Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14713

Search results for: fuzzy logic system

14713 Modelling and Control of Electrohydraulic System Using Fuzzy Logic Algorithm

Authors: Hajara Abdulkarim Aliyu, Abdulbasid Ismail Isa


This research paper studies electrohydraulic system for its role in position and motion control system and develops as mathematical model describing the behaviour of the system. The research further proposes Fuzzy logic and conventional PID controllers in order to achieve both accurate positioning of the payload and overall improvement of the system performance. The simulation result shows Fuzzy logic controller has a superior tracking performance and high disturbance rejection efficiency for its shorter settling time, less overshoot, smaller values of integral of absolute and deviation errors over the conventional PID controller at all the testing conditions.

Keywords: electrohydraulic, fuzzy logic, modelling, NZ-PID

Procedia PDF Downloads 276
14712 Control of Hybrid System Using Fuzzy Logic

Authors: Faiza Mahi, Fatima Debbat, Mohamed Fayçal Khelfi


This paper proposes a control approach using Fuzzy Lo system. More precisely, the study focuses on the improvement of users service in terms of analysis and control of a transportation system their waiting times in the exchange platforms of passengers. Many studies have been developed in the literature for such problematic, and many control tools are proposed. In this paper we focus on the use of fuzzy logic technique to control the system during its evolution in order to minimize the arrival gap of connected transportation means at the exchange points of passengers. An example of illustration is worked out and the obtained results are reported. an important area of research is the modeling and simulation ordering system. We describe an approach to analysis using Fuzzy Logic. The hybrid simulator developed in toolbox Matlab consists calculation of waiting time transportation mode.

Keywords: Fuzzy logic, Hybrid system, Waiting Time, Transportation system, Control

Procedia PDF Downloads 452
14711 Improving Ride Comfort of a Bus Using Fuzzy Logic Controlled Suspension

Authors: Mujde Turkkan, Nurkan Yagiz


In this study an active controller is presented for vibration suppression of a full-bus model. The bus is modelled having seven degrees of freedom. Using the achieved model via Lagrange Equations the system equations of motion are derived. The suspensions of the bus model include air springs with two auxiliary chambers are used. Fuzzy logic controller is used to improve the ride comfort. The numerical results, verifies that the presented fuzzy logic controller improves the ride comfort.

Keywords: ride comfort, air spring, bus, fuzzy logic controller

Procedia PDF Downloads 308
14710 Application of Fuzzy Logic in Voltage Regulation of Radial Feeder with Distributed Generators

Authors: Anubhav Shrivastava, Lakshya Bhat, Shivarudraswamy


Distributed Generation is the need of the hour. With current advancements in the DG technology, there are some major issues that need to be tackled in order to make this method of generation of energy more efficient and feasible. Among other problems, the control in voltage is the major issue that needs to be addressed. This paper focuses on control of voltage using reactive power control of DGs with the help of fuzzy logic. The membership functions have been defined accordingly and the control of the system is achieved. Finally, with the help of simulation results in Matlab, the control of voltage within the tolerance limit set (+/- 5%) is achieved. The voltage waveform graphs for the IEEE 14 bus system are obtained by using simple algorithm with MATLAB and then with fuzzy logic for 14 bus system. The goal of this project was to control the voltage within limits by controlling the reactive power of the DG using fuzzy logic.

Keywords: distributed generation, fuzzy logic, matlab, newton raphson, IEEE 14 bus, voltage regulation, radial network

Procedia PDF Downloads 515
14709 Credit Risk Evaluation of Dairy Farming Using Fuzzy Logic

Authors: R. H. Fattepur, Sameer R. Fattepur, D. K. Sreekantha


Dairy Farming is one of the key industries in India. India is the leading producer and also the consumer of milk, milk-based products in the world. In this paper, we have attempted to the replace the human expert system and to develop an artificial expert system prototype to increase the speed and accuracy of decision making dairy farming credit risk evaluation. Fuzzy logic is used for dealing with uncertainty, vague and acquired knowledge, fuzzy rule base method is used for representing this knowledge for building an effective expert system.

