Search results for: surface treated graphene
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9421

Search results for: surface treated graphene

8701 Application of Taguchi Techniques on Machining of A356/Al2O3 Metal Matrix Nano-Composite

Authors: Abdallah M. Abdelkawy, Tarek M. El Hossainya, I. El Mahallawib

Abstract:

Recently, significant achievements have been made in development and manufacturing of nano-dispersed metal matrix nanocomposites (MMNCs). They gain their importance due to their high strength to weight ratio. The machining problems of these new materials are less widely investigated, thus this work focuses on machining of them. Aluminum-Silicon (A356)/ MMNC dispersed with alumina (Al2O3) is important in many applications include engine blocks. The final finish process of this application depends heavily on machining. The most important machining parameter studied includes: cutting force and surface roughness. Experimental trails are performed on the number of special samples of MMNC (with different Al2O3%) where the relation between Al2O3% and cutting speed, feed rate and cutting depth with cutting force and surface roughness were studied. The data obtained were statistically analyzed using Analysis of variance (ANOVA) to define the significant factors on both cutting force and surface roughness and their level of confident. Response Surface Methodology (RSM) is used to build a model relating cutting conditions and Al2O3% to the cutting force and surface roughness. The results have shown that feed and depth of cut have the major contribution on the cutting force and the surface roughness followed by cutting speed and nano-percent in MMNCs.

Keywords: machinability, cutting force, surface roughness, Ra, RSM, ANOVA, MMNCs

Procedia PDF Downloads 369
8700 Phytochemical Screening and Hepatotoxic Effect of Datura metel Linn. Aqueous Seed Extract in Albino Wistar Rats

Authors: I. M. Fakai, A. Abdulhamid, I. Sani, F. Bello, E. O. Olusesi

Abstract:

The phytochemical screening and hepatotoxic effect of Datura metel aqueous seeds extract in Albino Wistar rats were evaluated. Phytochemicals were screened using standard methods. The enzymes activity and liver function indices were also determined using standard methods of analysis. The phytochemicals screening revealed the presence of alkaloid, tannin, glycoside and flavonoid. The organ-body weight decreased significantly (P<0.05) at all the doses of the extract treated groups compared to the control. The activity of alkaline phosphatase decreased significantly (P<0.05) in the liver and increased significantly in the serum at all the doses of the extract treated groups compared to the control. The activity of serum alanine transaminase increased significantly (P<0.05) while there is no significant difference (P>0.05) in the activity liver alanine transaminase at all the doses of the extract treated groups compared to the control. The result also revealed significant increase (P<0.05) in the aspartate transaminase activity in both liver and serum at all doses of the extract treated groups compared to the control. Serum total protein, albumin, globulin, and total bilirubin concentration decreased significantly (P<0.05), while direct bilirubin concentration increased significantly (P<0.05) at all the doses of the extract treated groups compared to the control. The present study therefore revealed that, the present of some phytochemicals in the plant extract attributed the plant to its hepatotoxic effects as revealed in the alteration of marker enzymes and some liver function indices analyzed.

Keywords: datura metel, transaminases, hepatotoxic effect, phytochemicals, rats

Procedia PDF Downloads 445
8699 Surface Engineering and Characterization of S-Phase Formed in AISI 304 By Low-Temperature Nitrocarburizing

Authors: Jeet Vijay Sah, Alphonsa Joseph, Pravin Kumari Dwivedi, Ghanshyam Jhala, Subroto Mukherjee

Abstract:

AISI 304 is known for its corrosion resistance which comes from Cr that forms passive Cr₂O₃ on the surface. But its poor hardness makes it unsuitable for applications where the steel also requires high wear resistance. This can be improved by surface hardening using nitrocarburizing processes, which form ε-Fe2-3N, γ’-Fe4N, nitrides, and carbides of Cr and Fe on the surface and subsurface. These formed phases give the surface greater hardness, but the corrosion resistance drops because of the lack of Cr2O3 passivation as a result. To overcome this problem, plasma nitrocarburizing processes are being developed where the process temperatures are kept below 723 K to avoid Cr-N precipitation. In the presented work, low-temperature pulsed-DC plasma nitrocarburizing utilizing a discharge of N₂-H₂-C₂H₂ at 500 Pa with varying N₂:H₂ ratios was conducted on AISI 304 samples at 673 K. The process durations were also varied, and the samples were characterized by microindentation using Vicker’s hardness tester, corrosion resistances were established from electrochemical impedance studies, and corrosion potentials and corrosion currents were obtained by potentiodynamic polarization testing. XRD revealed S-phase, which is a supersaturated solid solution of N and C in the γ phase. The S-phase was observed to be composed of the expanded phases of γ; γN, γC, and γ’N and ε’N phases. Significant improvement in surface hardness was achieved after every process, which is attributed to the S-phase. Corrosion resistance was also found to improve after the processes. The samples were also characterized by XPS, SEM, and GDOES.

Keywords: AISI 304, surface engineering, nitrocarburizing, S-phase

Procedia PDF Downloads 107
8698 Chlorine Pretreatment Effect on Mechanical Properties of Optical Fiber Glass

Authors: Abhinav Srivastava, Hima Harode, Chandan Kumar Saha

Abstract:

The principal ingredient of an optical fiber is quartz glass. The quality of the optical fiber decreases if impure foreign substances are attached to its preform surface. If residual strain inside a preform is significant, it cracks with a small impact during drawing or transporting. Furthermore, damages and unevenness on the surface of an optical fiber base material break the fiber during drawing. The present work signifies that chlorine pre-treatment enhances mechanical properties of the optical fiber glass. FTIR (Fourier-Transform Infrared Spectroscopy) results show that chlorine gas chemically modifies the structure of silica clad; chlorine is known to soften glass. Metallic impurities on the preform surface likely formed volatile metal chlorides due to chlorine pretreatment at elevated temperature. The chlorine also acts as a drying agent, and therefore the preform surface is anticipated to be water deficient and supposedly avoids particle adhesion on the glass surface. The Weibull analysis of long length tensile strength demarcates a substantial shift in its knee. The higher dynamic fatigue n-value also indicated surface crack healing.

