Search results for: test suite optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12060

Search results for: test suite optimization

11340 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning

Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar

Abstract:

As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling, and proposes the challenges and improvement directions for DRL-based resource scheduling algorithms.

Keywords: resource scheduling, deep reinforcement learning, distributed system, artificial intelligence

Procedia PDF Downloads 96
11339 Design and Optimization of Flow Field for Cavitation Reduction of Valve Sleeves

Authors: Kamal Upadhyay, Zhou Hua, Yu Rui

Abstract:

This paper aims to improve the streamline linked with the flow field and cavitation on the valve sleeve. We observed that local pressure fluctuation produces a low-pressure zone, central to the formation of vapor volume fraction within the valve chamber led to air-bubbles (or cavities). Thus, it allows simultaneously to a severe negative impact on the inner surface and lifespan of the valve sleeves. Cavitation reduction is a vitally important issue to pressure control valves. The optimization of the flow field is proposed in this paper to reduce the cavitation of valve sleeves. In this method, the inner wall of the valve sleeve is changed from a cylindrical surface to the conical surface, leading to the decline of the fluid flow velocity and the rise of the outlet pressure. Besides, the streamline is distributed inside the sleeve uniformly. Thus, the bubble generation is lessened. The fluid models are built and analysis of flow field distribution, pressure, vapor volume and velocity was carried out using computational fluid dynamics (CFD) and numerical technique. The results indicate that this structure can suppress the cavitation of valve sleeves effectively.

Keywords: streamline, cavitation, optimization, computational fluid dynamics

Procedia PDF Downloads 131
11338 LanE-change Path Planning of Autonomous Driving Using Model-Based Optimization, Deep Reinforcement Learning and 5G Vehicle-to-Vehicle Communications

Authors: William Li

Abstract:

Lane-change path planning is a crucial and yet complex task in autonomous driving. The traditional path planning approach based on a system of carefully-crafted rules to cover various driving scenarios becomes unwieldy as more and more rules are added to deal with exceptions and corner cases. This paper proposes to divide the entire path planning to two stages. In the first stage the ego vehicle travels longitudinally in the source lane to reach a safe state. In the second stage the ego vehicle makes lateral lane-change maneuver to the target lane. The paper derives the safe state conditions based on lateral lane-change maneuver calculation to ensure collision free in the second stage. To determine the acceleration sequence that minimizes the time to reach a safe state in the first stage, the paper proposes three schemes, namely, kinetic model based optimization, deep reinforcement learning, and 5G vehicle-to-vehicle (V2V) communications. The paper investigates these schemes via simulation. The model-based optimization is sensitive to the model assumptions. The deep reinforcement learning is more flexible in handling scenarios beyond the model assumed by the optimization. The 5G V2V eliminates uncertainty in predicting future behaviors of surrounding vehicles by sharing driving intents and enabling cooperative driving.

Keywords: lane change, path planning, autonomous driving, deep reinforcement learning, 5G, V2V communications, connected vehicles

Procedia PDF Downloads 215
11337 Modeling and Validation of Microspheres Generation in the Modified T-Junction Device

Authors: Lei Lei, Hongbo Zhang, Donald J. Bergstrom, Bing Zhang, K. Y. Song, W. J. Zhang

Abstract:

This paper presents a model for a modified T-junction device for microspheres generation. The numerical model is developed using a commercial software package: COMSOL Multiphysics. In order to test the accuracy of the numerical model, multiple variables, such as the flow rate of cross-flow, fluid properties, structure, and geometry of the microdevice are applied. The results from the model are compared with the experimental results in the diameter of the microsphere generated. The comparison shows a good agreement. Therefore the model is useful in further optimization of the device and feedback control of microsphere generation if any.

Keywords: CFD modeling, validation, microsphere generation, modified T-junction

Procedia PDF Downloads 689
11336 Optimization of the Aerodynamic Performances of an Unmanned Aerial Vehicle

Authors: Fares Senouci, Bachir Imine

Abstract:

This document provides numerical and experimental optimization of the aerodynamic performance of a drone equipped with three types of horizontal stabilizer. To build this optimal configuration, an experimental and numerical study was conducted on three parameters: the geometry of the stabilizer (horizontal form or reverse V form), the position of the horizontal stabilizer (up or down), and the landing gear position (closed or open). The results show that up-stabilizer position with respect to the horizontal plane of the fuselage provides better aerodynamic performance, and that the landing gear increases the lift in the zone of stability, that is to say where the flow is not separated.