Keywords: expert system, fuzzy logic, knowledge base, dairy farming, credit risk

Procedia PDF Downloads 262
14708 Adaptive E-Learning System Using Fuzzy Logic and Concept Map

Authors: Mesfer Al Duhayyim, Paul Newbury


This paper proposes an effective adaptive e-learning system that uses a coloured concept map to show the learner's knowledge level for each concept in the chosen subject area. A Fuzzy logic system is used to evaluate the learner's knowledge level for each concept in the domain, and produce a ranked concept list of learning materials to address weaknesses in the learner’s understanding. This system obtains information on the learner's understanding of concepts by an initial pre-test before the system is used for learning and a post-test after using the learning system. A Fuzzy logic system is used to produce a weighted concept map during the learning process. The aim of this research is to prove that such a proposed novel adapted e-learning system will enhance learner's performance and understanding. In addition, this research aims to increase participants' overall understanding of their learning level by providing a coloured concept map of understanding followed by a ranked concepts list of learning materials.

Keywords: adaptive e-learning system, coloured concept map, fuzzy logic, ranked concept list

Procedia PDF Downloads 191
14707 From Type-I to Type-II Fuzzy System Modeling for Diagnosis of Hepatitis

Authors: Shahabeddin Sotudian, M. H. Fazel Zarandi, I. B. Turksen


Hepatitis is one of the most common and dangerous diseases that affects humankind, and exposes millions of people to serious health risks every year. Diagnosis of Hepatitis has always been a challenge for physicians. This paper presents an effective method for diagnosis of hepatitis based on interval Type-II fuzzy. This proposed system includes three steps: pre-processing (feature selection), Type-I and Type-II fuzzy classification, and system evaluation. KNN-FD feature selection is used as the preprocessing step in order to exclude irrelevant features and to improve classification performance and efficiency in generating the classification model. In the fuzzy classification step, an “indirect approach” is used for fuzzy system modeling by implementing the exponential compactness and separation index for determining the number of rules in the fuzzy clustering approach. Therefore, we first proposed a Type-I fuzzy system that had an accuracy of approximately 90.9%. In the proposed system, the process of diagnosis faces vagueness and uncertainty in the final decision. Thus, the imprecise knowledge was managed by using interval Type-II fuzzy logic. The results that were obtained show that interval Type-II fuzzy has the ability to diagnose hepatitis with an average accuracy of 93.94%. The classification accuracy obtained is the highest one reached thus far. The aforementioned rate of accuracy demonstrates that the Type-II fuzzy system has a better performance in comparison to Type-I and indicates a higher capability of Type-II fuzzy system for modeling uncertainty.

Keywords: hepatitis disease, medical diagnosis, type-I fuzzy logic, type-II fuzzy logic, feature selection

Procedia PDF Downloads 222
14706 A Different Approach to Optimize Fuzzy Membership Functions with Extended FIR Filter

Authors: Jun-Ho Chung, Sung-Hyun Yoo, In-Hwan Choi, Hyun-Kook Lee, Moon-Kyu Song, Choon-Ki Ahn


The extended finite impulse response (EFIR) filter is addressed to optimize membership functions (MFs) of the fuzzy model that has strong nonlinearity. MFs are important parts of the fuzzy logic system (FLS) and, thus optimizing MFs of FLS is one of approaches to improve the performance of output. We employ the EFIR as an alternative optimization option to nonlinear fuzzy model. The performance of EFIR is demonstrated on a fuzzy cruise control via a numerical example.

