywords: biomaterial, CoCr, surface treatment, heat treatment, roughness

Procedia PDF Downloads 541
10073 Cognitive Behavioral Modification in the Treatment of Aggressive Behavior in Children

Authors: Dijana Sulejmanović

Abstract:

Cognitive-behavioral modification (CBM) is a combination of cognitive and behavioral learning principles to shape and encourage the desired behaviors. A crucial element of cognitive-behavioral modification is that a change the behavior precedes awareness of how it affects others. CBM is oriented toward changing inner speech and learning to control behaviors through self-regulation techniques. It aims to teach individuals how to develop the ability to recognize, monitor and modify their thoughts, feelings, and behaviors. The review of literature emphasizes the efficiency the CBM approach in the treatment of children's hyperactivity and negative emotions such as anger. The results of earlier research show how impulsive and hyperactive behavior, agitation, and aggression may slow down and block the child from being able to actively monitor and participate in regular classes, resulting in the disruption of the classroom and the teaching process, and the children may feel rejected, isolated and develop long-term poor image of themselves and others. In this article, we will provide how the use of CBM, adapted to child's age, can incorporate measures of cognitive and emotional functioning which can help us to better understand the children’s cognitive processes, their cognitive strengths, and weaknesses, and to identify factors that may influence their behavioral and emotional regulation. Such a comprehensive evaluation can also help identify cognitive and emotional risk factors associated with aggressive behavior, specifically the processes involved in modulating and regulating cognition and emotions.

Keywords: aggressive behavior, cognitive behavioral modification, cognitive behavioral theory, modification

Procedia PDF Downloads 324
10072 Outcome Analysis of Surgical and Nonsurgical Treatment on Indicated Operative Chronic Subdural Hematoma: Serial Case in Cipto Mangunkusumo Hospital Indonesia

Authors: Novie Nuraini, Sari Hanifa, Yetty Ramli

Abstract:

Chronic subdural hematoma (cSDH) is a common condition after head trauma. Although the size of the thickness of cSDH has an important role in the decision to perform surgery, but the size limit of the thickness is not absolute. In this serial case report, we evaluate three case report of cSDH that indicated to get the surgical procedure because of deficit neurologic and neuroimaging finding with subfalcine herniation more than 0.5 cm and hematoma thickness more than one cm. On the first case, the patient got evacuation hematoma procedure, but the second and third case, we did nonsurgical treatment because the patient and family refused to do the operation. We did the conservative treatment with bed rest and mannitol. Serial radiologic evaluation is done when we found worsening condition. We also reevaluated radiologic examination two weeks after the treatment. The results in this serial case report, the first and second case have a good outcome. On the third case, there was a worsening condition, which in this patient there was a comorbid with type two diabetic mellitus, pneumonie and chronic kidney disease. Some conservative treatment such as bed rest, corticosteroid, mannitol or the other hyperosmolar has a good outcome in patient without neurologic deficits, small hematoma, and or patient without comorbid disease. Evacuate hematome is the best choice in cSDH treatment with deficit neurologic finding. Afterall, there is some condition that we can not do the surgical procedure. Serial radiologic examination needed after two weeks to evaluate the treatment or if there is any worsening condition.

Keywords: chronic subdural hematoma, traumatic brain injury, surgical treatment, nonsurgical treatment, outcome

Procedia PDF Downloads 332
10071 3D Microscopy, Image Processing, and Analysis of Lymphangiogenesis in Biological Models

Authors: Thomas Louis, Irina Primac, Florent Morfoisse, Tania Durre, Silvia Blacher, Agnes Noel

Abstract:

In vitro and in vivo lymphangiogenesis assays are essential for the identification of potential lymphangiogenic agents and the screening of pharmacological inhibitors. In the present study, we analyse three biological models: in vitro lymphatic endothelial cell spheroids, in vivo ear sponge assay, and in vivo lymph node colonisation by tumour cells. These assays provide suitable 3D models to test pro- and anti-lymphangiogenic factors or drugs. 3D images were acquired by confocal laser scanning and light sheet fluorescence microscopy. Virtual scan microscopy followed by 3D reconstruction by image aligning methods was also used to obtain 3D images of whole large sponge and ganglion samples. 3D reconstruction, image segmentation, skeletonisation, and other image processing algorithms are described. Fixed and time-lapse imaging techniques are used to analyse lymphatic endothelial cell spheroids behaviour. The study of cell spatial distribution in spheroid models enables to detect interactions between cells and to identify invasion hierarchy and guidance patterns. Global measurements such as volume, length, and density of lymphatic vessels are measured in both in vivo models. Branching density and tortuosity evaluation are also proposed to determine structure complexity. Those properties combined with vessel spatial distribution are evaluated in order to determine lymphangiogenesis extent. Lymphatic endothelial cell invasion and lymphangiogenesis were evaluated under various experimental conditions. The comparison of these conditions enables to identify lymphangiogenic agents and to better comprehend their roles in the lymphangiogenesis process. The proposed methodology is validated by its application on the three presented models.