Keywords: mechanical strength, optical fiber glass, FTIR, Weibull analysis

Procedia PDF Downloads 176
8697 Extraction of Cellulose Nanocrystals from Soy Pods

Authors: Maycon dos Santos, Marivane Turim Koschevic, Karina Sayuri Ueda, Marcello Lima Bertuci, Farayde Matta Fackhouri, Silvia Maria Martelli

Abstract:

The use of cellulose nanocrystals as reinforcing agents in polymer nanocomposites is promising. In this study, we tested four different methods of mercerization were divided into two stages. The sample was treated in 5% NaOH solution for 30 minutes at 50 ° C in the first stage and 30vol H2O2 for 2 hours at 50 ° C in the second step, which showed better results. For the extraction of the sample obtained nanocrystals positive result was that the solution was treated with H2SO4 60% (w / w) for 1 hour at 50 ° C. The results were positive and showed that it is possible to extract CNC at low temperatures.

Keywords: soy pods, cellulose nanocrystals, temperature, acid concentration

Procedia PDF Downloads 297
8696 Effect of Temperature on Adsorption of Nano Ca-DTPMP Scale Inhibitor

Authors: Radhiyatul Hikmah Binti Abu, Zukhairi Bin Md Rahim, Siti Ujila Binti Masuri, Nur Ismarrubie Binti Zahari, Mohd Zobir Hussein

Abstract:

This paper describes the synthesis of Calcium Diethylenetriamine-penta (Ca-DTPMP) Scale Inhibitor (SI) and the effect of temperature on its adsorption onto the mineral surfaces. Nanosized particles of Ca-DTPMP SI were synthesized and TEM result shows that the sizes of the synthesized particles are ranged from 10 nm to 30 nm. This synthesized nano SI was then used in static adsorption/precipitation test with various temperatures (37°C, 60°C and 100°C) to determine the effect of temperature on its adsorption ability. The performance of the SI was measured by their diffusion capability, which can be inferred by weighing the metal-SI that successfully adsorbed onto the kaolinite (mineral) surface. The kaolinite samples were analyzed using Scanning Electron Microscope (SEM) and the results show the reduction of pores on kaolinite surface as temperature increases. This indicates higher adsorption of the SI particles onto the mineral surface. Furthermore, EDX analysis shows the presence of Phosphorus (P) and Magnesium (Mg2+) on kaolinite particle surface, hence reaffirming the fact that adsorption took place on the kaolinite surface.

Keywords: adsorption, diffusivity, scale, scale inhibitor

Procedia PDF Downloads 442
8695 Ligand-Depended Adsorption Characteristics of Silver Nanoparticles on Activated Carbon

Authors: Hamza Simsir, Nurettin Eltugral, Selhan Karagöz

Abstract:

Surface modification and functionalization has been an important tool for scientists in order to open new frontiers in nano science and nanotechnology. Desired surface characteristics for the intended applications can be achieved with surface functionalization. In this work, the effect of water soluble ligands on the adsorption capabilities of silver nanoparticles onto AC which was synthesized from German beech wood, was investigated. Sodium borohydride (NaBH4) and polyvinyl alcohol (PVA) were used as the ligands. Silver nanoparticles with different surface coatings have average sizes range from 10 to 13 nm. They were synthesized in aqueous media by reducing Ag (I) ion in the presence of ligands. These particles displayed adsorption tendencies towards AC when they were mixed together and shaken in distilled water. Silver nanoparticles (NaBH4-AgNPs) reduced and stabilized by NaBH4 adsorbed onto AC with a homogenous dispersion of aggregates with sizes in the range of 100-400 nm. Beside, silver nanoparticles, which were prepared in the presence of both NaBH4 and PVA (NaBH4/PVA-Ag NPs), demonstrated that NaBH4/PVA-Ag NPs adsorbed and dispersed homogenously but, they aggregated with larger sizes on the AC surface (range from 300 to 600 nm). In addition, desorption resistance of Ag nanoparticles were investigated in distilled water. According to the results AgNPs were not desorbed on the AC surface in distilled water.

Keywords: Silver nanoparticles, ligand, activated carbon, adsorption

Procedia PDF Downloads 329
8694 Engineering of Stable and Improved Electrochemical Activities of Redox Dominating Charge Storage Electrode Materials

Authors: Girish Sambhaji Gund

Abstract:

The controlled nanostructure growth and its strong coupling with the current collector are key factors to achieve good electrochemical performance of faradaic-dominant electroactive materials. We employed binder-less and additive-free hydrothermal and physical vapor doping methods for the synthesis of nickel (Ni) and cobalt (Co) based compounds nanostructures (NiO, NiCo2O4, NiCo2S4) deposited on different conductive substrates such as carbon nanotube (CNT) on stainless steel, and reduced graphene oxide (rGO) and N-doped rGO on nickel foam (NF). The size and density of Ni- and Co-based compound nanostructures are controlled through the strong coupling with carbon allotropes on stainless steel and NF substrates. This controlled nanostructure of Ni- and Co-based compounds with carbon allotropes leads to stable faradaic electrochemical reactions at the material/current collector interface and within the electrode, which is consequence of strong coupling of nanostructure with functionalized carbon surface as a buffer layer. Thus, it is believed that the results provide the synergistic approaches to stabilize electrode materials physically and chemically, and hence overall electrochemical activity of faradaic dominating battery-type electrode materials through buffer layer engineering.

