Search results for: in vivo biomarkers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1062

Search results for: in vivo biomarkers

342 In Vivo Assessment of Biogenically Synthesized Silver Nanoparticles

Authors: Muhammad Shahzad Tufail, Iram Liaqat

Abstract:

Silver nanoparticles (AgNPs) have wider biomedical applications due to their intensive antimicrobial activities. However, toxicity and side effects of nanomaterials like AgNPs is a subject of great controversy towards the further studies in this direction. In this study, biogenically synthesized AgNPs, previously characterized via ultraviolet (UV) visible spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and fourier transform infrared spectroscopy (FTIR), were subjected to toxicity evaluation using mice model. Albino male mice (BALB/c) were administered with 50 mgkg-1, 100 mgkg-1 and 150 mgkg-1 of AgNPs, respectively, except for control for 30 days. Log-probit regression analysis was used to measure the dosage response to determine the median lethal dose (LD50). Exposure to AgNPs caused significant changes in the levels of serum AST (P ˂ 0.05) at the 100mgkg-1 and 150mgkg-1 of AgNPs exposure, while ALT and serum creatinine (P ˃ 0.05) levels remained normal. Histopathology of male albino mice liver and kidney was studied after 30 days experimental period. Results revealed that mice exposed to heavy dose (150 mgkg-1) of AgNPs showed cell distortion, necrosis and detachment of hepatocytes in the liver. Regarding kidney, at lower concentration, normal renal structure with normal glomeruli was observed. However, at higher concentration (150 mgkg-1), kidneys showed smooth surface and dark red colour with proliferation of podocytes. It can be concluded from present study that biologically synthesized AgNPs are small to be eliminated easily by kidney and therefore the liver and kidney did not show toxicity at low concentrations.

Keywords: silver nanoparticles, pseudomonas aeruginosa, male albino mice, toxicity assessment

Procedia PDF Downloads 55
341 Advances in Health Risk Assessment of Mycotoxins in Africa

Authors: Wilfred A. Abiaa, Chibundu N. Ezekiel, Benedikt Warth, Michael Sulyok, Paul C. Turner, Rudolf Krska, Paul F. Moundipa

Abstract:

Mycotoxins are a wide range of toxic secondary metabolites of fungi that contaminate various food commodities worldwide especially in sub-Saharan Africa (SSA). Such contamination seriously compromises food safety and quality posing a serious problem for human health as well as to trade and the economy. Their concentrations depend on various factors, such as the commodity itself, climatic conditions, storage conditions, seasonal variances, and processing methods. When humans consume foods contaminated by mycotoxins, they exert toxic effects to their health through various modes of actions. Rural populations in sub-Saharan Africa, are exposed to dietary mycotoxins, but it is supposed that exposure levels and health risks associated with mycotoxins between SSA countries may vary. Dietary exposures and health risk assessment studies have been limited by lack of equipment for the proper assessment of the associated health implications on consumer populations when they eat contaminated agricultural products. As such, mycotoxin research is premature in several SSA nations with product evaluation for mycotoxin loads below/above legislative limits being inadequate. Few nations have health risk assessment reports mainly based on direct quantification of the toxins in foods ('external exposure') and linking food levels with data from food frequency questionnaires. Nonetheless, the assessment of the exposure and health risk to mycotoxins requires more than the traditional approaches. Only a fraction of the mycotoxins in contaminated foods reaches the blood stream and exert toxicity ('internal exposure'). Also, internal exposure is usually smaller than external exposure thus dependence on external exposure alone may induce confounders in risk assessment. Some studies from SSA earlier focused on biomarker analysis mainly on aflatoxins while a few recent studies have concentrated on the multi-biomarker analysis of exposures in urine providing probable associations between observed disease occurrences and dietary mycotoxins levels. As a result, new techniques that could assess the levels of exposures directly in body tissue or fluid, and possibly link them to the disease state of individuals became urgent.

Keywords: mycotoxins, biomarkers, exposure assessment, health risk assessment, sub-Saharan Africa

Procedia PDF Downloads 547
340 Lipid-Chitosan Hybrid Nanoparticles for Controlled Delivery of Cisplatin

Authors: Muhammad Muzamil Khan, Asadullah Madni, Nina Filipczek, Jiayi Pan, Nayab Tahir, Hassan Shah, Vladimir Torchilin

Abstract:

Lipid-polymer hybrid nanoparticles (LPHNP) are delivery systems for controlled drug delivery at tumor sites. The superior biocompatible properties of lipid and structural advantages of polymer can be obtained via this system for controlled drug delivery. In the present study, cisplatin-loaded lipid-chitosan hybrid nanoparticles were formulated by the single step ionic gelation method based on ionic interaction of positively charged chitosan and negatively charged lipid. Formulations with various chitosan to lipid ratio were investigated to obtain the optimal particle size, encapsulation efficiency, and controlled release pattern. Transmission electron microscope and dynamic light scattering analysis demonstrated a size range of 181-245 nm and a zeta potential range of 20-30 mV. Compatibility among the components and the stability of formulation were demonstrated with FTIR analysis and thermal studies, respectively. The therapeutic efficacy and cellular interaction of cisplatin-loaded LPHNP were investigated using in vitro cell-based assays in A2780/ADR ovarian carcinoma cell line. Additionally, the cisplatin loaded LPHNP exhibited a low toxicity profile in rats. The in-vivo pharmacokinetics study also proved a controlled delivery of cisplatin with enhanced mean residual time and half-life. Our studies suggested that the cisplatin-loaded LPHNP being a promising platform for controlled delivery of cisplatin in cancer therapy.