Keywords: 3D image segmentation, 3D image skeletonisation, cell invasion, confocal microscopy, ear sponges, light sheet microscopy, lymph nodes, lymphangiogenesis, spheroids

Procedia PDF Downloads 375
10070 Optimizing Super Resolution Generative Adversarial Networks for Resource-Efficient Single-Image Super-Resolution via Knowledge Distillation and Weight Pruning

Authors: Hussain Sajid, Jung-Hun Shin, Kum-Won Cho

Abstract:

Image super-resolution is the most common computer vision problem with many important applications. Generative adversarial networks (GANs) have promoted remarkable advances in single-image super-resolution (SR) by recovering photo-realistic images. However, high memory requirements of GAN-based SR (mainly generators) lead to performance degradation and increased energy consumption, making it difficult to implement it onto resource-constricted devices. To relieve such a problem, In this paper, we introduce an optimized and highly efficient architecture for SR-GAN (generator) model by utilizing model compression techniques such as Knowledge Distillation and pruning, which work together to reduce the storage requirement of the model also increase in their performance. Our method begins with distilling the knowledge from a large pre-trained model to a lightweight model using different loss functions. Then, iterative weight pruning is applied to the distilled model to remove less significant weights based on their magnitude, resulting in a sparser network. Knowledge Distillation reduces the model size by 40%; pruning then reduces it further by 18%. To accelerate the learning process, we employ the Horovod framework for distributed training on a cluster of 2 nodes, each with 8 GPUs, resulting in improved training performance and faster convergence. Experimental results on various benchmarks demonstrate that the proposed compressed model significantly outperforms state-of-the-art methods in terms of peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and image quality for x4 super-resolution tasks.

Keywords: single-image super-resolution, generative adversarial networks, knowledge distillation, pruning

Procedia PDF Downloads 95
10069 Arteriosclerosis and Periodontitis: Correlation Expressed in the Amount of Fibrinogen in Blood

Authors: Nevila Alliu, Saimir Heta, Ilma Robo, Vera Ostreni

Abstract:

Periodontitis as an oral pathology caused by specific bacterial flora functions as a focal infection for the onset and aggravation of arteriosclerosis. These two distant pathologies, since they affect organs at a distance from each other, communicate with each other with correlation at the level of markers of inflammation in the blood. Fluctuations in the level of fibrinogen in the blood, depending on the active or passive phase of the existing periodontitis, affect the promotion of arteriosclerosis. The study is of the review type to analyze the effect of non-surgical periodontal treatment on fluctuations in the level of fibrinogen in the blood. The reduction of fibrinogen levels in the blood after non-surgical periodontal treatment of periodontitis in the patient's cavity is visible data and supported by literature sources. Also, the influence of a high amount of fibrinogen in the blood on the occurrence of arteriosclerosis is also another important data that again relies on many sources of literature. Conclusions: Thromboembolism and arteriosclerosis, as risk factors expressed in clinical data, have temporary bacteremia in the blood, which can occur significantly and often between phases of non-surgical periodontal treatment of periodontitis, treatments performed with treatment phases and protocols of predetermined treatment. Arterial thromboembolism has a significant factor, such as high levels of fibrinogen in the blood, which are significantly reduced during the period of non-surgical periodontal treatment.