Keywords: fuzzy logic system, optimization, membership function, extended FIR filter

Procedia PDF Downloads 442
14705 Design of Fuzzy Logic Based Global Power System Stabilizer for Dynamic Stability Enhancement in Multi-Machine Power System

Authors: N. P. Patidar, J. Earnest, Laxmikant Nagar, Akshay Sharma


This paper describes the diligence of a new input signal based fuzzy power system stabilizer in multi-machine power system. Instead of conventional input pairs like speed deviation (∆ω) and derivative of speed deviation i.e. acceleration (∆ω ̇) or speed deviation and accelerating power deviation of each machine, in this paper, deviation of active power through the tie line colligating two areas is used as one of the inputs to the fuzzy logic controller in concurrence with the speed deviation. Fuzzy Logic has the features of simple concept, easy effectuation, and computationally efficient. The advantage of this input is that, the same signal can be fed to each of the fuzzy logic controller connected with each machine. The simulated system comprises of two fully symmetrical areas coupled together by two 230 kV lines. Each area is equipped with two superposable generators rated 20 kV/900MVA and area-1 is exporting 413 MW to area-2. The effectiveness of the proposed control scheme has been assessed by performing small signal stability assessment and transient stability assessment. The proposed control scheme has been compared with a conventional PSS. Digital simulation is used to demonstrate the performance of fuzzy logic controller.

Keywords: Power System Stabilizer (PSS), small signal stability, inter-area oscillation, fuzzy logic controller, membership function, rule base

Procedia PDF Downloads 434
14704 Mathematical and Fuzzy Logic in the Interpretation of the Quran

Authors: Morteza Khorrami


The logic as an intellectual infrastructure plays an essential role in the Islamic sciences. Hence, there are a few of the verses of the Holy Quran that their interpretation is not possible due to lack of proper logic. In many verses in the Quran, argument and the respondent has requested from the audience that shows the logic rule is in the Quran. The paper which use a descriptive and analytic method, tries to show the role of logic in understanding of the Quran reasoning methods and display some of Quranic statements with mathematical symbols and point that we can help these symbols for interesting and interpretation and answering to some questions and doubts. In this paper, this problem has been mentioned that the Quran did not use two-valued logic (Aristotelian) in all cases, but the fuzzy logic can also be searched in the Quran.

Keywords: aristotelian logic, fuzzy logic, interpretation, Holy Quran

Procedia PDF Downloads 317
14703 Comparison Between Fuzzy and P&O Control for MPPT for Photovoltaic System Using Boost Converter

Authors: M. Doumi, A. Miloudi, A. G. Aissaoui, K. Tahir, C. Belfedal, S. Tahir


The studies on the photovoltaic system are extensively increasing because of a large, secure, essentially exhaustible and broadly available resource as a future energy supply. However, the output power induced in the photovoltaic modules is influenced by an intensity of solar cell radiation, temperature of the solar cells and so on. Therefore, to maximize the efficiency of the photovoltaic system, it is necessary to track the maximum power point of the PV array, for this Maximum Power Point Tracking (MPPT) technique is used. Some MPPT techniques are available in that perturbation and observation (P&O) and Fuzzy logic controller (FLC). The fuzzy control method has been compared with perturb and observe (P&O) method as one of the most widely conventional method used in this area. Both techniques have been analyzed and simulated. MPPT using fuzzy logic shows superior performance and more reliable control with respect to the P&O technique for this application.

Keywords: photovoltaic system, MPPT, perturb and observe, fuzzy logic

Procedia PDF Downloads 497
14702 Developing Fuzzy Logic Model for Reliability Estimation: Case Study

Authors: Soroor K. H. Al-Khafaji, Manal Mohammad Abed


The research aim of this paper is to evaluate the reliability of a complex engineering system and to design a fuzzy model for the reliability estimation. The designed model has been applied on Vegetable Oil Purification System (neutralization system) to help the specialist user based on the concept of FMEA (Failure Mode and Effect Analysis) to estimate the reliability of the repairable system at the vegetable oil industry. The fuzzy model has been used to predict the system reliability for a future time period, depending on a historical database for the two past years. The model can help to specify the system malfunctions and to predict its reliability during a future period in more accurate and reasonable results compared with the results obtained by the traditional method of reliability estimation.

Keywords: fuzzy logic, reliability, repairable systems, FMEA

Procedia PDF Downloads 527
14701 Maximum Power Point Tracking Using FLC Tuned with GA

Authors: Mohamed Amine Haraoubia, Abdelaziz Hamzaoui, Najib Essounbouli


The pursuit of the MPPT has led to the development of many kinds of controllers, one of which is the Fuzzy Logic Controller, which has proven its worth. To further tune this controller this paper will discuss and analyze the use of Genetic Algorithms to tune the Fuzzy Logic Controller. It will provide an introduction to both systems, and test their compatibility and performance.