Keywords: metal compounds, carbon allotropes, doping, electrochemicstry, hybrid supercapacitor

Procedia PDF Downloads 80
8693 Effect of Copper Addition at a Rate of 4% Weight on the Microstructure, Mechanical Characteristics, and Surface Roughness on the Hot Extrusion of Aluminum

Authors: S. M. A. Al Qawabah, A. I. O. Zaid

Abstract:

Al-4%Cu alloys are now widely used in many engineering applications especially in robotic, aerospace and vibration control area. The main problem arises from the weakness of their mechanical characteristics. Therefore, this study is directed towards enhancing the mechanical properties through severe plastic deformation. In this work, the hot direct extrusion process was chosen to provide the required hot work for this purpose. A direct extrusion die was designed and manufactured to be used in this investigation. The general microstructure, microhardness, surface roughness, and compression tests were performed on specimens from the produced Al-4%Cu alloy both in the as cast and after extrusion conditions. It was found that a pronounced enhancement in the mechanical characteristics of the produced Al-4%Cu after extrusion was achieved. The microhardness increased by 89.3%, the flow stress was decreased by 10% at 0.2 strain and finally the surface roughness was reduced by 81.6%.

Keywords: aluminum, copper, surface roughness, hot extrusion

Procedia PDF Downloads 571
8692 A Comparative Study on the Effectiveness of Conventional Physiotherapy Program, Mobilization and Taping with Proprioceptive Training for Patellofemoral Pain Syndrome

Authors: Mahesh Mitra

Abstract:

Introduction and Purpose: Patellofemoral Pain Syndrome [PFPS] is characterized by pain or discomfort seemingly originating from the contact of posterior surface of Patella with Femur. Given the multifactorial causes and high prevalence there is a need of proper management technique. Also a more comprehensive and best possible Physiotherapy treatment approach has to be devised to enhance the performance of the individual with PFPS. Purpose of the study was to: - Prevalence of PFPS in various sports - To determine if there exists any relationship between the Body Mass Index[BMI] and Pain Intensity in the person playing a sport. - To evaluate the effect of conventional Physiotherapy program, Mobilization and Taping with Proprioceptive training on PFPS. Hypothesis 1. Prevalence is not the same with different sporting activities 2. There is a relationship between BMI and Pain intensity. 3. There is no significant difference in the improvement with the different treatment approaches. Methodology: A sample of 200 sports men were tested for the prevalence of PFPS and their anthropometric measurements were obtained to check for the correlation between BMI vs Pain intensity. Out of which 80 diagnosed cases of PFPS were allotted into three treatment groups and evaluated for Pain at rest and at activity and KUJALA scale. Group I were treated with conventional Physiotherapy that included TENS application and Exercises, Group II were treated with compression mobilization along with exercises, Group III were treated with Taping and Proprioceptive exercises. The variables Pain on rest, activity and KUJALA score were measured initially, at 1 week and at the end of 2 weeks after respective treatment. Data Analysis - Prevalence percentage of PFPS in each sport - Pearsons Correlation coefficient to find the relationship between BMI and Pain during activity. - Repeated measures analysis of variance [ANOVA] to find out the significance during Pre, Mid and Post-test difference among - Newman Kuel Post hoc Test - ANCOVA for the difference amongst group I, II and III. Results and conclusion It was concluded that PFPS was more prevalent in volley ball players [80%] followed by football and basketball [66%] players, then in hand ball and cricket players [46.6%] and 40% in tennis players. There was no relationship between BMI of the individual and Pain intensity. All the three treatment approaches were effective whereas mobilization and taping were more effective than Conventional Physiotherapy program.

Keywords: PFPS, KUJALA score, mobilization, proprioceptive training

Procedia PDF Downloads 316
8691 Photo-Induced Reversible Surface Wettability Analysis of GLAD Synthesized In2O3/TiO2 Heterostructure Nanocolumn

Authors: Pheiroijam Pooja, P. Chinnamuthu

Abstract:

A novel vertical 1D In2O3/TiO2 nanocolumn (NC) axial heterostructure has been successfully synthesized using Glancing Angle Deposition (GLAD) technique inside E-Beam Evaporator chamber. Field emission scanning electron microscope (FESEM) has been used to evaluate the morphology of the structure grown. The estimated length of In2O3/TiO2 NC is ~250 nm and ~300nm for In2O3 and TiO2 respectively with diameter ~60-90 nm. The surface of the heterostructure is porous in nature which can affect the interfacial wettability properties. The grown structure has been further characterized using X-ray Diffraction (XRD) and UV-Visible absorption measurement. The polycrystalline nature of the sample has been examined using XRD with prominent peaks obtained with phase (101) for anatase TiO2 and (211) for In2O3. Here, 1D axial heterostructure NC thus favors efficient segregation of photo-excited carriers due to their type II band alignment between the constituent materials. Moreover, the 1D nanostructure is known for their large surface area and excellent ionic charge transport property. On exposure to UV light illumination, the surface properties of In2O3/TiO2 NC changes whereby the hydrophobic nature of the heterostructure changes to hydrophilic. As a result, the reversible surface wettability of heterostructure on interaction with UV light can give potential applications as antifogging and self-cleaning surfaces.

Keywords: GLAD, heterostructure, In2O3/TiO2 NC, surface wettability

Procedia PDF Downloads 164
8690 Ground Effect on Marine Midge Water Surface Locomotion

Authors: Chih-Hua Wu, Bang-Fuh Chen, Keryea Soong

Abstract:

Midges can move on the surface of the water at speeds of approximately 340 body-lengths/s and can move continuously for >90 min. Their wings periodically scull the sea surface to push water backward and thus generate thrust; their other body parts, including their three pairs of legs, touch the water only occasionally. The aim of this study was to investigate the locomotion mechanism of marine midges with a size of 2 mm and living in shallow reefs in Wanliton, southern Taiwan. We assumed that midges generate lift through two mechanisms: by sculling the surface of seawater to leverage the generated tension for thrust and by retracting their wings to generate aerodynamic lift at a suitable angle of attack. We performed computational fluid dynamic simulations to determine the mechanism of midge locomotion above the surface of the water. The simulations indicated that ground effects are essential and that both the midge trunk and wing tips must be very close to the water surface to produce sufficient lift to keep the midge airborne. Furthermore, a high wing-beat frequency is crucial for the midge to produce sufficient lift during wing retraction. Accordingly, ground effects, forward speed, and high wing-beat frequency are major factors influencing the ability of midges to generate sufficient lift and remain airborne above the water surface.