Keywords: aerodynamics, drag, lift, turbulence model, wind tunnel

Procedia PDF Downloads 240
11335 Analysis and Optimized Design of a Packaged Liquid Chiller

Authors: Saeed Farivar, Mohsen Kahrom

Abstract:

The purpose of this work is to develop a physical simulation model for the purpose of studying the effect of various design parameters on the performance of packaged-liquid chillers. This paper presents a steady-state model for predicting the performance of package-Liquid chiller over a wide range of operation condition. The model inputs are inlet conditions; geometry and output of model include system performance variable such as power consumption, coefficient of performance (COP) and states of refrigerant through the refrigeration cycle. A computer model that simulates the steady-state cyclic performance of a vapor compression chiller is developed for the purpose of performing detailed physical design analysis of actual industrial chillers. The model can be used for optimizing design and for detailed energy efficiency analysis of packaged liquid chillers. The simulation model takes into account presence of all chiller components such as compressor, shell-and-tube condenser and evaporator heat exchangers, thermostatic expansion valve and connection pipes and tubing’s by thermo-hydraulic modeling of heat transfer, fluids flow and thermodynamics processes in each one of the mentioned components. To verify the validity of the developed model, a 7.5 USRT packaged-liquid chiller is used and a laboratory test stand for bringing the chiller to its standard steady-state performance condition is build. Experimental results obtained from testing the chiller in various load and temperature conditions is shown to be in good agreement with those obtained from simulating the performance of the chiller using the computer prediction model. An entropy-minimization-based optimization analysis is performed based on the developed analytical performance model of the chiller. The variation of design parameters in construction of shell-and-tube condenser and evaporator heat exchangers are studied using the developed performance and optimization analysis and simulation model and a best-match condition between the physical design and construction of chiller heat exchangers and its compressor is found to exist. It is expected that manufacturers of chillers and research organizations interested in developing energy-efficient design and analysis of compression chillers can take advantage of the presented study and its results.

Keywords: optimization, packaged liquid chiller, performance, simulation

Procedia PDF Downloads 266
11334 Physical Parameters Influencing the Yield of Nigella Sativa Oil Extracted by Hydraulic Pressing

Authors: Hadjadj Naima, K. Mahdi, D. Belhachat, F. S. Ait Chaouche, A. Ferradji

Abstract:

The Nigella Sativa oil yield extracted by hydraulic pressing is influenced by the pressure temperature and size particles. The optimization of oil extraction is investigated. The rate of extraction of the whole seeds is very weak, a crushing of seeds is necessary to facilitate the extraction. This rate augments with the rise of the temperature and the pressure, and decrease of size particles. The best output (66%) is obtained for a granulometry lower than 1mm, a temperature of 50°C and a pressure of 120 bars.

Keywords: oil, Nigella sativa, extraction, optimization, temperature, pressure

Procedia PDF Downloads 467
11333 Investigating the Properties of Asphalt and Asphalt Mixture Based on the Effect of Waste Toner

Authors: Prince Igor Itoua, Daquan Sun, Shihui Shen

Abstract:

This study aimed at investigating the properties of asphalt and mix asphalt based on the effects of waste toner sources (WT1 and WT2) with 8% dosage waste toner powders (WT). The test results included penetration, softening points, ductility, G*sinδ, G*/sinδ, Ideal cracking test(IDEAL-CT), and Ideal shear rutting test(IDEAL-RT). The results showed that the base binder with WT2 had a significantly higher viscosity value compared to the WT1 modified binder, and thus, higher energy for mixing and compaction is needed. Fur-thermore, the results of penetration, softening points, G*sinδ, and G*/sinδ were all affected by waste toner type. In terms of asphalt mixture, the IDEAL-RT test revealed that the addition of waste toner improved the rutting resistance of the asphalt mixture regardless of toner type. Further, CTindex values for waste toner-modified asphalt mixtures show no significant difference. Above all, WT-modified asphalt mixtures produced by the wet process have better rutting performance.

Keywords: waste toner, waste toner modified asphalt, asphalt mixture properties, IDEAL-RT test, IDEAL-CT test

Procedia PDF Downloads 70
11332 A Review on Artificial Neural Networks in Image Processing

Authors: B. Afsharipoor, E. Nazemi

Abstract:

Artificial neural networks (ANNs) are powerful tool for prediction which can be trained based on a set of examples and thus, it would be useful for nonlinear image processing. The present paper reviews several paper regarding applications of ANN in image processing to shed the light on advantage and disadvantage of ANNs in this field. Different steps in the image processing chain including pre-processing, enhancement, segmentation, object recognition, image understanding and optimization by using ANN are summarized. Furthermore, results on using multi artificial neural networks are presented.