Keywords: fuzzy logic controller, fuzzy logic, genetic algorithm, maximum power point, maximum power point tracking

Procedia PDF Downloads 241
14700 Using Fuzzy Logic Decision Support System to Predict the Lifted Weight for Students at Weightlifting Class

Authors: Ahmed Abdulghani Taha, Mohammad Abdulghani Taha


This study aims at being acquainted with the using the body fat percentage (%BF) with body Mass Index (BMI) as input parameters in fuzzy logic decision support system to predict properly the lifted weight for students at weightlifting class lift according to his abilities instead of traditional manner. The sample included 53 male students (age = 21.38 ± 0.71 yrs, height (Hgt) = 173.17 ± 5.28 cm, body weight (BW) = 70.34 ± 7.87.6 kg, Body mass index (BMI) 23.42 ± 2.06 kg.m-2, fat mass (FM) = 9.96 ± 3.15 kg and fat percentage (% BF) = 13.98 ± 3.51 %.) experienced the weightlifting class as a credit and has variance at BW, Hgt and BMI and FM. BMI and % BF were taken as input parameters in FUZZY logic whereas the output parameter was the lifted weight (LW). There were statistical differences between LW values before and after using fuzzy logic (Diff 3.55± 2.21, P > 0.001). The percentages of the LW categories proposed by fuzzy logic were 3.77% of students to lift 1.0 fold of their bodies; 50.94% of students to lift 0.95 fold of their bodies; 33.96% of students to lift 0.9 fold of their bodies; 3.77% of students to lift 0.85 fold of their bodies and 7.55% of students to lift 0.8 fold of their bodies. The study concluded that the characteristic changes in body composition experienced by students when undergoing weightlifting could be utilized side by side with the Fuzzy logic decision support system to determine the proper workloads consistent with the abilities of students.

Keywords: fuzzy logic, body mass index, body fat percentage, weightlifting

Procedia PDF Downloads 328
14699 Ant Lion Optimization in a Fuzzy System for Benchmark Control Problem

Authors: Leticia Cervantes, Edith Garcia, Oscar Castillo


At today, there are several control problems where the main objective is to obtain the best control in the study to decrease the error in the application. Many techniques can use to control these problems such as Neural Networks, PID control, Fuzzy Logic, Optimization techniques and many more. In this case, fuzzy logic with fuzzy system and an optimization technique are used to control the case of study. In this case, Ant Lion Optimization is used to optimize a fuzzy system to control the velocity of a simple treadmill. The main objective is to achieve the control of the velocity in the control problem using the ALO optimization. First, a simple fuzzy system was used to control the velocity of the treadmill it has two inputs (error and error change) and one output (desired speed), then results were obtained but to decrease the error the ALO optimization was developed to optimize the fuzzy system of the treadmill. Having the optimization, the simulation was performed, and results can prove that using the ALO optimization the control of the velocity was better than a conventional fuzzy system. This paper describes some basic concepts to help to understand the idea in this work, the methodology of the investigation (control problem, fuzzy system design, optimization), the results are presented and the optimization is used for the fuzzy system. A comparison between the simple fuzzy system and the optimized fuzzy systems are presented where it can be proving the optimization improved the control with good results the major findings of the study is that ALO optimization is a good alternative to improve the control because it helped to decrease the error in control applications even using any control technique to optimized, As a final statement is important to mentioned that the selected methodology was good because the control of the treadmill was improve using the optimization technique.

Keywords: ant lion optimization, control problem, fuzzy control, fuzzy system

Procedia PDF Downloads 281
14698 Active Power Control of PEM Fuel Cell System Power Generation Using Adaptive Neuro-Fuzzy Controller

Authors: Khaled Mammar


This paper presents an application of adaptive neuro-fuzzy controller for PEM fuel cell system. The model proposed for control include a fuel cell stack model, reformer model and DC/AC inverter model. Furthermore, a Fuzzy Logic (FLC) and adaptive neuro-fuzzy controllers are used to control the active power of PEM fuel cell system. The controllers modify the hydrogen flow feedback from the terminal load. The validity of the controller is verified when the fuel cell system model is used in conjunction with the ANFIS controller to predict the response of the active power. Simulation results confirmed the high-performance capability of the neuo-fuzzy to control power generation.