Keywords: ground effect, water locomotion, CFD, aerodynamic lift

Procedia PDF Downloads 82
8689 Isolation, Characterization and Myogenic Differentiation of Synovial Mesenchymal Stem Cells

Authors: Fatma Y. Meligy

Abstract:

Objectives: The objectives of this study aimed to isolate and characterize mesenchymal stem cells (MSCs) derived from synovial membrane. Then to assess the potentiality of myogenic differentiation of these isolated MSCs. Methods: The MSCs were isolated from synovial membrane by digestion method. Three adult rats were used. The 5 -azacytidine was added to the cultured cells for one day. The isolated cells and treated cells are assessed using immunoflouresence, flowcytometry, PCR and real time PCR. Results: The isolated stem cells showed morphological aspect of stem cells they showed strong positivity to CD44 and CD90 in immunoflouresence while in CD34 and CD45 showed negative reaction. The treated cells with 5-azacytidine was shown to have positive reaction for desmin. Flowcytometric analysis showed that synovial MSCs had strong positive percentage for CD44(%98)and CD90 (%97) and low percentage for CD34 & CD45 while the treated cells showed positive percentage for myogenic marker myogenin (85%). As regard the PCR and Real time PCR, the treated cells showed positive reaction to the desmin primer. Conclusion: The adult MSCs were isolated successfully from synovial membrane and characterized with stem cell markers. The isolated cells could be differentiated in vitro into myogenic cells. These differentiated cells could be used in auto-replacement of diseased or traumatized muscle cells as a regenerative therapy for muscle disorders and trauma.

Keywords: mesenchymal stem cells, synovial membrane, myogenic differentiation

Procedia PDF Downloads 306
8688 Complicated Corneal Ulceration in Cats: Clinical Diagnosis and Surgical Management of 80 Cases

Authors: Khaled M. Ali, Ayman A. Mostafa, Soliman M. Soliman

Abstract:

Objectives: To describe the most common clinical and endoscopic findings associated with complicated corneal ulcers in cats, and to determine the short-term outcomes after surgical treatment of these cats. Animals Eighteen client-owned cats of different breeds (52 females and 28 males), ranging in age from 3 months to 6 years, with corneal ulcers. Procedures: Cats were clinically evaluated to initially determine the concurrent corneal abnormalities. Endoscopic examination was performed to determine the anterior and posterior segments abnormalities. Superficial and deep stromal ulcers were treated using conjunctival flap. Corneal sequestrum was treated by partial keratectomy and conjunctival flap. Anterior synechia was treated via peripheral iridectomy and separation of the adhesion between the iris and the inner cornea. Symblepharon was treated by removal of the adhered conjunctival membrane from the cornea. Incurable endophthalmitis was treated surgically by extirpation. Short-term outcomes after surgical managements of selected corneal abnormalities were then assessed clinically and endoscopically. Results: Deep stromal ulcer with descemetocele, endophthalmitis, symblepharon, corneal sequestration and anterior synechia with secondary glaucoma and corneal scarring were the most common complications of corneal ulcer. FHV-1 was a common etiologic factor of corneal ulceration. Persistent corneal scars of varying shape and size developed in cats with deep stromal ulcer, anterior synechia, and corneal sequestration. Conclusions: Domestic shorthaired and Persian cats were the most predisposed breeds to FHV-1 infection and subsequent corneal ulceration. Immediate management of patients with corneal ulcer would prevent serious complications. No age or sex predisposition to complicated corneal ulceration in cats.

Keywords: cats, complicated corneal ulceration, clinical, endoscopic diagnosis, FHV-1

Procedia PDF Downloads 284
8687 Preparation and Characterization of AlkylAmines’ Surface Functionalized Activated Carbons for Dye Removal

Authors: Said M. AL-Mashaikhi, El-Said I. El-Shafey, Fakhreldin O. Suliman, Saleh Al-Busafi

Abstract:

Activated carbon (AC) was prepared from date palm leaflets via NaOH activation. AC was oxidized using nitric acid, producing oxidized activated carbon (OAC). OAC was surface functionalized using different amine surfactants, including methylamine (ONM), ethylamine (ONE), and diethylamine (ONDE) using the amide coupling process. Produced carbons were surface characterized for surface area and porosity, X-ray diffraction, SEM, FTIR, and TGA. AC surface area (580 m²/g) has shown a decrease in oxidation to 260 m²/g for OAC. On amine functionalization, the surface area has further decreased to 218, 108, and 20 m²/g on functionalization with methylamine, ethylamine, and diethylamine, respectively. FTIR and TGA showed that the nature of amine functionalization of AC is chemical. Methylene blue sorption was tested on these carbons in terms of kinetics and equilibrium. Sorption was found faster on amine-functionalized carbons than both AC and OAC, and this is due to hydrophobic interaction with the alkyl groups immobilized with data following pseudo second-order reaction. On the other hand, AC showed the slowest adsorption kinetic process due to the diffusion in the porous structure of AC. Sorption equilibrium data was found to follow the Langmuir sorption isotherm with maximum sorption found on ONE. Regardless of its lower surface area than activated carbon, ethylamine functionalized AC showed better performance than AC in terms of kinetics and equilibrium for dye removal.