Keywords: cisplatin, lipid-polymer hybrid nanoparticle, chitosan, in vitro cell line study

Procedia PDF Downloads 112
339 Development of Site-Specific Colonic Drug Delivery System (Nanoparticles) of Chitosan Coated with pH Sensitive Polymer for the Management of Colonic Inflammation

Authors: Pooja Mongia Raj, Rakesh Raj, Alpana Ram

Abstract:

Background: The use of multiparticulate drug delivery systems in preference to single unit dosage forms for colon targeting purposes dates back to 1985 when Hardy and co-workers showed that multiparticulate systems enabled the drug to reach the colon quickly and were retained in the ascending colon for a relatively long period of time. Methods: Site-specific colonic drug delivery system (nanoparticles) of 5-ASA were prepared and coated with pH sensitive polymer. Chitosan nanoparticles (CTNP) bearing 5-Amino salicylic acid (5-ASA) were prepared, by ionotropic gelation method. Nanoparticulate dosage form consisting of a hydrophobic core enteric coated with pH-dependent polymer Eudragit S-100 by solvent evaporation method, for the effective delivery of drug to the colon for treatment of ulcerative colitis. Results: The mean diameter of CTNP and ECTNP formulations were 159 and 661 nm, respectively. Also optimum value of polydispersity index was found to be 0.249 [count rate (kcps) was 251.2] and 0.170 [count rate (kcps) was 173.9] was obtained for both the formulations respectively. Conclusion: CTNP and Eudragit chitosan nanoparticles (ECTNP) was characterized for shape and surface morphology by scanning electron microscopy (SEM) appeared to be spherical in shape. The in vitro drug release was investigated using USP dissolution test apparatus in different simulated GIT fluids showed promising release. In vivo experiments are in further proceeding for fruitful results.

Keywords: colon targeting, nanoparticles, polymer, 5-amino salicylic acid, edragit

Procedia PDF Downloads 476
338 Copy Number Variants in Children with Non-Syndromic Congenital Heart Diseases from Mexico

Authors: Maria Lopez-Ibarra, Ana Velazquez-Wong, Lucelli Yañez-Gutierrez, Maria Araujo-Solis, Fabio Salamanca-Gomez, Alfonso Mendez-Tenorio, Haydeé Rosas-Vargas

Abstract:

Congenital heart diseases (CHD) are the most common congenital abnormalities. These conditions can occur as both an element of distinct chromosomal malformation syndromes or as non-syndromic forms. Their etiology is not fully understood. Genetic variants such copy number variants have been associated with CHD. The aim of our study was to analyze these genomic variants in peripheral blood from Mexican children diagnosed with non-syndromic CHD. We included 16 children with atrial and ventricular septal defects and 5 healthy subjects without heart malformations as controls. To exclude the most common heart disease-associated syndrome alteration, we performed a fluorescence in situ hybridization test to identify the 22q11.2, responsible for congenital heart abnormalities associated with Di-George Syndrome. Then, a microarray based comparative genomic hybridization was used to identify global copy number variants. The identification of copy number variants resulted from the comparison and analysis between our results and data from main genetic variation databases. We identified copy number variants gain in three chromosomes regions from pediatric patients, 4q13.2 (31.25%), 9q34.3 (25%) and 20q13.33 (50%), where several genes associated with cellular, biosynthetic, and metabolic processes are located, UGT2B15, UGT2B17, SNAPC4, SDCCAG3, PMPCA, INPP6E, C9orf163, NOTCH1, C20orf166, and SLCO4A1. In addition, after a hierarchical cluster analysis based on the fluorescence intensity ratios from the comparative genomic hybridization, two congenital heart disease groups were generated corresponding to children with atrial or ventricular septal defects. Further analysis with a larger sample size is needed to corroborate these copy number variants as possible biomarkers to differentiate between heart abnormalities. Interestingly, the 20q13.33 gain was present in 50% of children with these CHD which could suggest that alterations in both coding and non-coding elements within this chromosomal region may play an important role in distinct heart conditions.

Keywords: aCGH, bioinformatics, congenital heart diseases, copy number variants, fluorescence in situ hybridization

Procedia PDF Downloads 266
337 A Secreted Protein Can Attenuate High Fat Diet Induced Obesity and Metabolic Syndrome in Mice

Authors: Abdul Soofi, Katherine Wolf, Egon Ranghini, Gregory Dressler

Abstract:

Obesity and its associated complications, such as insulin resistance and non-alcoholic fatty liver disease, are reaching epidemic proportions. In mice, the TGF-β superfamily is implicated in the regulation of white and brown adipose tissues differentiation. The Kielin/Chordin-like Protein (KCP) is a secreted regulator of the TGF-β superfamily pathways that can inhibit both TGF-β and Activin signals while enhancing the Bone Morphogenetic protein (BMP) signaling. However, the effects of KCP on metabolism and obesity have not been studied in animal models. Thus, we examined the effects of KCP loss or gain of function in mice that were maintained on either a regular or a high fat diet. Loss of KCP sensitized mice to obesity and associated complications such as hepatic steatosis and glucose intolerance. In contrast, transgenic mice that expressed KCP in the kidney, liver and adipose tissues were resistant to developing high fat diet induced obesity and had significantly reduced white adipose tissue. KCP over-expression was able to shift the pattern of Smad signaling in vivo, to increase the levels of P-Smad1 and decrease P-Smad3, resulting in resistance to high fat diet induced hepatic steatosis and glucose intolerance. In aging mice, loss of KCP promoted liver pathology even when mice were fed a normal diet. The data demonstrate that shifting the TGF-β superfamily signaling with a secreted inhibitor or enhancer can alter the physiology of adipose tissue to reduce obesity and can inhibit the initiation and progression of hepatic steatosis to significantly reduce the effects of high fat diet induced metabolic disease.