Keywords: fuel cell, PEMFC, modeling, simulation, Fuzzy Logic Controller, FLC, adaptive neuro-fuzzy controller, ANFIS

Procedia PDF Downloads 338
14697 Development of Fuzzy Logic and Neuro-Fuzzy Surface Roughness Prediction Systems Coupled with Cutting Current in Milling Operation

Authors: Joseph C. Chen, Venkata Mohan Kudapa


Development of two real-time surface roughness (Ra) prediction systems for milling operations was attempted. The systems used not only cutting parameters, such as feed rate and spindle speed, but also the cutting current generated and corrected by a clamp type energy sensor. Two different approaches were developed. First, a fuzzy inference system (FIS), in which the fuzzy logic rules are generated by experts in the milling processes, was used to conduct prediction modeling using current cutting data. Second, a neuro-fuzzy system (ANFIS) was explored. Neuro-fuzzy systems are adaptive techniques in which data are collected on the network, processed, and rules are generated by the system. The inference system then uses these rules to predict Ra as the output. Experimental results showed that the parameters of spindle speed, feed rate, depth of cut, and input current variation could predict Ra. These two systems enable the prediction of Ra during the milling operation with an average of 91.83% and 94.48% accuracy by FIS and ANFIS systems, respectively. Statistically, the ANFIS system provided better prediction accuracy than that of the FIS system.

Keywords: surface roughness, input current, fuzzy logic, neuro-fuzzy, milling operations

Procedia PDF Downloads 66
14696 Fuzzy Inference System for Diagnosis of Malaria

Authors: Purnima Pandit


Malaria remains one of the world’s most deadly infectious disease and arguably, the greatest menace to modern society in terms of morbidity and mortality. To choose the right treatment and to ensure a quality of life suitable for a specific patient condition, early and accurate diagnosis of malaria is essential. It reduces transmission of disease and prevents deaths. Our work focuses on designing an efficient, accurate fuzzy inference system for malaria diagnosis.

Keywords: fuzzy inference system, fuzzy logic, malaria disease, triangular fuzzy number

Procedia PDF Downloads 194
14695 Applicability of Fuzzy Logic for Intrusion Detection in Mobile Adhoc Networks

Authors: Ruchi Makani, B. V. R. Reddy


Mobile Adhoc Networks (MANETs) are gaining popularity due to their potential of providing low-cost mobile connectivity solutions to real-world communication problems. Integrating Intrusion Detection Systems (IDS) in MANETs is a tedious task by reason of its distinctive features such as dynamic topology, de-centralized authority and highly controlled/limited resource environment. IDS primarily use automated soft-computing techniques to monitor the inflow/outflow of traffic packets in a given network to detect intrusion. Use of machine learning techniques in IDS enables system to make decisions on intrusion while continuous keep learning about their dynamic environment. An appropriate IDS model is essential to be selected to expedite this application challenges. Thus, this paper focused on fuzzy-logic based machine learning IDS technique for MANETs and presented their applicability for achieving effectiveness in identifying the intrusions. Further, the selection of appropriate protocol attributes and fuzzy rules generation plays significant role for accuracy of the fuzzy-logic based IDS, have been discussed. This paper also presents the critical attributes of MANET’s routing protocol and its applicability in fuzzy logic based IDS.