Keywords: activated carbon, dye removal, functionalization, hydrophobic interaction, water treatment

Procedia PDF Downloads 167
8686 Using Life Cycle Assessment in Potable Water Treatment Plant: A Colombian Case Study

Authors: Oscar Orlando Ortiz Rodriguez, Raquel A. Villamizar-G, Alexander Araque

Abstract:

There is a total of 1027 municipal development plants in Colombia, 70% of municipalities had Potable Water Treatment Plants (PWTPs) in urban areas and 20% in rural areas. These PWTPs are typically supplied by surface waters (mainly rivers) and resort to gravity, pumping and/or mixed systems to get the water from the catchment point, where the first stage of the potable water process takes place. Subsequently, a series of conventional methods are applied, consisting in a more or less standardized sequence of physicochemical and, sometimes, biological treatment processes which vary depending on the quality of the water that enters the plant. These processes require energy and chemical supplies in order to guarantee an adequate product for human consumption. Therefore, in this paper, we applied the environmental methodology of Life Cycle Assessment (LCA) to evaluate the environmental loads of a potable water treatment plant (PWTP) located in northeastern Colombia following international guidelines of ISO 14040. The different stages of the potable water process, from the catchment point through pumping to the distribution network, were thoroughly assessed. The functional unit was defined as 1 m³ of water treated. The data were analyzed through the database Ecoinvent v.3.01, and modeled and processed in the software LCA-Data Manager. The results allowed determining that in the plant, the largest impact was caused by Clarifloc (82%), followed by Chlorine gas (13%) and power consumption (4%). In this context, the company involved in the sustainability of the potable water service should ideally reduce these environmental loads during the potable water process. A strategy could be the use of Clarifloc can be reduced by applying coadjuvants or other coagulant agents. Also, the preservation of the hydric source that supplies the treatment plant constitutes an important factor, since its deterioration confers unfavorable features to the water that is to be treated. By concluding, treatment processes and techniques, bioclimatic conditions and culturally driven consumption behavior vary from region to region. Furthermore, changes in treatment processes and techniques are likely to affect the environment during all stages of a plant’s operation cycle.

Keywords: climate change, environmental impact, life cycle assessment, treated water

Procedia PDF Downloads 225
8685 Developing a Systemic Monoclonal Antibody Therapy for the Treatment of Large Burn Injuries

Authors: Alireza Hassanshahi, Xanthe Strudwick, Zlatko Kopecki, Allison J Cowin

Abstract:

Studies have shown that Flightless (Flii) is elevated in human wounds, including burns, and reducing the level of Flii is a promising approach for improving wound repair and reducing scar formation. The most effective approach has been to neutralise Flii activity using localized, intradermal application of function blocking monoclonal antibodies. However, large surface area burns are difficult to treat by intradermal injection of therapeutics, so the aim of this study was to investigate if a systemic injection of a monoclonal antibody against Flii could improve healing in mice following burn injury. Flii neutralizing antibodies (FnAbs) were labelled with Alxa-Fluor-680 for biodistribution studies and the healing effects of systemically administered FnAbs to mice with burn injuries. A partial thickness, 7% (70mm2) total body surface area scald burn injury was created on the dorsal surface of mice (n=10/group), and 100µL of Alexa-Flour-680-labeled FnAbs were injected into the intraperitoneal cavity (IP) at time of injury. The burns were imaged on days 0, 1, 2, 3, 4, and 7 using IVIS Lumina S5 Imaging System, and healing was assessed macroscopically, histologically, and using immunohistochemistry. Fluorescent radiance efficiency measurements showed that IP injected Alexa-Fluor-680-FnAbs localized at the site of burn injury from day 1, remaining there for the whole 7-day study. The burns treated with FnAbs showed a reduction in macroscopic wound area and an increased rate of epithelialization compared to controls. Immunohistochemistry for NIMP-R14 showed a reduction in the inflammatory infiltrate, while CD31/VEGF staining showed improved angiogenesis post-systemic FnAb treatment. These results suggest that systemically administered FnAbs are active within the burn site and can improve healing outcomes. The clinical application of systemically injected Flii monoclonal antibodies could therefore be a potential approach for promoting the healing of large surface area burns immediately after injury.

Keywords: biodistribution, burn, flightless, systemic, fnAbs

Procedia PDF Downloads 173
8684 Cell Surface Display of Xylanase on Escherichia coli by TibA Autotransporter

Authors: Yeng Min Yi, Rosli Md Illias, Salehhuddin Hamdan

Abstract:

Industrial biocatalysis is mainly based on the use of cell free or intracellular enzyme systems. However, the expensive cost and relatively lower operational stability of free enzymes limit practical use in industries. Cell surface display system can be used as a cost-efficient alternative to overcome the laborious purification and substrate transport limitation. In this research, TibA autotransporter from E. coli was used to display Aspergillus fumigatus xylanase (xyn). The amplified xyn was fused in between N-terminal signal peptide and C-terminal β-barrel of TibA. The cloned was transformed and expressed in E. coli BL21 (DE3). Outer membrane localization of TibA-xyn fusion protein was confirmed by SDS PAGE and western blot with expected size of 62.5 kDa. Functional display of xyn was examined by activity assay. Cell surface displayed xyn exhibited the highest activity at 37 °c, 0.3 mM IPTG. As a summary, TibA displaying system has the potential for further industrial applications. Moreover, this is the first report of the display of xylanase using TibA on the surface of E. coli.