Keywords: adipose tissue, KCP, obesity, TGF-β, BMP, hepatic steatosis, metabolic syndrome

Procedia PDF Downloads 334
336 Mechanisms and Regulation of the Bi-directional Motility of Mitotic Kinesin Nano-motors

Authors: Larisa Gheber

Abstract:

Mitosis is an essential process by which duplicated genetic information is transmitted from mother to daughter cells. Incorrect chromosome segregation during mitosis can lead to genetic diseases, chromosome instability and cancer. This process is mediated by a dynamic microtubule-based intracellular structure, the mitotic spindle. One of the major factors that govern the mitotic spindle dynamics are the kinesin-5 biological nano motors that were believed to move unidirectionally on the microtubule filaments, using ATP hydrolysis, thus performing essential functions in mitotic spindle dynamics. Surprisingly, several reports from our and other laboratories have demonstrated that some kinesin-5 motors are bi-directional: they move in minus-end direction on the microtubules as single-molecules and can switch directionality under a number of conditions. These findings broke a twenty-five-years old dogma regarding kinesin directionality (1, 2). The mechanism of this bi-directional motility and its physiological significance remain unclear. To address this unresolved problem, we apply an interdisciplinary approach combining live cell imaging, biophysical single molecule, and structural experiments to examine the activity of these motors and their mutated variants in vivo and in vitro. Our data shows that factors such as protein phosphorylation (3, 4), motor clustering on the microtubules (5, 6) and structural elements (7, 8) regulate the bi-directional motility of kinesin motors. We also show, using Cryo-EM, that bi-directional kinesin motors obtain non-canonical microtubule binding, which is essential to their special motile properties and intracellular functions. We will discuss the implication of these findings to mechanism bi-directional motility and physiological roles in mitosis.

Keywords: mitosis, cancer, kinesin, microtubules, biochemistry, biophysics

Procedia PDF Downloads 60
335 A Finite Element Study of Laminitis in Horses

Authors: Naeim Akbari Shahkhosravi, Reza Kakavand, Helen M. S. Davies, Amin Komeili

Abstract:

Equine locomotion and performance are significantly affected by hoof health. One of the most critical diseases of the hoof is laminitis, which can lead to horse lameness in a severe condition. This disease exhibits the mechanical properties degradation of the laminar junction tissue within the hoof. Therefore, it is essential to investigate the biomechanics of the hoof, focusing specifically on excessive and cumulatively accumulated stresses within the laminar junction tissue. For this aim, the current study generated a novel equine hoof Finite Element (FE) model under dynamic physiological loading conditions and employing a hyperelastic material model. Associated tissues of the equine hoof were segmented from computed tomography scans of an equine forelimb, including the navicular bone, third phalanx, sole, frog, laminar junction, digital cushion, and medial- dorsal- lateral wall areas. The inner tissues were connected based on the hoof anatomy, and the hoof was under a dynamic loading over cyclic strides at the trot. The strain distribution on the hoof wall of the model was compared with the published in vivo strain measurements to validate the model. Then the validated model was used to study the development of laminitis. The ultimate stress tolerated by the laminar junction before rupture was considered as a stress threshold. The tissue damage was simulated through iterative reduction of the tissue’s mechanical properties in the presence of excessive maximum principal stresses. The findings of this investigation revealed how damage initiates from the medial and lateral sides of the tissue and propagates through the hoof dorsal area.

Keywords: horse hoof, laminitis, finite element model, continuous damage

Procedia PDF Downloads 159
334 The Protective Role of Decoy Receptor 3 Analogue on Rat Steatotic Liver against Ischemia-Reperfusion Injury by Blocking M1/Th1 Polarization and Multiple Upstream Pathogenic Cascades

Authors: Tzu-Hao Li, Shie-Liang Hsieh, Han-Chieh Lin, Ying-Ying Yang

Abstract:

TNF superfamily-stimulated pathogenic cascades and macrophage (M1)/kupffer cells (KC) polarization are important in the pathogenesis of ischemia-reperfusion (IR) liver injury in animals with hepatic steatosis (HS). Decoy receptor 3 (DcR3) is a common upstream inhibitor of the above-mentioned pathogenic cascades. The study evaluated whether modulation of these DcR3-related cascades was able to protect steatotic liver from IR injury. Serum and hepatic DcR3 levels were lower in patients and animals with HS. Accordingly, the effects of pharmacologic and genetic DcR3 replacement on the IR-related pathogenic changes were measured. Significantly, DcR3 replacement protected IR-Zucker(HS) rats and IR-DcR3-Tg(HS) mice from IR liver injury. The beneficial effects of DcR3 replacement were accompanied by decreased serum/hepatic TNF, soluble TNF-like cytokine 1A (TL1A), Fas ligand (Fas-L) and LIGHT, T-helper-cell-1 cytokine (INF) levels, neutrophil infiltration, M1 polarization, neutrophil-macrophage/KC-T-cell interaction, hepatocyte apoptosis and improved hepatic microcirculatory failure among animals with IR-injured steatotic livers. Additionally, TL1A, Fas-L, LIGHT and TLR4/NFB signals were found to mediate the DcR3-related protective effects of steatotic livers from IR injury. Using multimodal in vivo and in vitro approaches, we found that DcR3 was a potential agent to protect steatotic livers from IR injury by simultaneous blocking the multiple IR injury-related pathogenic changes.

Keywords: Decoy 3 receptor, ischemia-reperfusion injury, M1 polarization, TNF superfamily

Procedia PDF Downloads 187
333 System for Mechanical Stimulation of the Mesenchymal Stem Cells Supporting Differentiation into Osteogenic Cells

Authors: Jana Stepanovska, Roman Matejka, Jozef Rosina, Marta Vandrovcova, Lucie Bacakova

Abstract:

The aim of this study was to develop a system for mechanical and also electrical stimulation controlling in vitro osteogenesis under conditions more similar to the in vivo bone microenvironment than traditional static cultivation, which would achieve good adhesion, growth and other specific behaviors of osteogenic cells in cultures. An engineered culture system for mechanical stimulation of the mesenchymal stem cells on the charged surface was designed. The bioreactor allows efficient mechanical loading inducing an electrical response and perfusion of the culture chamber with seeded cells. The mesenchymal stem cells were seeded to specific charged materials, like polarized hydroxyapatite (Hap) or other materials with piezoelectric and ferroelectric features, to create electrical potentials for stimulating of the cells. The material of the matrix was TiNb alloy designed for these purposes, and it was covered by BaTiO3 film, like a kind of piezoelectric material. The process of mechanical stimulation inducing electrical response is controlled by measuring electrical potential in the chamber. It was performed a series of experiments, where the cells were seeded, perfused and stimulated up to 48 hours under different conditions, especially pressure and perfusion. The analysis of the proteins expression was done, which demonstrated the effective mechanical and electrical stimulation. The experiments demonstrated effective stimulation of the cells in comparison with the static culture. This work was supported by the Ministry of Health, grant No. 15-29153A and the Grant Agency of the Czech Republic grant No. GA15-01558S.