Keywords: AODV, mobile adhoc networks, intrusion detection, anomaly detection, fuzzy logic, fuzzy membership function, fuzzy inference system

Procedia PDF Downloads 82
14694 Prediction Compressive Strength of Self-Compacting Concrete Containing Fly Ash Using Fuzzy Logic Inference System

Authors: Belalia Douma Omar, Bakhta Boukhatem, Mohamed Ghrici


Self-compacting concrete (SCC) developed in Japan in the late 80s has enabled the construction industry to reduce demand on the resources, improve the work condition and also reduce the impact of environment by elimination of the need for compaction. Fuzzy logic (FL) approaches has recently been used to model some of the human activities in many areas of civil engineering applications. Especially from these systems in the model experimental studies, very good results have been obtained. In the present study, a model for predicting compressive strength of SCC containing various proportions of fly ash, as partial replacement of cement has been developed by using Adaptive Neuro-Fuzzy Inference System (ANFIS). For the purpose of building this model, a database of experimental data were gathered from the literature and used for training and testing the model. The used data as the inputs of fuzzy logic models are arranged in a format of five parameters that cover the total binder content, fly ash replacement percentage, water content, super plasticizer and age of specimens. The training and testing results in the fuzzy logic model have shown a strong potential for predicting the compressive strength of SCC containing fly ash in the considered range.

Keywords: self-compacting concrete, fly ash, strength prediction, fuzzy logic

Procedia PDF Downloads 251
14693 Implementation of a Paraconsistent-Fuzzy Digital PID Controller in a Level Control Process

Authors: H. M. Côrtes, J. I. Da Silva Filho, M. F. Blos, B. S. Zanon


In a modern society the factor corresponding to the increase in the level of quality in industrial production demand new techniques of control and machinery automation. In this context, this work presents the implementation of a Paraconsistent-Fuzzy Digital PID controller. The controller is based on the treatment of inconsistencies both in the Paraconsistent Logic and in the Fuzzy Logic. Paraconsistent analysis is performed on the signals applied to the system inputs using concepts from the Paraconsistent Annotated Logic with annotation of two values (PAL2v). The signals resulting from the paraconsistent analysis are two values defined as Dc - Degree of Certainty and Dct - Degree of Contradiction, which receive a treatment according to the Fuzzy Logic theory, and the resulting output of the logic actions is a single value called the crisp value, which is used to control dynamic system. Through an example, it was demonstrated the application of the proposed model. Initially, the Paraconsistent-Fuzzy Digital PID controller was built and tested in an isolated MATLAB environment and then compared to the equivalent Digital PID function of this software for standard step excitation. After this step, a level control plant was modeled to execute the controller function on a physical model, making the tests closer to the actual. For this, the control parameters (proportional, integral and derivative) were determined for the configuration of the conventional Digital PID controller and of the Paraconsistent-Fuzzy Digital PID, and the control meshes in MATLAB were assembled with the respective transfer function of the plant. Finally, the results of the comparison of the level control process between the Paraconsistent-Fuzzy Digital PID controller and the conventional Digital PID controller were presented.

Keywords: fuzzy logic, paraconsistent annotated logic, level control, digital PID

Procedia PDF Downloads 199
14692 Intelligent System and Renewable Energy: A Farming Platform in Precision Agriculture

Authors: Ryan B. Escorial, Elmer A. Maravillas, Chris Jordan G. Aliac


This study presents a small-scale water pumping system utilizing a fuzzy logic inference system attached to a renewable energy source. The fuzzy logic controller was designed and simulated in MATLAB fuzzy logic toolbox to examine the properties and characteristics of the input and output variables. The result of the simulation was implemented in a microcontroller, together with sensors, modules, and photovoltaic cells. The study used a grand rapid variety of lettuce, organic substrates, and foliar for observation of the capability of the device to irrigate crops. Two plant boxes intended for manual and automated irrigation were prepared with each box having 48 heads of lettuce. The observation of the system took 22-31 days, which is one harvest period of the crop. Results showed a 22.55% increase in agricultural productivity compared to manual irrigation. Aside from reducing human effort, and time, the smart irrigation system could help lessen some of the shortcomings of manual irrigations. It could facilitate the economical utilization of water, reducing consumption by 25%. The use of renewable energy could also help farmers reduce the cost of production by minimizing the use of diesel and gasoline.