Keywords: neural networks, image processing, segmentation, object recognition, image understanding, optimization, MANN

Procedia PDF Downloads 390
11331 Investigation of the Fading Time Effects on Microstructure and Mechanical Properties in Vermicular Cast Iron

Authors: Mehmet Ekici

Abstract:

In this study, the fading time affecting the mechanical properties and microstructures of vermicular cast iron were studied. Pig iron and steel scrap weighing about 12 kg were charged into the high-frequency induction furnace crucible and completely melted for production of vermicular cast iron. The slag was skimmed using a common flux. After fading time was set at 1. 3 and 5 minutes. In this way, three vermicular cast iron was produced that same composition but different phase structures. The microstructure of specimens was investigated, and uni-axial tensile test and the Charpy impact test were performed, and their micro-hardness measurements were done in order to characterize the mechanical behaviours of vermicular cast iron.

Keywords: vermicular cast iron, fading time, hardness, tensile test and impact test

Procedia PDF Downloads 331
11330 Study of Pressure and Air Mass Flow Effect on Output Power of PEM Fuel Cell Powertrains in Vehicles and Airplanes- A Simulation-based Approach

Authors: Mahdiye Khorasani, Arjun Vijay, Ali Mashayekh, Christian Trapp

Abstract:

The performance of Proton Exchange Membrane Fuel Cell (PEMFC) is highly dependent on the pressure and mass flow of media (Hydrogen and air) throughout the cells and the stack. Higher pressure, on the one hand, results in higher output power of the stack but, on the other hand, increases the electrical power demand of the compressor. In this work, a simulation model of a PEMFC system for vehicle and airplane applications is developed. With this new model, the effect of different pressures and air mass flow rates are investigated to discover the optimum operating point in a PEMFC system, and innovative operation strategies are implemented to optimize reactants flow while minimizing electrical power demand of the compressor for optimum performance. Additionally, a fuel cell system test bench is set up, which contains not only all the auxiliary components for conditioning the gases, reactants, and flows but also a dynamic titling table for testing different orientations of the stack to simulate the flight conditions during take-off and landing and off-road-vehicle scenarios. The results of simulation will be tested and validated on the test bench for future works.

Keywords: air mass flow effect, optimization of operation, pressure effect, PEMFC system, PEMFC system simulation

Procedia PDF Downloads 165
11329 Lubricating Grease from Waste Cooking Oil and Waste Motor Sludge

Authors: Aseem Rajvanshi, Pankaj Kumar Pandey

Abstract:

Increase in population has increased the demand of energy to fulfill all its needs. This will result in burden on fossil fuels especially crude oil. Waste oil due to its disposal problem creates environmental degradation. In this context, this paper studies utilization of waste cooking oil and waste motor sludge for making lubricating grease. Experimental studies have been performed by variation in time and concentration of mixture of waste cooking oil and waste motor sludge. The samples were analyzed using penetration test (ASTM D-217), dropping point (ASTM D-566), work penetration (ASTM D-217) and copper strip test (ASTM D-408). Among 6 samples, sample 6 gives the best results with a good drop point and a fine penetration value. The dropping point and penetration test values were found to be 205 °C and 315, respectively. The penetration value falls under the category of NLGI (National Lubricating Grease Institute) consistency number 1.

Keywords: crude oil, copper strip corrosion test, dropping point, penetration test

Procedia PDF Downloads 283
11328 Modelling and Optimisation of Floating Drum Biogas Reactor

Authors: L. Rakesh, T. Y. Heblekar

Abstract:

This study entails the development and optimization of a mathematical model for a floating drum biogas reactor from first principles using thermal and empirical considerations. The model was derived on the basis of mass conservation, lumped mass heat transfer formulations and empirical biogas formation laws. The treatment leads to a system of coupled nonlinear ordinary differential equations whose solution mapped four-time independent controllable parameters to five output variables which adequately serve to describe the reactor performance. These equations were solved numerically using fourth order Runge-Kutta method for a range of input parameter values. Using the data so obtained an Artificial Neural Network with a single hidden layer was trained using Levenberg-Marquardt Damped Least Squares (DLS) algorithm. This network was then fine-tuned for optimal mapping by varying hidden layer size. This fast forward model was then employed as a health score generator in the Bacterial Foraging Optimization code. The optimal operating state of the simplified Biogas reactor was thus obtained.