Keywords: charged surface, dynamic cultivation, electrical stimulation, ferroelectric layers, mechanical stimulation, piezoelectric layers

Procedia PDF Downloads 280
332 CP-96345 Rregulates Hydrogen Sulphide Induced TLR4 Signaling Pathway Adhesion Molecules in Caerulein Treated Pancreatic Acinar Cells

Authors: Ramasamy Tamizhselvi, Leema George, Madhav Bhatia

Abstract:

We have earlier shown that mouse pancreatic acinar cells produce hydrogen sulfide (H2S) and play a role in the pathogenesis of acute pancreatitis. This study is to determine the effect of H2S on TLR4 mediated innate immune signaling in acute pancreatitis via substance P (SP). Male Swiss mice were treated with hourly intraperitoneal injection of caerulein (50μg/kg) for 10 hour. DL-propargylglycine (PAG) (100 mg/kg i.p.), an inhibitor of H2S formation was administered 1h after the induction of acute pancreatitis. Pancreatic acinar cells from male Swiss mice were incubated with or without caerulein (10–7 M for 60 min) and CP-96345 (NK1R inhibitor). To better understand the effect of H2S in inflammation, acinar cells were stimulated with caerulein after addition of H2S donor, NaHS. In addition, caerulein treated pancreatic acinar cells were pretreated with PAG (30 µM), for 1h. H2S inhibitor, PAG, eliminated TLR4, IRAK4, TRAF6 and NF-kB levels in an in vitro and in vivo model of caerulein-induced acute pancreatitis. PPTA gene deletion reduced TLR4, MyD88, IRAK4, TRAF6, adhesion molecules and NF-kB in caerulein treated pancreatic acinar cells whereas administration of NaHS resulted in further rise in TLR4 and NF-kB levels in caerulein treated pancreatic acinar cells. In addition, acini isolated from mice and treated with PPTA gene receptor NK1R antagonist CP96345 did not exhibit further increase in TLR4, IRAK4, TRAF6, adhesion molecules and NF-kB levels after NaHS pretreatment. The present findings show for the first time that in acute pancreatitis, H2S up-regulates TLR4 pathway and NF-kB via substance P.

Keywords: preprotachykinin-A gene, H2S, TLR4, acute pancreatitis

Procedia PDF Downloads 255
331 Potential Serological Biomarker for Early Detection of Pregnancy in Cows

Authors: Shveta Bathla, Preeti Rawat, Sudarshan Kumar, Rubina Baithalu, Jogender Singh Rana, Tushar Kumar Mohanty, Ashok Kumar Mohanty

Abstract:

Pregnancy is a complex process which includes series of events such as fertilization, formation of blastocyst, implantation of embryo, placental formation and development of fetus. The success of these events depends on various interactions which are synchronized by endocrine interaction between a receptive dam and competent embryo. These interactions lead to change in expression of hormones and proteins. But till date no protein biomarker is available which can be used to detect successful completion of these events. We employed quantitative proteomics approach to develop putative serological biomarker which has diagnostic applicability for early detection of pregnancy in cows. For this study, sera were collected from control (non-pregnant, n=6) and pregnant animals on successive days of pregnancy (7, 19, 45, n=6). The sera were subjected to depletion for removal of albumin using Norgen depletion kit. The tryptic peptides were labeled with iTRAQ. The peptides were pooled and fractionated using bRPLC over 80 min gradient. Then 12 fractions were injected to nLC for identification and quantitation in DDA mode using ESI. Identification using Mascot search revealed 2056 proteins out of which 352 proteins were differentially expressed. Twenty proteins were upregulated and twelve proteins were down-regulated with fold change > 1.5 and < 0.6 respectively (p < 0.05). The gene ontology studies of DEPs using Panther software revealed that majority of proteins are actively involved in catalytic activities, binding and enzyme regulatory activities. The DEP'S such as NF2, MAPK, GRIPI, UGT1A1, PARP, CD68 were further subjected to pathway analysis using KEGG and Cytoscape plugin Cluego that showed involvement of proteins in successful implantation, maintenance of pluripotency, regulation of luteal function, differentiation of endometrial macrophages, protection from oxidative stress and developmental pathways such as Hippo. Further efforts are continuing for targeted proteomics, western blot to validate potential biomarkers and development of diagnostic kit for early pregnancy diagnosis in cows.