Keywords: fuzzy logic, intelligent system, precision agriculture, renewable energy

Procedia PDF Downloads 48
14691 Prediction of Coronary Heart Disease Using Fuzzy Logic

Authors: Elda Maraj, Shkelqim Kuka


Coronary heart disease causes many deaths in the world. Unfortunately, this problem will continue to increase in the future. In this paper, a fuzzy logic model to predict coronary heart disease is presented. This model has been developed with seven input variables and one output variable that was implemented for 30 patients in Albania. Here fuzzy logic toolbox of MATLAB is used. Fuzzy model inputs are considered as cholesterol, blood pressure, physical activity, age, BMI, smoking, and diabetes, whereas the output is the disease classification. The fuzzy sets and membership functions are chosen in an appropriate manner. Centroid method is used for defuzzification. The database is taken from University Hospital Center "Mother Teresa" in Tirana, Albania.

Keywords: coronary heart disease, fuzzy logic toolbox, membership function, prediction model

Procedia PDF Downloads 19
14690 Health Assessment of Power Transformer Using Fuzzy Logic

Authors: Yog Raj Sood, Rajnish Shrivastava, Anchal Wadhwa


Power transformer is one of the electrical equipment that has a central and critical role in the power system. In order to avoid power transformer failure, information system that provides the transformer condition is needed. This paper presents an information system to know the exact situations prevailing within the transformer by declaring its health index. Health index of a transformer is decided by considering several diagnostic tools. The current work deals with UV-Vis, IFT, FP, BDV and Water Content. UV/VIS results have been pre-accessed using separate FL controller for concluding with the Furan contents. It is broadly accepted that the life of a power transformer is the life of the oil/ paper insulating system. The method relies on the use of furan analysis (insulation paper), and other oil analysis results as a means to declare health index. Fuzzy logic system is used to develop the information system. The testing is done on 5 samples of oil of transformers of rating 132/66 KV to obtain the results and results are analyzed using fuzzy logic model.

Keywords: interfacial tension analyzer (ift), flash point (fp), furfuraldehyde (fal), health index

Procedia PDF Downloads 550
14689 Lateral Control of Electric Vehicle Based on Fuzzy Logic Control

Authors: Hartani Kada, Merah Abdelkader


Aiming at the high nonlinearities and unmatched uncertainties of the intelligent electric vehicles’ dynamic system, this paper presents a lateral motion control algorithm for intelligent electric vehicles with four in-wheel motors. A fuzzy logic procedure is presented and formulated to realize lateral control in lane change. The vehicle dynamics model and a desired target tracking model were established in this paper. A fuzzy logic controller was designed for integrated active front steering (AFS) and direct yaw moment control (DYC) in order to improve vehicle handling performance and stability, and a fuzzy controller for the automatic steering problem. The simulation results demonstrate the strong robustness and excellent tracking performance of the control algorithm that is proposed.

Keywords: fuzzy logic, lateral control, AFS, DYC, electric car technology, longitudinal control, lateral motion

Procedia PDF Downloads 465
14688 Integration Multi-Layer Security Modeling with Fuzzy Logic in Service-Oriented Architectures

Authors: Zeinab Ranjbar


Service-oriented architecture in the world today, it is proposed to exchange information and services of interest to those such as IT managers, business managers, designers and system builders scene. The basic architecture of the software used to provide service to all users.the worries of all people (managers, business managers, designers, and system builders scene) effectiveness of this model, how reliable it is in security transactions.To increase the reliability of multi-layer fuzzy logic Architectures used.

Keywords: SOA, service oriented architecture, fuzzy logic, multi layer, SOA security

Procedia PDF Downloads 290
14687 Integration of Fuzzy Logic in the Representation of Knowledge: Application in the Building Domain

Authors: Hafida Bouarfa, Mohamed Abed


The main object of our work is the development and the validation of a system indicated Fuzzy Vulnerability. Fuzzy Vulnerability uses a fuzzy representation in order to tolerate the imprecision during the description of construction. At the the second phase, we evaluated the similarity between the vulnerability of a new construction and those of the whole of the historical cases. This similarity is evaluated on two levels: 1) individual similarity: bases on the fuzzy techniques of aggregation; 2) Global similarity: uses the increasing monotonous linguistic quantifiers (RIM) to combine the various individual similarities between two constructions. The third phase of the process of Fuzzy Vulnerability consists in using vulnerabilities of historical constructions narrowly similar to current construction to deduce its estimate vulnerability. We validated our system by using 50 cases. We evaluated the performances of Fuzzy Vulnerability on the basis of two basic criteria, the precision of the estimates and the tolerance of the imprecision along the process of estimation. The comparison was done with estimates made by tiresome and long models. The results are satisfactory.