Keywords: biogas, floating drum reactor, neural network model, optimization

Procedia PDF Downloads 132
11327 A Gene Selection Algorithm for Microarray Cancer Classification Using an Improved Particle Swarm Optimization

Authors: Arfan Ali Nagra, Tariq Shahzad, Meshal Alharbi, Khalid Masood Khan, Muhammad Mugees Asif, Taher M. Ghazal, Khmaies Ouahada

Abstract:

Gene selection is an essential step for the classification of microarray cancer data. Gene expression cancer data (DNA microarray) facilitates computing the robust and concurrent expression of various genes. Particle swarm optimization (PSO) requires simple operators and less number of parameters for tuning the model in gene selection. The selection of a prognostic gene with small redundancy is a great challenge for the researcher as there are a few complications in PSO based selection method. In this research, a new variant of PSO (Self-inertia weight adaptive PSO) has been proposed. In the proposed algorithm, SIW-APSO-ELM is explored to achieve gene selection prediction accuracies. This new algorithm balances the exploration capabilities of the improved inertia weight adaptive particle swarm optimization and the exploitation. The self-inertia weight adaptive particle swarm optimization (SIW-APSO) is used to search the solution. The SIW-APSO is updated with an evolutionary process in such a way that each particle iteratively improves its velocities and positions. The extreme learning machine (ELM) has been designed for the selection procedure. The proposed method has been to identify a number of genes in the cancer dataset. The classification algorithm contains ELM, K- centroid nearest neighbor (KCNN), and support vector machine (SVM) to attain high forecast accuracy as compared to the start-of-the-art methods on microarray cancer datasets that show the effectiveness of the proposed method.

Keywords: microarray cancer, improved PSO, ELM, SVM, evolutionary algorithms

Procedia PDF Downloads 73
11326 A Mixture Vine Copula Structures Model for Dependence Wind Speed among Wind Farms and Its Application in Reactive Power Optimization

Authors: Yibin Qiu, Yubo Ouyang, Shihan Li, Guorui Zhang, Qi Li, Weirong Chen

Abstract:

This paper aims at exploring the impacts of high dimensional dependencies of wind speed among wind farms on probabilistic optimal power flow. To obtain the reactive power optimization faster and more accurately, a mixture vine Copula structure model combining the K-means clustering, C vine copula and D vine copula is proposed in this paper, through which a more accurate correlation model can be obtained. Moreover, a Modified Backtracking Search Algorithm (MBSA), the three-point estimate method is applied to probabilistic optimal power flow. The validity of the mixture vine copula structure model and the MBSA are respectively tested in IEEE30 node system with measured data of 3 adjacent wind farms in a certain area, and the results indicate effectiveness of these methods.

Keywords: mixture vine copula structure model, three-point estimate method, the probability integral transform, modified backtracking search algorithm, reactive power optimization

Procedia PDF Downloads 243
11325 Experimental Analyses of Thermoelectric Generator Behavior Using Two Types of Thermoelectric Modules for Marine Application

Authors: A. Nour Eddine, D. Chalet, L. Aixala, P. Chessé, X. Faure, N. Hatat

Abstract:

Thermal power technology such as the TEG (Thermo-Electric Generator) arouses significant attention worldwide for waste heat recovery. Despite the potential benefits of marine application due to the permanent heat sink from sea water, no significant studies on this application were to be found. In this study, a test rig has been designed and built to test the performance of the TEG on engine operating points. The TEG device is built from commercially available materials for the sake of possible economical application. Two types of commercial TEM (thermo electric module) have been studied separately on the test rig. The engine data were extracted from a commercial Diesel engine since it shares the same principle in terms of engine efficiency and exhaust with the marine Diesel engine. An open circuit water cooling system is used to replicate the sea water cold source. The characterization tests showed that the silicium-germanium alloys TEM proved a remarkable reliability on all engine operating points, with no significant deterioration of performance even under sever variation in the hot source conditions. The performance of the bismuth-telluride alloys was 100% better than the first type of TEM but it showed a deterioration in power generation when the air temperature exceeds 300 °C. The temperature distribution on the heat exchange surfaces revealed no useful combination of these two types of TEM with this tube length, since the surface temperature difference between both ends is no more than 10 °C. This study exposed the perspective of use of TEG technology for marine engine exhaust heat recovery. Although the results suggested non-sufficient power generation from the low cost commercial TEM used, it provides valuable information about TEG device optimization, including the design of heat exchanger and the types of thermo-electric materials.