Keywords: bRPLC, Cluego, ESI, iTRAQ, KEGG, Panther

Procedia PDF Downloads 436
330 Geochemical Study of the Bound Hydrocarbon in the Asphaltene of Biodegraded Oils of Cambay Basin

Authors: Sayani Chatterjee, Kusum Lata Pangtey, Sarita Singh, Harvir Singh

Abstract:

Biodegradation leads to a systematic alteration of the chemical and physical properties of crude oil showing sequential depletion of n-alkane, cycloalkanes, aromatic which increases its specific gravity, viscosity and the abundance of heteroatom-containing compounds. The biodegradation leads to a change in the molecular fingerprints and geochemical parameters of degraded oils, thus make source and maturity identification inconclusive or ambiguous. Asphaltene is equivalent to the most labile part of the respective kerogen and generally has high molecular weight. Its complex chemical structure with substantial microporous units makes it suitable to occlude the hydrocarbon expelled from the source. The occluded molecules are well preserved by the macromolecular structure and thus prevented from secondary alterations. They retain primary organic geochemical information over the geological time. The present study involves the extraction of this occluded hydrocarbon from the asphaltene cage through mild oxidative degradation using mild oxidative reagents like Hydrogen Peroxide (H₂O₂) and Acetic Acid (CH₃COOH) on purified asphaltene of the biodegraded oils of Mansa, Lanwa and Santhal fields in Cambay Basin. The study of these extracted occluded hydrocarbons was carried out for establishing oil to oil and oil to source correlation in the Mehsana block of Cambay Basin. The n-alkane and biomarker analysis through GC and GC-MS of these occluded hydrocarbons show similar biomarker imprint as the normal oil in the area and hence correlatable with them. The abundance of C29 steranes, presence of Oleanane, Gammacerane and 4-Methyl sterane depicts that the oils are derived from terrestrial organic matter deposited in the stratified saline water column in the marine environment with moderate maturity (VRc 0.6-0.8). The oil source correlation study suggests that the oils are derived from Jotana-Warosan Low area. The developed geochemical technique to extract the occluded hydrocarbon has effectively resolved the ambiguity that resulted from the inconclusive fingerprint of the biodegraded oil and the method can be also applied in other biodegraded oils as well.

Keywords: asphaltene, biomarkers, correlation, mild oxidation, occluded hydrocarbon

Procedia PDF Downloads 140
329 Micropropagation of Rhododendron tomentosum (Ledum palustre): An Endangered Plant of Scientific Interest as the Example of Ex Situ Conservation

Authors: Anna Jesionek, Aleksandra Szreniawa-Sztajnert, Zbigniew Jaremicz, Adam Kokotkiewicz, Natalia Filipowicz, Renata Ochocka, Bozena Zabiegala, Maria Luczkiewicz

Abstract:

Rhododendron tomentosum (formerly Ledum palustre), an evergreen shrub grows in peaty soils in northern Europe, Asia and North America. In Poland, it is classified as an endangered species not only due to the drainage of wetlands, but also to the excessive collection of this repellent plant by human. The other valuable biological properties of R. tomentosum, used for years in folk medicine, include anti-inflammatory, analgesic and anti-microbial activity, conditioned by the essential oil content. Taking into account the importance of biodiversity and the potential therapeutic application, it was decided to establish, for the first time, the micropropagation protocol for R. tomentosum, for ex-situ conservation of this endangered species as well as to obtain the continuous source of in vivo and in-vitro plant material for further studies. This object was achieved by the selection of the explant and the media, which were modified within the scope of mineral composition, sugar content, pH and the growth regulators. As a result, the four-stage micropropagation protocol for R. tomentosum was specified, including shoot multiplication, elongation, rooting and ex-vitro adaptation. The genetic identification of the examined species and the compatibility of progeny plants with maternal ones was tested with molecular biology methods. Moreover, during the research process, the chemical composition of initial and regenerated plant and in vitro shoots was controlled in terms of volatile fraction by phytochemical analysis (GC and TLC methods). The correctness of the micropropagation procedure was confirmed by both types of studies.

Keywords: ex situ conservation, Ledum palustre, micropropagation, Rhododendron tomentosum

Procedia PDF Downloads 463
328 ScRNA-Seq RNA Sequencing-Based Program-Polygenic Risk Scores Associated with Pancreatic Cancer Risks in the UK Biobank Cohort

Authors: Yelin Zhao, Xinxiu Li, Martin Smelik, Oleg Sysoev, Firoj Mahmud, Dina Mansour Aly, Mikael Benson

Abstract:

Background: Early diagnosis of pancreatic cancer is clinically challenging due to vague, or no symptoms, and lack of biomarkers. Polygenic risk score (PRS) scores may provide a valuable tool to assess increased or decreased risk of PC. This study aimed to develop such PRS by filtering genetic variants identified by GWAS using transcriptional programs identified by single-cell RNA sequencing (scRNA-seq). Methods: ScRNA-seq data from 24 pancreatic ductal adenocarcinoma (PDAC) tumor samples and 11 normal pancreases were analyzed to identify differentially expressed genes (DEGs) in in tumor and microenvironment cell types compared to healthy tissues. Pathway analysis showed that the DEGs were enriched for hundreds of significant pathways. These were clustered into 40 “programs” based on gene similarity, using the Jaccard index. Published genetic variants associated with PDAC were mapped to each program to generate program PRSs (pPRSs). These pPRSs, along with five previously published PRSs (PGS000083, PGS000725, PGS000663, PGS000159, and PGS002264), were evaluated in a European-origin population from the UK Biobank, consisting of 1,310 PDAC participants and 407,473 non-pancreatic cancer participants. Stepwise Cox regression analysis was performed to determine associations between pPRSs with the development of PC, with adjustments of sex and principal components of genetic ancestry. Results: The PDAC genetic variants were mapped to 23 programs and were used to generate pPRSs for these programs. Four distinct pPRSs (P1, P6, P11, and P16) and two published PRSs (PGS000663 and PGS002264) were significantly associated with an increased risk of developing PC. Among these, P6 exhibited the greatest hazard ratio (adjusted HR[95% CI] = 1.67[1.14-2.45], p = 0.008). In contrast, P10 and P4 were associated with lower risk of developing PC (adjusted HR[95% CI] = 0.58[0.42-0.81], p = 0.001, and adjusted HR[95% CI] = 0.75[0.59-0.96], p = 0.019). By comparison, two of the five published PRS exhibited an association with PDAC onset with HR (PGS000663: adjusted HR[95% CI] = 1.24[1.14-1.35], p < 0.001 and PGS002264: adjusted HR[95% CI] = 1.14[1.07-1.22], p < 0.001). Conclusion: Compared to published PRSs, scRNA-seq-based pPRSs may be used not only to assess increased but also decreased risk of PDAC.