Keywords: case based reasoning, fuzzy logic, fuzzy case based reasoning, seismic vulnerability

Procedia PDF Downloads 199
14686 Control of Single Axis Magnetic Levitation System Using Fuzzy Logic Control

Authors: A. M. Benomair, M. O. Tokhi


This paper presents the investigation on a system model for the stabilization of a Magnetic Levitation System (Maglev’s). The magnetic levitation system is a challenging nonlinear mechatronic system in which an electromagnetic force is required to suspend an object (metal sphere) in air space. The electromagnetic force is very sensitive to the noise which can create acceleration forces on the metal sphere, causing the sphere to move into the unbalanced region. Maglev’s give the contribution in industry and this system has reduce the power consumption, has increase the power efficiency and reduce the cost maintenance. The common applications for Maglev’s Power Generation (e.g. wind turbine), Maglev’s trains and Medical Device (e.g. Magnetically suspended Artificial Heart Pump). This paper presents the comparison between dynamic response and robust characteristic for both conventional PD and Fuzzy PD controller. The main contribution of this paper is the proof of fuzzy PD type stabilization and robustness. By use of a method to tune the scaling factors of the linear PD type fuzzy controller from an equivalent tuned conventional PD.

Keywords: magnetic levitation system, PD controller, Fuzzy Logic Control, Fuzzy PD

Procedia PDF Downloads 202
14685 A Fuzzy Logic Based Health Assesment Platform

Authors: J. Al-Dmour, A. Sagahyroon, A. Al-Ali, S. Abusnana


Radio Frequency Based Identification Systems have emerged as one of the possible valuable solutions that can be utilized in healthcare systems. Nowadays, RFID tags are available with built-in human vital signs sensors such as Body Temperature, Blood Pressure, Heart Rate, Blood Sugar level and Oxygen Saturation in Blood. This work proposes the design, implementation, and testing of an integrated mobile RFID-based health care system. The system consists of a wireless mobile vital signs data acquisition unit (RFID-DAQ) integrated with a fuzzy-logic–based software algorithm to monitor and assess patients conditions. The system is implemented and tested in ‘Rashid Center for Diabetes and Research’, Ajman, UAE. System testing results are compared with the Modified Early Warning System (MEWS) that is currently used in practice. We demonstrate that the proposed and implemented system exhibits an accuracy level that is comparable and sometimes better than the widely adopted MEWS system.

Keywords: healthcare, fuzzy logic, MEWS, RFID

Procedia PDF Downloads 271
14684 Fuzzy Logic and Control Strategies on a Sump

Authors: Nasser Mohamed Ramli, Nurul Izzati Zulkifli


Sump can be defined as a reservoir which contains slurry; a mixture of solid and liquid or water, in it. Sump system is an unsteady process owing to the level response. Sump level shall be monitored carefully by using a good controller to avoid overflow. The current conventional controllers would not be able to solve problems with large time delay and nonlinearities, Fuzzy Logic controller is tested to prove its ability in solving the listed problems of slurry sump. Therefore, in order to justify the effectiveness and reliability of these controllers, simulation of the sump system was created by using MATLAB and the results were compared. According to the result obtained, instead of Proportional-Integral (PI) and Proportional-Integral and Derivative (PID), Fuzzy Logic controller showed the best result by offering quick response of 0.32 s for step input and 5 s for pulse generator, by producing small Integral Absolute Error (IAE) values that are 0.66 and 0.36 respectively.

Keywords: fuzzy, sump, level, controller

Procedia PDF Downloads 160