Keywords: internal combustion engine application, Seebeck, thermo-electricity, waste heat recovery

Procedia PDF Downloads 235
11324 An Optimization Modelling to Evaluate Flights Scheduling at Tourist Airports

Authors: Dimitrios J. Dimitriou

Abstract:

Airport’s serving a tourist destination are an essential counterpart of the tourist demand supply chain, and their productivity is related to the region’s attractiveness and is enhanced by the air transport business. In this paper, the evaluation framework of the scheduled flights between two tourist airports is taken into consideration. By adopting a systemic approach, the arrivals from an airport that its connectivity heavily depended on the departures of another major airport are reviewed. The methodology framework, based on inventory control theory and the numerical example, promotes the use of the modelling formulation. The results would be essential for comparison and exercising to other similar cases.

Keywords: airport connectivity, inventory control, optimization, optimum allocation

Procedia PDF Downloads 322
11323 Process Optimization and Automation of Information Technology Services in a Heterogenic Digital Environment

Authors: Tasneem Halawani, Yamen Khateeb

Abstract:

With customers’ ever-increasing expectations for fast services provisioning for all their business needs, information technology (IT) organizations, as business partners, have to cope with this demanding environment and deliver their services in the most effective and efficient way. The purpose of this paper is to identify optimization and automation opportunities for the top requested IT services in a heterogenic digital environment and widely spread customer base. In collaboration with systems, processes, and subject matter experts (SMEs), the processes in scope were approached by analyzing four-year related historical data, identifying and surveying stakeholders, modeling the as-is processes, and studying systems integration/automation capabilities. This effort resulted in identifying several pain areas, including standardization, unnecessary customer and IT involvement, manual steps, systems integration, and performance measurement. These pain areas were addressed by standardizing the top five requested IT services, eliminating/automating 43 steps, and utilizing a single platform for end-to-end process execution. In conclusion, the optimization of IT service request processes in a heterogenic digital environment and widely spread customer base is challenging, yet achievable without compromising the service quality and customers’ added value. Further studies can focus on measuring the value of the eliminated/automated process steps to quantify the enhancement impact. Moreover, a similar approach can be utilized to optimize other IT service requests, with a focus on business criticality.

Keywords: automation, customer value, heterogenic, integration, IT services, optimization, processes

Procedia PDF Downloads 100
11322 Optimization Parameters Using Response Surface Method on Biomechanical Analysis for Malaysian Soccer Players

Authors: M. F. M. Ali, A. R. Ismail, B. M. Deros

Abstract:

Soccer is very popular and ranked as the top sports in the world as well as in Malaysia. Although soccer sport in Malaysia is currently professionalized, but it’s plunging achievements within recent years continue and are not to be proud of. After review, the Malaysian soccer players are still weak in terms of kicking techniques. The instep kick is a technique, which is often used in soccer for the purpose of short passes and making a scoring. This study presents the 3D biomechanics analysis on a soccer player during performing instep kick. This study was conducted to determine the optimization value for approach angle, distance of supporting leg from the ball and ball internal pressure respect to the knee angular velocity of the ball on the kicking leg. Six subjects from different categories using dominant right leg and free from any injury were selected to take part in this study. Subjects were asked to perform one step instep kick according to the setting for the variables with different parameter. Data analysis was performed using 3 Dimensional “Qualisys Track Manager” system and will focused on the bottom of the body from the waist to the ankle. For this purpose, the marker will be attached to the bottom of the body before the kicking is perform by the subjects. Statistical analysis was conducted by using Minitab software using Response Surface Method through Box-Behnken design. The results of this study found the optimization values for all three parameters, namely the approach angle, 53.6º, distance of supporting leg from the ball, 8.84sm and ball internal pressure, 0.9bar with knee angular velocity, 779.27 degrees/sec have been produced.

Keywords: biomechanics, instep kick, soccer, optimization

Procedia PDF Downloads 220
11321 Ant Colony Optimization Control for Multilevel STATCOM

Authors: H. Tédjini, Y. Meslem, B. Guesbaoui, A. Safa

Abstract:

Flexible AC Transmission Systems (FACTS) are potentially becoming more flexible and more economical local controllers in the power system; and because of the high MVA ratings, it would be expensive to provide independent, equal, regulated DC voltage sources to power the multilevel converters which are presently proposed for STATCOMs. DC voltage sources can be derived from the DC link capacitances which are charged by the rectified ac power. In this paper a new stronger control combined of nonlinear control based Lyapunov’s theorem and Ant Colony Algorithm (ACA) to maintain stability of multilevel STATCOM and the utility.