Keywords: biocatalysis, cell surface display, Escherichia coli, TibA autotransporter

Procedia PDF Downloads 282
8683 Occurrence of High Nocturnal Surface Ozone at a Tropical Urban Area

Authors: S. Dey, P. Sibanda, S. Gupta, A. Chakraborty

Abstract:

The occurrence of high nocturnal surface ozone over a tropical urban area (23̊ 32′16.99″ N and 87̊ 17′ 38.95″ E) is analyzed in this paper. Five incidences of nocturnal ozone maxima are recorded during the observational span of two years (June, 2013 to May, 2015). The maximum and minimum values of the surface ozone during these five occasions are 337.630 μg/m3 and 13.034 μg/m3 respectively. HYSPLIT backward trajectory analyses and wind rose diagrams support the horizontal transport of ozone from distant polluted places. Planetary boundary layer characteristics, concentration of precursor (NO2) and meteorology are found to play important role in the horizontal and vertical transport of surface ozone during nighttime.

Keywords: nocturnal ozone, planetary boundary layer, horizontal transport, meteorology, urban area

Procedia PDF Downloads 286
8682 Optical Breather in Phosphorene Monolayer

Authors: Guram Adamashvili

Abstract:

Surface plasmon polariton is a surface optical wave which undergoes a strong enhancement and spatial confinement of its wave amplitude near an interface of two-dimensional layered structures. Phosphorene (single-layer black phosphorus) and other two-dimensional anisotropic phosphorene-like materials are recognized as promising materials for potential future applications of surface plasmon polariton. A theory of an optical breather of self-induced transparency for surface plasmon polariton propagating in monolayer or few-layer phosphorene is developed. A theory of an optical soliton of self-induced transparency for surface plasmon polariton propagating in monolayer or few-layer phosphorene have been investigated earlier Starting from the optical nonlinear wave equation for surface TM-modes interacting with a two-dimensional layer of atomic systems or semiconductor quantum dots and a phosphorene monolayer (or other two-dimensional anisotropic material), we have obtained the evolution equations for the electric field of the breather. In this case, one finds that the evolution of these pulses become described by the damped Bloch-Maxwell equations. For surface plasmon polariton fields, breathers are found to occur. Explicit relations of the dependence of breathers on the local media, phosphorene anisotropic conductivity, transition layer properties and transverse structures of the SPP, are obtained and will be given. It is shown that the phosphorene conductivity reduces exponentially the amplitude of the surface breather of SIT in the process of propagation. The direction of propagation corresponding to the maximum and minimum damping of the amplitude are assigned along the armchair and zigzag directions of black phosphorus nano-film, respectively. The most rapid damping of the intensity occurs when the polarization of breather is along the armchair direction.

Keywords: breathers, nonlinear waves, solitons, surface plasmon polaritons

Procedia PDF Downloads 149
8681 Genistein Treatment Confers Protection Against Gliopathy & Vasculopathy of the Diabetic Retina in Rats

Authors: Sanaa AM Elgayar, Sohair A Eltony, Maha Mahmoud Abd El Rouf

Abstract:

Background: Retinopathy remains an important complication of diabetes. Aim of work: This work was carried out to evaluate the protective effects of genistein from diabetic retinopathy in rat. Material and Methods: Fifteen adult male albino rats were divided into two groups; Group I: control (n=5) and Group II: streptozotocin induced diabetic group (n=10), which is equally divided into two subgroups; IIa (diabetic vehicle control) and IIb (diabetic genistein-treated). Specimens were taken from the retina 12 weeks post induction, processed and examined using light, immunohistochemical, ultrastructural techniques. Blood samples were assayed for the levels of glucose. Results: In comparison with the diabetic non-treated group, the histological changes in macro and microglial glial cells reactivity and retinal blood capillaries were improved in genistein-treated groups. In addition, GFAP and iNOS expressions in the retina and the blood glucose level were reduced. Conclusion: Genistein ameliorates the histological changes of diabetic retinopathy reaching healing features, which resemble that of a normal retina.

Keywords: diabetic retinopathy, genistein, glia, capillaries.

Procedia PDF Downloads 315
8680 Heat Treatment on Malaysian Hardwood Timbers: The Effect of Heat Exposure at Different Levels of Temperature on Bending Strength Properties

Authors: Nur Ilya Farhana Md Noh, Zakiah Ahmad

Abstract:

Heat treatment on timbers is a process of applying heat to modify and equip the timbers with new improvised characteristics. It is environmental friendly compared to the common practice of treating timber by chemical preservatives. Malaysian hardwood timbers; Pauh Kijang and Kapur in green condition were heat treated at 150°C, 170°C, 190°C and 210°C in a specially design electronic furnace in one hour duration. The objectives were to determine the effect of heat treatment on bending strength properties of heat treated Pauh Kijang and Kapur in term of Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) and to examine the significance changes at each temperature levels applied. Untreated samples for each species were used as a control sample. The results indicated that the bending strength properties for both species of timbers were affected by the heat exposure. Both MOE and MOR values for heat treated Pauh Kijang were increased when subjected to the specified temperature levels except at 210°C. The values were dropped compared to the control sample and sample treated at 190°C. Heat treated Kapur shows the same pattern of increment on its MOE and MOR values after exposure to heat at three temperature levels used and the values dropped at 210°C. However, differ to Pauh Kijang, even though there were decrement occurred at 210°C but the value is still higher compared to the control sample. The increments of MOE and MOR values are an indicator that heat treatment had successfully improvised the bending strength properties of these two species of hardwood timber. As the good strength of Malaysian timbers used as structural material is limited in numbers and expensive, heat treating timber with low strength properties is an alternative way to overcome this issue. Heat treatment is an alternative method need to be explored and made available in Malaysia as this country is still practicing chemical preservative treatment on the timbers.