Keywords: cox regression, pancreatic cancer, polygenic risk score, scRNA-seq, UK biobank

Procedia PDF Downloads 80
327 Sensitivity of Staphylococcus aureus Isolated from Subclinical Bovine Mastitis to Ciprofloxacin in Dairy Herd in Tabriz during 2013

Authors: Alireza Jafarzadeh, Samad Mosaferi, Mansour Khakpour

Abstract:

Mastitis is an inflammation of the parenchyma of mammary gland regardless of the causes. Mastitis is characterized by a range of physical and chemical changes in the glandular tissue. The most important change in milk includes discoloration, the presence of clots and large number of leucocytes. There is swelling, heat, pain and edema in mammary gland in many clinical cases. Positive coagulase S. aureus is a major pathogen of the bovine mammary gland and a common cause of contagious mastitis in cattle. The aim of this study was to evaluate the outbreaks of Staphylococcus aureus mastitis. This study is conducted in ten dairy herds about one thousand cows. After doing CMT and identifying infected cows, the milk samples obtained from infected teats and transported to microbiological laboratories. After microbial culture of milk samples and isolating S. aureus, antimicrobial, sensitivity test was performed with disk diffusion method by ciprofloxacin, co-amoxiclav, erythromycin, penicillin, oxytetracyclin, sulfonamides, lincomycin and cefquinome. The study defined that the outbreak of subclinical positive coagulase Staphylococcus mastitis in dairy herd was 13.11% (5.6% S. aureus and 7.51% S. intermedicus). The antimicrobial sensitivity test shown that 87.23% of Staphylococcus aureus isolated from bovine mastitis in dairy herd was susceptible to ciprofloxacin, 93.9% to cefquinome, 4.67% to co-amoxiclav, 12.16% to erythromycin 86.11% to sulfonamides (co-trimoxazole), 3.35% lincomycin, 12.7% to oxytetracyclin and 5.98% to penicillin. Results of present defined that ciprofloxacin has a great effect on Staphylococcus aureus isolated from subclinical bovine mastitis dairy herd. It seems that cefquinome sulfonamides has a great effect on isolated Staphylococcus aureus in vivo.

Keywords: ciprofloxacin, mastitis, Staphylococcus aureus, dairy herd

Procedia PDF Downloads 611
326 Management of Insect Pests Using Baculovirus Based Biopesticides in India

Authors: Mudasir Gani, Rakesh Kumar Gupta, Kamlesh Bali, Abdul Rouf Wani

Abstract:

The gypsy moth (Lymantria obfuscata) and tent caterpillar (Malacosoma indicum) are serious pests that attack a wide range of fruit and forest trees in Jammu & Kashmir range of North-Western Himalayas in India. Investigations were carried out to isolate and bioprospect naturally occurring nucleopolyhedroviruses (NPVs) as potent biopesticides against these pests. The biological and molecular characterization of NPV isolates from different ecosystems was conducted, and the polh, lef-8 and lef-9 genes were sequenced and subjected to phylogenetic analysis. The L. obfuscata NPV was more closely related to the L. dispar NPV, whereas M. indicum NPV was more closely related to the M. californicum NPV in the NCBI taxonomy database. Among different isolates, Bhaderwah isolates exhibited highest virus activity (LD₅₀ = 250 POBs/larvae) and speed of kill (ST₅₀ = 6.80 days) against L. obfuscata whereas Mahor isolates proved most virulent against M. indicum, with lowest LD₅₀ (257 POBs/larva) and ST₅₀ (6.80 days). The in vivo mass production for highest productivity and quality revealed that the optimum yield was obtained when 3rd instar larvae were inoculated with a viral dose of 1.44 × 105 POBs/larva and allowed to incubate for nine days for L. obfuscata. However, for M. indicum larvae, a viral dose of 2.88 × 10⁶ POBs/larva and incubation period of 10 days were found optimum. It was found that harvesting of moribund larvae yields good quality NPV. The field application of L. obfuscata NPV and M. indicum NPV against the respective host populations on apple and willow with the pre-standardized dosage of 1 × 10¹² POBs/acre reduced the larval population density up to 25-63%.

Keywords: baculoviruses, biopesticides, Lymantria obfuscata, Malacosoma indicum

Procedia PDF Downloads 91
325 Protective Effect of Rosemary Extract against Toxicity Induced by Egyptian Naja haje Venom

Authors: Walaa H. Salama, Azza M. Abdel-Aty, Afaf S. Fahmy

Abstract:

Background: Egyptian Cobra; Naja haje (Elapidae) is one of most common snakes, widely distributed in Egypt and its envenomation causes multi-organ failure leading to rapid death. Thus, Different medicinal plants showed a protective effect against venom toxicity and may complement the conventional antivenom therapy. Aim: The present study was designed to assess both the antioxidant capacity of methanolic extract of rosemary leaves and evaluate the neutralizing ability of the extract against hepatotoxicity induced by Naja haje venom. Methods: The total phenolic and flavonoid contents and the antioxidant capacity of the methanolic rosemary extract were estimated by DPPH and ABTS Scavenging methods. In addition, the rosemary extract were assessed for anti-venom properties under in vitro and in vivo standard assays. Results: The rosemary extract had high total phenolic and flavonoid content as 12 ± 2 g of gallic acid equivalent per 100 gram of dry weight (g GAE/100g dw) and 5.5 ± 0.8 g of catechin equivalent per 100 grams of dry weight (g CE/100g dw), respectively. In addition, the rosemary extract showed high antioxidant capacity. Furthermore, The rosemary extract were inhibited in vitro the enzymatic activities of phospholipase A₂, L-amino acid oxidase, and hyaluronidase of the venom in a dose-dependent manner. Moreover, indirect hemolytic activity, hepatotoxicity induced by venom were completely neutralized as shown by histological studies. Conclusion: The phenolic compounds of rosemary extract with potential antioxidant activity may be considered as a promising candidate for future therapeutics in snakebite therapy.