Keywords: Static Compensator (STATCOM), ant colony optimization (ACO), lyapunov control theory, Decoupled power control, neutral point clamped (NPC)

Procedia PDF Downloads 544
11320 Optimization of Titanium Leaching Process Using Experimental Design

Authors: Arash Rafiei, Carroll Moore

Abstract:

Leaching process as the first stage of hydrometallurgy is a multidisciplinary system including material properties, chemistry, reactor design, mechanics and fluid dynamics. Therefore, doing leaching system optimization by pure scientific methods need lots of times and expenses. In this work, a mixture of two titanium ores and one titanium slag are used for extracting titanium for leaching stage of TiO2 pigment production procedure. Optimum titanium extraction can be obtained from following strategies: i) Maximizing titanium extraction without selective digestion; and ii) Optimizing selective titanium extraction by balancing between maximum titanium extraction and minimum impurity digestion. The main difference between two strategies is due to process optimization framework. For the first strategy, the most important stage of production process is concerned as the main stage and rest of stages would be adopted with respect to the main stage. The second strategy optimizes performance of more than one stage at once. The second strategy has more technical complexity compared to the first one but it brings more economical and technical advantages for the leaching system. Obviously, each strategy has its own optimum operational zone that is not as same as the other one and the best operational zone is chosen due to complexity, economical and practical aspects of the leaching system. Experimental design has been carried out by using Taguchi method. The most important advantages of this methodology are involving different technical aspects of leaching process; minimizing the number of needed experiments as well as time and expense; and concerning the role of parameter interactions due to principles of multifactor-at-time optimization. Leaching tests have been done at batch scale on lab with appropriate control on temperature. The leaching tank geometry has been concerned as an important factor to provide comparable agitation conditions. Data analysis has been done by using reactor design and mass balancing principles. Finally, optimum zone for operational parameters are determined for each leaching strategy and discussed due to their economical and practical aspects.

Keywords: titanium leaching, optimization, experimental design, performance analysis

Procedia PDF Downloads 360
11319 The Relationship between Functional Movement Screening Test and Prevalence of Musculoskeletal Disorders in Emergency Nurse and Emergency Medical Services Staff Shiraz, Iran, 2017

Authors: Akram Sadat Jafari Roodbandi, Alireza Choobineh, Nazanin Hosseini, Vafa Feyzi

Abstract:

Introduction: Physical fitness and optimum functional movement are essential for efficiently performing job tasks without fatigue and injury. Functional Movement Screening (FMS) tests are used in screening of athletes and military forces. Nurses and emergency medical staff are obliged to perform many physical activities such as transporting patients, CPR operations, etc. due to the nature of their jobs. This study aimed to assess relationship between FMS test score and the prevalence of musculoskeletal disorders (MSDs) in emergency nurses and emergency medical services (EMS) staff. Methods: 134 male and female emergency nurses and EMS technicians participated in this cross-sectional, descriptive-analytical study. After video tutorial and practical training of how to do FMS test, the participants carried out the test while they were wearing comfortable clothes. The final score of the FMS test ranges from 0 to 21. The score of 14 is considered weak in the functional movement base on FMS test protocol. In addition to the demographic data questionnaire, the Nordic musculoskeletal questionnaire was also completed for each participant. SPSS software was used for statistical analysis with a significance level of 0.05. Results: Totally, 49.3% (n=66) of the subjects were female. The mean age and work experience of the subjects were 35.3 ± 8.7 and 11.4 ± 7.7, respectively. The highest prevalence of MSDs was observed at the knee and lower back with 32.8% (n=44) and 23.1% (n=31), respectively. 26 (19.4%) health worker had FMS test score of 14 and less. The results of the Spearman correlation test showed that the FMS test score was significantly associated with MSDs (r=-0.419, p < 0.0001). It meant that MSDs increased with the decrease of the FMS test score. Age, sex, and MSDs were the remaining significant factors in linear regression logistic model with dependent variable of FMS test score. Conclusion: FMS test seems to be a usable screening tool in pre-employment and periodic medical tests for occupations that require physical fitness and optimum functional movements.

Keywords: functional movement, musculoskeletal disorders, health care worker, screening test

Procedia PDF Downloads 119
11318 Optimal Design of Step-Stress Partially Life Test Using Multiply Censored Exponential Data with Random Removals

Authors: Showkat Ahmad Lone, Ahmadur Rahman, Ariful Islam

Abstract:

The major assumption in accelerated life tests (ALT) is that the mathematical model relating the lifetime of a test unit and the stress are known or can be assumed. In some cases, such life–stress relationships are not known and cannot be assumed, i.e. ALT data cannot be extrapolated to use condition. So, in such cases, partially accelerated life test (PALT) is a more suitable test to be performed for which tested units are subjected to both normal and accelerated conditions. This study deals with estimating information about failure times of items under step-stress partially accelerated life tests using progressive failure-censored hybrid data with random removals. The life data of the units under test is considered to follow exponential life distribution. The removals from the test are assumed to have binomial distributions. The point and interval maximum likelihood estimations are obtained for unknown distribution parameters and tampering coefficient. An optimum test plan is developed using the D-optimality criterion. The performances of the resulting estimators of the developed model parameters are evaluated and investigated by using a simulation algorithm.