Keywords: fibrinogen, refractory periodontitis, atherosclerosis, non-surgical, periodontal treatment

Procedia PDF Downloads 107
10068 Wastewater Treatment by Floating Macrophytes (Salvinia natans) under Algerian Semi-Arid Climate

Authors: Laabassi Ayache, Boudehane Asma

Abstract:

Macrophyte pond has developed strongly in the field of wastewater treatment for irrigation in rural areas and small communities. Their association allows, in some cases, to increase the hydraulic capacity while maintaining the highest level of quality. The present work is devoted to the treatment of domestic wastewater under climatic conditions of Algeria (semi-arid) through a system using two tanks planted with Salvinia natans. The performance study and treatment efficiency of the system overall shows that the latter provides a significant removal of nitrogen pollution: total Kjeldahl nitrogen NTK (85.2%), Ammonium NH₄⁺-N (79%), Nitrite NO₂⁻-N (40%) also, a major meaningful reduction of biochemical oxygen demand BOD₅ was observed at the output of the system (96.9 %). As BOD₅, the chemical oxygen demand (COD) removal was higher than 95% at the exit of the two tanks. A moderately low yield of phosphate-phosphorus (PO₄³-P) was achieved with values not exceeding 37%. In general, the quality of treated effluent meets the Algerian standard of discharge and which allows us to select a suitable species in constructed wetland treatment systems under semi-arid climate.

Keywords: nutrient removal, Salvinia natans, semi-arid climate, wastewater treatment

Procedia PDF Downloads 152
10067 Oral Biofilm and Stomatitis Denture: Local Implications and Cardiovascular Risks

Authors: Adriana B. Ribeiro, Camila B. Araujo, Frank L. Bueno, Luiz Eduardo V. Silva, Caroline V. Fortes, Helio C. Salgado, Rubens Fazan Jr., Claudia H. L. da Silva

Abstract:

Denture-related stomatitis (DRS) has recently been associated with deleterious cardiovascular effects, including hypertension. This study evaluated salivary parameters, blood pressure (BP) and heart rate variability (HRV), before and after DRS treatment in edentulous patients (n=14). Collection of unstimulated and stimulated saliva, as well as blood pressure (BP) measurements and electrocardiogram recordings were performed before and after 10 days of DRS treatment. The salivary flow (mL/min) was found similar at both times while pH was smaller (more neutral) after treatment (7.3 ± 2.2 vs. 7.1 ± 0.24). Systolic BP (mmHg) showed a trend, but not a significant reduction after DRS treatment (158 ± 25.68 vs. 148 ± 16,72, p=0,062) while diastolic BP was found similar in both times (86 ± 13.93 and 84 ± 9.38). Overall HRV, measured by standard deviation of RR intervals was not affected by DRS treatment (24 ± 4 vs 18 ± 2 ms), but differences of successive RR intervals (an index of parasympathetic cardiac modulation) increased after the treatment (26 ± 4 vs 19 ± 2 ms). Moreover, another index of vagal modulation of the heart, the power of RR interval spectra at high-frequency, was also markedly higher after DRS treatment (236 ± 63 vs 135 ± 32 ms²). Such findings strongly suggest that DRS is linked to an autonomic imbalance with sympathetic overactivity, which is markedly deleterious, increasing cardiovascular risk and the incidence of diseases such as hypertension. Acknowledgment: This study is supported by FAPESP, CNPq.

Keywords: biofilm, denture stomatitis, HRV, blood pressure

Procedia PDF Downloads 238
10066 A Study of Common Carotid Artery Behavior from B-Mode Ultrasound Image for Different Gender and BMI Categories

Authors: Nabilah Ibrahim, Khaliza Musa

Abstract:

The increment thickness of intima-media thickness (IMT) which involves the changes of diameter of the carotid artery is one of the early symptoms of the atherosclerosis lesion. The manual measurement of arterial diameter is time consuming and lack of reproducibility. Thus, this study reports the automatic approach to find the arterial diameter behavior for different gender, and body mass index (BMI) categories, focus on tracked region. BMI category is divided into underweight, normal, and overweight categories. Canny edge detection is employed to the B-mode image to extract the important information to be deal as the carotid wall boundary. The result shows the significant difference of arterial diameter between male and female groups which is 2.5% difference. In addition, the significant result of differences of arterial diameter for BMI category is the decreasing of arterial diameter proportional to the BMI.