Keywords: antioxidant activity, neutralization, phospholipase A₂ enzyme, snake venom

Procedia PDF Downloads 158
324 Investigating the Suitability of Utilizing Lyophilized Gels to Improve the Stability of Ufasomes

Authors: Mona Hassan Aburahma, Alaa Hamed Salama

Abstract:

Ufasomes “unsaturated fatty acids liposomes” are unique nano-sized self-assembled bilayered vesicles that can be easily created from the readily available unsaturated fatty acid. Ufasomes are formed due to weak associative interaction of the fully ionized and unionized fatty acids into bilayers structures. In the ufasomes constructs, the fatty acid molecules are oriented with their hydrocarbon tails directed toward the membrane interior and the carboxyl groups are in contact with water. Although ufasomes can be employed as a safe vesicular carrier for drugs, the extreme instability of their aqueous dispersions hinders their effective use in drug delivery field. Accordingly, in our study, lyophilized gels containing ufasomes were prepared using a simple assembling technique form the readily available oleic acid to overcome the colloidal instability of the ufasomes dispersions and convert them into accurate unit dosage forms. The influence of changing cholesterol percentage relative to oleic acid on the ufasomes vesicles were investigated using factorial design. The optimized oleic acid ufasomes comprised nanoscaled spherical vesicles. Scanning electron micrographs of the lyophilized gels revealed that the included ufasomes were intact, non-aggregating, and preserved their spherical morphology. Rheological characterization (viscosity and shear stress versus shear rate) of reconstituted ufasomal lyophilized gel ensured the ease of application. The capability of the ufasomes, included in the gel, to penetrate deep through the mucosa layers was illustrated using ex-vivo confocal laser imaging, thereby, highlighting the feasibility of stabilizing ufasomes using lyophilized gel platforms.

Keywords: ufasomes, lyophilized gel, confocal scanning microscopy, rheological characterization, oleic acid

Procedia PDF Downloads 387
323 Supplementation of Leucahena leucochepala on Rice Straw Ammoniated Complete Feed on Fiber Digestibility and in vitro Rumen Fermentation Characteristics

Authors: Mardiati Zain, W. S. N. Rusmana, Erpomen, Malik Makmur, Ezi Masdia Putri

Abstract:

Background and Aim: The leaves of the Leucaenaleucocephala tree have potential as a nitrogen source for ruminants. Leucaena leaf meal as protein supplement has been shown to improve the feed quality of ruminants. The effects of different levels of Leucaena leucocephala supplementation as substitute of concentrate on fiber digestibility and in vitro rumen fermentation characteristics were investigated. This research was conducted in vitro. The study used a randomized block design consisting of 3 treatments and 5 replications. The treatments were A. 40% rice straw ammoniated + 60% concentrate, B. 40% rice straw ammoniated + 50% concentrate + 10% Leucaena leuchephala, C. 40% rice straw ammoniated + 40% concentrate + 20% Leucaena leuchephala, Result: The results showed that the addition of Leucaena leucocephala increased the digestibility of Neutral detergent Fiber NDF and Acid Detergent Fiber (ADF) (p < 0.05). In this study, rumen NH3, propionate, amount of escape protein and total Volatyl Fatty Acid (VFA) were found increased significantly at treatment B. No significant difference was observed in acetate and butyrate production. The populations of total protozoa and methane production had significantly decreased (P < .05) in supplemented group. Conclusion: Supplementation of leuchaena leucochepala on completed feed based on ammoniated rice straw in vitro can increase fiber digestibility, VFA production and decreased protozoa pupulataion and methane production. Supplementation of 10% and 20% L. leucochepala were suitable to be used for further studies, therefore in vivo experiment is required to study the effects on animal production.

Keywords: digestibility, Leucaena leucocephala, complete feed, rice straw ammoniated

Procedia PDF Downloads 133
322 Understanding Chromosome Movement in Starfish Oocytes

Authors: Bryony Davies

Abstract:

Many cell and tissue culture practices ignore the effects of gravity on cell biology, and little is known about how cell components may move in response to gravitational forces. Starfish oocytes provide an excellent model for interrogating the movement of cell components due to their unusually large size, ease of handling, and high transparency. Chromosomes from starfish oocytes can be visualised by microinjection of the histone-H2B-mCherry plasmid into the oocytes. The movement of the chromosomes can then be tracked by live-cell fluorescence microscopy. The results from experiments using these methods suggest that there is a replicable downward movement of centrally located chromosomes at a median velocity of 0.39 μm/min. Chromosomes nearer the nuclear boundary showed more restricted movement. Chromosome density and shape could also be altered by microinjection of restriction enzymes, primarily Alu1, before imaging. This was found to alter the speed of chromosome movement, with chromosomes from Alu1-injected nuclei showing a median downward velocity of 0.60 μm/min. Overall, these results suggest that there is a non-negligible movement of chromosomes in response to gravitational forces and that this movement can be altered by enzyme activity. Future directions based on these results could interrogate if this observed downward movement extends to other cell components and to other cell types. Additionally, it may be important to understand whether gravitational orientation and vertical positioning of cell components alter cell behaviour. The findings here may have implications for current cell culture practices, which do not replicate cell orientations or external forces experienced in vivo. It is possible that a failure to account for gravitational forces in 2D cell culture alters experimental results and the accuracy of conclusions drawn from them. Understanding possible behavioural changes in cells due to the effects of gravity would therefore be beneficial.