Keywords: binomial distribution, d-optimality, multiple censoring, optimal design, partially accelerated life testing, simulation study

Procedia PDF Downloads 308
11317 Development of Methods for Plastic Injection Mold Weight Reduction

Authors: Bita Mohajernia, R. J. Urbanic

Abstract:

Mold making techniques have focused on meeting the customers’ functional and process requirements; however, today, molds are increasing in size and sophistication, and are difficult to manufacture, transport, and set up due to their size and mass. Presently, mold weight saving techniques focus on pockets to reduce the mass of the mold, but the overall size is still large, which introduces costs related to the stock material purchase, processing time for process planning, machining and validation, and excess waste materials. Reducing the overall size of the mold is desirable for many reasons, but the functional requirements, tool life, and durability cannot be compromised in the process. It is proposed to use Finite Element Analysis simulation tools to model the forces, and pressures to determine where the material can be removed. The potential results of this project will reduce manufacturing costs. In this study, a light weight structure is defined by an optimal distribution of material to carry external loads. The optimization objective of this research is to determine methods to provide the optimum layout for the mold structure. The topology optimization method is utilized to improve structural stiffness while decreasing the weight using the OptiStruct software. The optimized CAD model is compared with the primary geometry of the mold from the NX software. Results of optimization show an 8% weight reduction while the actual performance of the optimized structure, validated by physical testing, is similar to the original structure.

Keywords: finite element analysis, plastic injection molding, topology optimization, weight reduction

Procedia PDF Downloads 280
11316 Effects of Gratitude Practice on Relationship Satisfaction and the Role of Perceived Superiority

Authors: Anomi Bearden, Brooke Goodyear, Alicia Khan

Abstract:

This repeated-measures experiment explored the effects of six weeks of gratitude practice on college students (N = 67) on relationship satisfaction and perceived superiority. Replicating previous research on gratitude practice, it was hypothesized that after consistent gratitude practice, participants in the experimental group (n = 32) would feel increased levels of relationship satisfaction compared to the control group (n = 35). Of particular interest was whether the level of perceived superiority would moderate the effect of gratitude practice on relationship satisfaction. The gratitude group evidenced significantly higher appreciation and marginally higher relationship satisfaction at post-test than the control group (both groups being equal at pre-test). Significant enhancements in gratitude, satisfaction, and feeling both appreciative and appreciated were found in the gratitude group, as well as significant enhancements in gratitude, satisfaction, and feeling appreciated in the control group. Appreciation for one’s partner was the only measure that improved in the gratitude group and not the control group from pre-test to post-test. Perceived superiority did not change significantly from pre-test to post-test in either group, supporting the prevalence and stability of this bias within people’s overall perceptions of their relationships.

Keywords: gratitude, relationship satisfaction, perceived superiority, partner appreciation

Procedia PDF Downloads 97
11315 A Test Methodology to Measure the Open-Loop Voltage Gain of an Operational Amplifier

Authors: Maninder Kaur Gill, Alpana Agarwal

Abstract:

It is practically not feasible to measure the open-loop voltage gain of the operational amplifier in the open loop configuration. It is because the open-loop voltage gain of the operational amplifier is very large. In order to avoid the saturation of the output voltage, a very small input should be given to operational amplifier which is not possible to be measured practically by a digital multimeter. A test circuit for measurement of open loop voltage gain of an operational amplifier has been proposed and verified using simulation tools as well as by experimental methods on breadboard. The main advantage of this test circuit is that it is simple, fast, accurate, cost effective, and easy to handle even on a breadboard. The test circuit requires only the device under test (DUT) along with resistors. This circuit has been tested for measurement of open loop voltage gain for different operational amplifiers. The underlying goal is to design testable circuits for various analog devices that are simple to realize in VLSI systems, giving accurate results and without changing the characteristics of the original system. The DUTs used are LM741CN and UA741CP. For LM741CN, the simulated gain and experimentally measured gain (average) are calculated as 89.71 dB and 87.71 dB, respectively. For UA741CP, the simulated gain and experimentally measured gain (average) are calculated as 101.15 dB and 105.15 dB, respectively. These values are found to be close to the datasheet values.