Keywords: bending strength, hardwood timber, heat treatment, modulus of elasticity (MOE), modulus of rupture (MOR)

Procedia PDF Downloads 264
8679 Development of Cobalt Doped Alumina Hybrids for Adsorption of Textile Effluents

Authors: Uzaira Rafique, Kousar Parveen

Abstract:

The discharge volume and composition of Textile effluents gains scientific concern due to its hazards and biotoxcity of azo dyes. Azo dyes are non-biodegradable due to its complex molecular structure and recalcitrant nature. Serious attempts have been made to synthesize and develop new materials to combat the environmental problems. The present study is designed for removal of a range of azo dyes (Methyl orange, Congo red and Basic fuchsine) from synthetic aqueous solutions and real textile effluents. For this purpose, Metal (cobalt) doped alumina hybrids are synthesized and applied as adsorbents in the batch experiment. Two different aluminium precursor (aluminium nitrate and spent aluminium foil) and glucose are mixed following sol gel method to get hybrids. The synthesized materials are characterized for surface and bulk properties using FTIR, SEM-EDX and XRD techniques. The characterization of materials under FTIR revealed that –OH (3487-3504 cm-1), C-H (2935-2985 cm-1), Al-O (~ 800 cm-1), Al-O-C (~1380 cm-1), Al-O-Al (659-669 cm-1) groups participates in the binding of dyes onto the surface of hybrids. Amorphous shaped particles and elemental composition of carbon (23%-44%), aluminium (29%-395%), and oxygen (11%-20%) is demonstrated in SEM-EDX micrograph. Time-dependent batch-experiments under identical experimental parameters showed 74% congo red, 68% methyl orange and 85% maximum removal of basic fuchsine onto the surface of cobalt doped alumina hybrids probably through the ion-exchange mechanism. The experimental data when treated with adsorption models is found to have good agreement with pseudo second order kinetic and freundlich isotherm for adsorption process. The present study concludes the successful synthesis of novel and efficient cobalt doped alumina hybrids providing environmental friendly and economical alternative to the commercial adsorbents for the treatment of industrial effluents.

Keywords: alumina hybrid, adsorption, dopant, isotherm, kinetic

Procedia PDF Downloads 193
8678 The Role of Physically Adsorbing Species of Oxyhydryl Reagents in Flotation Aggregate Formation

Authors: S. A. Kondratyev, O. I. Ibragimova

Abstract:

The authors discuss the collecting abilities of desorbable species (DS) of saturated fatty acids. The DS species of the reagent are understood as species capable of moving from the surface of the mineral particle to the bubble at the moment of the rupture of the interlayer of liquid separating these objects of interaction. DS species of carboxylic acids (molecules and ionic-molecular complexes) have the ability to spread over the surface of the bubble. The rate of their spreading at pH 7 and 10 over the water surface is determined. The collectibility criterion of saturated fatty acids is proposed. The values of forces exerted by the spreading DS species of reagents on liquid in the interlayer and the liquid flow rate from the interlayer are determined.

Keywords: criterion of action of physically adsorbed reagent, flotation, saturated fatty acids, surface pressure

Procedia PDF Downloads 222
8677 Benzimidazole as Corrosion Inhibitor for Heat Treated 6061 Al-SiCp Composite in Acetic Acid

Authors: Melby Chacko, Jagannath Nayak

Abstract:

6061 Al-SiCp composite was solutionized at 350 °C for 30 minutes and water quenched. It was then underaged at 140 °C (T6 treatment). The aging behaviour of the composite was studied using Rockwell B hardness measurement. Corrosion behaviour of the underaged sample was studied in different concentrations of acetic acid and at different temperatures. Benzimidazole at different concentrations was used for the inhibition studies. Inhibition efficiency of benzimidazole was calculated for different experimental conditions. Thermodynamic parameters were found out which suggested benzimidazole is an efficient inhibitor and it adsorbed onto the surface of composite by mixed adsorption where chemisorption is predominant.

Keywords: 6061 Al-SiCp composite, T6 treatment, corrosion inhibition, chemisorption

Procedia PDF Downloads 399
8676 Experience of Hydatid Disease of Liver at a Tertiary Care Center 7 Years Experience

Authors: Jibran Abbasy, Rizwan Sultan, Ammar Humayun, Tabish Chawla

Abstract:

Background: Hydatid disease caused by Echinococcus Granulosus affects liver in 70-90% of cases. Dogs are the definitive host while humans are the accidental host. Modalities used for its treatment are especially important for our population as the disease is endemic in many Asian countries. The aim of the study was to perform an audit of the various modalities used for treatment of hydatid disease of liver and the response to each modality in tertiary care center of Pakistan. Materials and Methods: Retrospective audit of patients diagnosed and treated for Hydatid disease of the liver at Aga Khan University Hospital from 1st January 2007 to 31st December 2014 was completed. All patients aged 16 and above were included. Patients who had extra hepatic disease and missing records were excluded. Outcome measures were morbidity, mortality and recurrence of the disease. Results: During the study period 56 patients were treated for isolated hepatic hydatid disease and were included. Mean age was 39 years with 48% being females and 52% males. Most common presenting complaint was abdominal pain seen in 53% of patients(n=41). Duration of symptoms was less than 6 months in 74% (n=38). Mostly right lobe was involved in 69% (n=38).Most common treatment modality used was surgery in 34 patients followed by PAIR in 14 patients while 8 patients were treated medically. At a median follow up of 34 months recurrence was seen in 2 patients treated with PAIR while no patient treated with surgery had recurrence with the median follow up of 20 months. While no morbidity and mortality were observed in PAIR, but in surgery 5 patients had morbidity while 1 patient had mortality. Conclusion: Our data is comparative to other studies in terms of morbidity, mortality, and recurrence. We had adequate follow up. In our study PAIR and surgery both are effective and have less complications and recurrence rate. Surgery is still the gold standard in terms of recurrence.