Keywords: B-mode Ultrasound Image, carotid artery diameter, canny edge detection, body mass index

Procedia PDF Downloads 439
10065 Comparison of Non-Organic (Suspended and Solved) Solids Removal with and without Sediments in Treatment of an Industrial Wastewater with and without Ozonation

Authors: Amir Hajiali, Gevorg P. Pirumyan

Abstract:

In this research, removal of Non-Organic Suspended Solids and Non-Organic Solved Solids with and without sediment in treatment of an industrial wastewater system before and after ozonation was studied and compared. The most hazardous part of these substances is monomers of chlorophenolic combinations which in biological reactors in a liquid phase could be absorbed much easier and with a high velocity. These monomers and particularly monomers with high molecular weights are seen a lot in such wastewater treatment systems. After the treatment, the measured non-organic solved and suspended solids contents in the cyclic ozonation-biotreatment system compared to the non-organic solved and suspended solids values in the treatment method without ozonation. Sedimentation was the other factor which was considered in this experiment.The solids removals were measured with and without sediments. The comparison revealed that the remarkable efficiency of the cyclic ozonation-biotreatment system in removing the non-organic solids both with and without sediments is extremely considerable. Results of the experiments showed that ozone can be dramatically effective for solving most organic materials in activated sludge in such a wastewater or for making them mineral. Moreover, bio dissolubility increase related to the solved materials was reported.

Keywords: non-organic solids, ozonation, sediment, wastewater treatment

Procedia PDF Downloads 185
10064 Adversarial Attacks and Defenses on Deep Neural Networks

Authors: Jonathan Sohn

Abstract:

Deep neural networks (DNNs) have shown state-of-the-art performance for many applications, including computer vision, natural language processing, and speech recognition. Recently, adversarial attacks have been studied in the context of deep neural networks, which aim to alter the results of deep neural networks by modifying the inputs slightly. For example, an adversarial attack on a DNN used for object detection can cause the DNN to miss certain objects. As a result, the reliability of DNNs is undermined by their lack of robustness against adversarial attacks, raising concerns about their use in safety-critical applications such as autonomous driving. In this paper, we focus on studying the adversarial attacks and defenses on DNNs for image classification. There are two types of adversarial attacks studied which are fast gradient sign method (FGSM) attack and projected gradient descent (PGD) attack. A DNN forms decision boundaries that separate the input images into different categories. The adversarial attack slightly alters the image to move over the decision boundary, causing the DNN to misclassify the image. FGSM attack obtains the gradient with respect to the image and updates the image once based on the gradients to cross the decision boundary. PGD attack, instead of taking one big step, repeatedly modifies the input image with multiple small steps. There is also another type of attack called the target attack. This adversarial attack is designed to make the machine classify an image to a class chosen by the attacker. We can defend against adversarial attacks by incorporating adversarial examples in training. Specifically, instead of training the neural network with clean examples, we can explicitly let the neural network learn from the adversarial examples. In our experiments, the digit recognition accuracy on the MNIST dataset drops from 97.81% to 39.50% and 34.01% when the DNN is attacked by FGSM and PGD attacks, respectively. If we utilize FGSM training as a defense method, the classification accuracy greatly improves from 39.50% to 92.31% for FGSM attacks and from 34.01% to 75.63% for PGD attacks. To further improve the classification accuracy under adversarial attacks, we can also use a stronger PGD training method. PGD training improves the accuracy by 2.7% under FGSM attacks and 18.4% under PGD attacks over FGSM training. It is worth mentioning that both FGSM and PGD training do not affect the accuracy of clean images. In summary, we find that PGD attacks can greatly degrade the performance of DNNs, and PGD training is a very effective way to defend against such attacks. PGD attacks and defence are overall significantly more effective than FGSM methods.

Keywords: deep neural network, adversarial attack, adversarial defense, adversarial machine learning

Procedia PDF Downloads 193
10063 Normalized Compression Distance Based Scene Alteration Analysis of a Video

Authors: Lakshay Kharbanda, Aabhas Chauhan

Abstract:

In this paper, an application of Normalized Compression Distance (NCD) to detect notable scene alterations occurring in videos is presented. Several research groups have been developing methods to perform image classification using NCD, a computable approximation to Normalized Information Distance (NID) by studying the degree of similarity in images. The timeframes where significant aberrations between the frames of a video have occurred have been identified by obtaining a threshold NCD value, using two compressors: LZMA and BZIP2 and defining scene alterations using Pixel Difference Percentage metrics.

Keywords: image compression, Kolmogorov complexity, normalized compression distance, root mean square error

Procedia PDF Downloads 338