Keywords: Device Under Test (DUT), open loop voltage gain, operational amplifier, test circuit

Procedia PDF Downloads 433
11314 Application of Imperialist Competitive Algorithm for Optimal Location and Sizing of Static Compensator Considering Voltage Profile

Authors: Vahid Rashtchi, Ashkan Pirooz

Abstract:

This paper applies the Imperialist Competitive Algorithm (ICA) to find the optimal place and size of Static Compensator (STATCOM) in power systems. The output of the algorithm is a two dimensional array which indicates the best bus number and STATCOM's optimal size that minimizes all bus voltage deviations from their nominal value. Simulations are performed on IEEE 5, 14, and 30 bus test systems. Also some comparisons have been done between ICA and the famous Particle Swarm Optimization (PSO) algorithm. Results show that how this method can be considered as one of the most precise evolutionary methods for the use of optimum compensator placement in electrical grids.

Keywords: evolutionary computation, imperialist competitive algorithm, power systems compensation, static compensators, voltage profile

Procedia PDF Downloads 592
11313 Test-Retest Agreement, Random Measurement Error and Practice Effect of the Continuous Performance Test-Identical Pairs for Patients with Schizophrenia

Authors: Kuan-Wei Chen, Chien-Wei Chen, Tai-Ling Chang, Nan-Cheng Chen, Ching-Lin Hsieh, Gong-Hong Lin

Abstract:

Background and Purposes: Deficits in sustained attention are common in patients with schizophrenia. Such impairment can limit patients to effectively execute daily activities and affect the efficacy of rehabilitation. The aims of this study were to examine the test-retest agreement, random measurement error, and practice effect of the Continuous Performance Test-Identical Pairs (CPT-IP) (a commonly used sustained attention test) in patients with schizophrenia. The results can provide empirical evidence for clinicians and researchers to apply a sustained attention test with sound psychometric properties in schizophrenia patients. Methods: We recruited patients with chronic schizophrenia to be assessed twice with 1 week interval using CPT-IP. The intra-class correlation coefficient (ICC) was used to examine the test-retest agreement. The percentage of minimal detectable change (MDC%) was used to examine the random measurement error. Moreover, the standardized response mean (SRM) was used to examine the practice effect. Results: A total of 56 patients participated in this study. Our results showed that the ICC was 0.82, MDC% was 47.4%, and SRMs were 0.36 for the CPT-IP. Conclusion: Our results indicate that CPT-IP has acceptable test-retests agreement, substantial random measurement error, and small practice effect in patients with schizophrenia. Therefore, to avoid overestimating patients’ changes in sustained attention, we suggest that clinicians interpret the change scores of CPT-IP conservatively in their routine repeated assessments.

Keywords: schizophrenia, sustained attention, CPT-IP, reliability

Procedia PDF Downloads 290
11312 Illuminating Human Identity in Theology and Islamic Philosophy

Authors: Khan Shahid, Shahid Zakia

Abstract:

The article demonstrates how Theology and Islamic Philosophy can be illuminated and enhanced through the application of the SOUL framework (Sincere act, Optimization effort, Ultimate goal, Law compliance). The study explores historical development using a phenomenological approach and integrates the SOUL framework to enrich Theology and Islamic Philosophy. The proposed framework highlights the significance of these elements, ultimately leading to a deeper understanding of Theology and Islamic Philosophy.

Keywords: SOUL framework, illuminating human identity, theology, Islamic Philosophy, sincerity act, optimization effort, ultimate goals, law compliance

Procedia PDF Downloads 80
11311 A Framework for Automating Software Testing: A Practical Approach

Authors: Ana Paula Cavalcanti Furtado, Silvio Meira

Abstract:

Context: The quality of a software product can be directly influenced by the quality of its development process. Therefore, immature or ad-hoc test processes are means that are unsuited for introducing systematic test automation, and should not be used to support improving the quality of software. Objective: In order to conduct this research, the benefits and limitations of and gaps in automating software testing had to be assessed in order to identify the best practices and to propose a strategy for systematically introducing test automation into software development processes. Method: To conduct this research, an exploratory bibliographical survey was undertaken so as to underpin the search by theory and the recent literature. After defining the proposal, two case studies were conducted so as to analyze the proposal in a real-world environment. In addition, the proposal was also assessed through a focus group with specialists in the field. Results: The proposal of a Framework for Automating Software Testing (FAST), which is a theoretical framework consisting of a hierarchical structure to introduce test automation. Conclusion: The findings of this research showed that the absence of systematic processes is one of the factors that hinder the introduction of test automation. Based on the results of the case studies, FAST can be considered as a satisfactory alternative that lies within the scope of introducing and maintaining test automation in software development.

Keywords: software process improvement, software quality, software testing, test automation

Procedia PDF Downloads 130