Keywords: echinococcous granulosus, puncture aspiration irrigation reaspiration (PAIR), surgery, hydatid disease

Procedia PDF Downloads 266
8675 Wettability Properties of Pineapple Leaf Fibers and Banana Pseudostem Fibers Treated by Cold Plasma

Authors: Tatiana Franco, Hugo A. Estupinan

Abstract:

Banana pseudostem fiber (BPF) and pineapple leaf fiber (PLF) for their excellent mechanical properties and biodegradability characteristics arouse interest in different areas of research. F In tropical regions, where the banana pseudostem and the pineapple leaf are transformed into hard-to-handle solid waste, they can be low-cost raw material and environmentally sustainable in research for composite materials. In terms of functionality of this type of fiber, an open structure would allow the adsorption and retention of organic, inorganic and metallic species. In general, natural fibers have closed structures on their surface with intricate internal arrangements that can be used for the solution of environmental problems and other technological uses, however it is not possible to access their internal structure and sublayers, exposing the fibers in the natural state. An alternative method to chemical and enzymatic treatment are the processes with the plasma treatments, which are known to be clean, economical and controlled. In this type of treatment, a gas contained in a reactor in the form of plasma acts on the fiber generating changes in its structure, morphology and topography. This work compares the effects on fibers of PLF and BPF treated with cold argon plasma, alternating time and current. These fibers are grown in the regions of Antioquia-Colombia. The morphological, compositional and wettability properties of the fibers were analyzed by Raman microscopy, contact angle measurements, scanning electron microscopy (SEM) and atomic force microscopy analysis (AFM). The treatment with cold plasma on PLF and BPF allowed increasing its wettability, the topography and the microstructural relationship between lignin and cellulose.

Keywords: cold plasma, contact angle, natural fibers, Raman, SEM, wettability

Procedia PDF Downloads 158
8674 Role of Biomaterial Surface Nanotopography on Protein Unfolding and Immune Response

Authors: Rahul Madathiparambil Visalakshan, Alex Cavallaro, John Hayball, Krasimir Vasilev

Abstract:

The role of biomaterial surface nanotopograhy on fibrinogen adsorption and unfolding, and the subsequent immune response were studied. Inconsistent topography and varying chemical functionalities along with a lack of reproducibility pose a challenge in determining the specific effects of nanotopography or chemistry on proteins and cells. It is important to have a well-defined nanotopography with a homogeneous chemistry to study the real effect of nanotopography on biological systems. Therefore, we developed a technique that can produce well-defined and highly reproducible topography to identify the role of specific roughness, size, height and density with the presence of homogeneous chemical functionality. Using plasma polymerisation of oxazoline monomers and immobilized gold nanoparticles we created surfaces with an equal number density of nanoparticles of different sizes. This surface was used to study the role of surface nanotopography and the interplay of surface chemistry on proteins and immune cells. The effect of nanotopography on fibrinogen adsorption was investigated using Quartz Cristal Microbalance with Dissipation and micro BCA. The mass of fibrinogen adsorbed on the surface increased with increasing size of nano-topography. Protein structural changes up on adsorption to the nano rough surface was studied using circular dichroism spectroscopy. Fibrinogen unfolding varied depending on the specific nanotopography of the surfaces. It was revealed that the in vitro immune response to the nanotopography surfaces changed due to this protein unfolding.

Keywords: biomaterial inflammation, protein and cell responses, protein unfolding, surface nanotopography

Procedia PDF Downloads 176
8673 The Effects of Combination of Melatonin with and without Zinc on Gonadotropin Hormones in Female Rats

Authors: Fariba Rahimi, Morteza Zendedel, Mohammad Jaafar Rezaee, Bita Vazir, Shahin Fakour

Abstract:

The present study was carried out to investigate the effect of melatonin (Mel) with and without zinc (Zn) on the gonadotropin hormones, also thyroid (T3 and T4) hormone concentration in female rats. A total of 40 adult female rats were randomly grouped into five treatment groups, each of 2 rats in a Completely Randomized Design (CRD) entire research time. Daily was treated by gavage with Zn and melatonin as follows: T1 (control1, basal diet), T2 (control 2, treated with normal saline) and other experimental groups, including T3, T4 and T5, were treated with a dose of zinc (40 ppm), melatonin (5 mg/kg), and combination zinc plus melatonin with the same level, respectively. Blood FSH and LH concentrations were measured. The result showed no significant differences between treatments in FSH and LH levels. The estrogen and progesterone and TSH levels in rats that received 5 mg of melatonin per day were higher than in other groups but not statistically significant (P>0.05). However, T3 (thyroid) concentration significantly (P<0.05) decreased in the group that received 40 mg/zinc per Kg compared to other groups. No significant (P>0.05) difference was detected among treatments in T4 levels. In conclusion, except for T3, had no significant (P>0.05) effect on another parameter in the female rats that received melatonin or zinc and a blend of melatonin and Zn.

Keywords: zinc, melatonin, hormone, rat

Procedia PDF Downloads 110
8672 Changes in Physical Soil Properties and Crop Status on Soil Enriched With Treated Manure

Authors: Vaclav Novak, Katerina Krizova, Petr Sarec

Abstract:

Modern agriculture has to face many issues from which soil degradation and lack of organic matter in the soil are only a few of them. Apart from Climate Change, human utilization of landscape is the cause of a majority part of these problems. Cattle production in Czechia has been reduced by more than half in recent 30 years. However, cattle manure is considered as staple organic fertilizer, and its role in attempts for sustainable agriculture is irreplaceable. This study aims to describe the impact of so-called activators of biological manure transformation (Z´fix, Olmix Group) mainly on physical soil properties but also on crop status. The experiment has been established in 2017; nevertheless, initial measurements of implement draft have been performed before the treated manure application. In 2018, the physical soil properties and crop status (sugar beet) has been determined and compared with the untreated manure and control variant. Significant results have been observed already in the first year, where the implement draft decreased by 9.2 % within the treated manure variant in comparison with the control variant.

Keywords: field experiment, implement draft, vegetation index, sugar beet

Procedia PDF Downloads 157