Keywords: starfish, oocytes, live-cell imaging, microinjection, chromosome dynamics

Procedia PDF Downloads 88
321 Biomechanics of Ceramic on Ceramic vs. Ceramic on Xlpe Total Hip Arthroplasties During Gait

Authors: Athanasios Triantafyllou, Georgios Papagiannis, Vassilios Nikolaou, Panayiotis J. Papagelopoulos, George C. Babis

Abstract:

In vitro measurements are widely used in order to predict THAs wear rate implementing gait kinematic and kinetic parameters. Clinical tests of materials and designs are crucial to prove the accuracy and validate such measurements. The purpose of this study is to examine the affection of THA gait kinematics and kinetics on wear during gait, the essential functional activity of humans, by comparing in vivo gait data to in vitro results. Our study hypothesis is that both implants will present the same hip joint kinematics and kinetics during gait. 127 unilateral primary cementless total hip arthroplasties were included in the research. Independent t-tests were used to identify a statistically significant difference in kinetic and kinematic data extracted from 3D gait analysis. No statistically significant differences observed at mean peak abduction, flexion and extension moments between the two groups (P.abduction= 0,125, P.flexion= 0,218, P.extension= 0,082). The kinematic measurements show no statistically significant differences too (Prom flexion-extension= 0,687, Prom abduction-adduction= 0,679). THA kinematics and kinetics during gait are important biomechanical parameters directly associated with implants wear. In vitro studies report less wear in CoC than CoXLPE when tested with the same gait cycle kinematic protocol. Our findings confirm that both implants behave identically in terms of kinematics in the clinical environment, thus strengthening in vitro results of CoC advantage. Correlated to all other significant factors that affect THA wear could address in a complete prism the wear on CoC and CoXLPE.

Keywords: total hip arthroplasty biomechanics, THA gait analysis, ceramic on ceramic kinematics, ceramic on XLPE kinetics, total hip replacement wear

Procedia PDF Downloads 130
320 Development and Characterization Self-Nanoemulsifying Drug Delivery Systems of Poorly Soluble Drug Dutasteride

Authors: Rajinikanth Siddalingam, Poonguzhali Subramanian

Abstract:

The present study aims to prepare and evaluate the self-nano emulsifying drug delivery (SNEDDS) system to enhance the dissolution rate of a poorly soluble drug dutasteride. The formulation was prepared using capryol PGMC, Cremophor EL, and polyethylene glycol (PEG) 400 as oil, surfactant and co-surfactant, respectively. The pseudo-ternary phase diagrams with presence and absence of drug were plotted to find out the nano emulsification range and also to evaluate the effect of dutasteride on the emulsification behavior of the phases. Prepared SNEDDS formulations were evaluated for its particle size distribution, nano emulsifying properties, robustness to dilution, self-emulsification time, turbidity measurement, drug content and in-vitro dissolution. The optimized formulations are further evaluated for heating cooling cycle, centrifugation studies, freeze-thaw cycling, particle size distribution and zeta potential were carried out to confirm the stability of the formed SNEDDS formulations. The particle size, zeta potential and polydispersity index of the optimized formulation found to be 35.45 nm, -15.45 and 0.19, respectively. The in vitro results are revealed that the prepared formulation enhanced the dissolution rate of dutasteride significantly as compared with pure drug. The in vivo studies in was conducted using rats and the results are revealed that SNEDDS formulation has enhanced the bioavailability of dutasteride drug significantly as compared with raw drug. Based the results, it was concluded that the dutasteride-loaded SNEDDS shows potential to enhance the dissolution of dutasteride, thus improving the bioavailability and therapeutic effects.

Keywords: self-emulsifying drug delivery system, dutasteride, enhancement of bioavailability, dissolution enhancement

Procedia PDF Downloads 245
319 Site-Specific Delivery of Hybrid Upconversion Nanoparticles for Photo-Activated Multimodal Therapies of Glioblastoma

Authors: Yuan-Chung Tsai, Masao Kamimura, Kohei Soga, Hsin-Cheng Chiu

Abstract:

In order to enhance the photodynamic/photothermal therapeutic efficacy on glioblastoma, the functionized upconversion nanoparticles with the capability of converting the deep tissue penetrating near-infrared light into visible wavelength for activating photochemical reaction were developed. The drug-loaded nanoparticles (NPs) were obtained from the self-assembly of oleic acid-coated upconversion nanoparticles along with maleimide-conjugated poly(ethylene glycol)-cholesterol (Mal-PEG-Chol), as the NP stabilizer, and hydrophobic photosensitizers, IR-780 (for photothermal therapy, PTT) and mTHPC (for photodynamic therapy, PDT), in aqueous phase. Both the IR-780 and mTHPC were loaded into the hydrophobic domains within NPs via hydrophobic association. The peptide targeting ligand, angiopep-2, was further conjugated with the maleimide groups at the end of PEG adducts on the NP surfaces, enabling the affinity coupling with the low-density lipoprotein receptor-related protein-1 of tumor endothelial cells and malignant astrocytes. The drug-loaded NPs with the size of ca 80 nm in diameter exhibit a good colloidal stability in physiological conditions. The in vitro data demonstrate the successful targeting delivery of drug-loaded NPs toward the ALTS1C1 cells (murine astrocytoma cells) and the pronounced cytotoxicity elicited by combinational effect of PDT and PTT. The in vivo results show the promising brain orthotopic tumor targeting of drug-loaded NPs and sound efficacy for brain tumor dual-modality treatment. This work shows great potential for improving photodynamic/photothermal therapeutic efficacy of brain cancer.

Keywords: drug delivery, orthotopic brain tumor, photodynamic/photothermal therapies, upconversion nanoparticles

Procedia PDF Downloads 170
318 Analgesic, Toxicity and Anti-Pyretic Activities of Methanolic Extract from Hyoscyamus albus Leaves in Albinos Rats

Authors: Yahia Massinissa, Henhouda Affaf, Yahia Mouloud

Abstract:

The aim of this study was to investigate the toxicity; analgesic and anti-pyretic properties of standardized HA methanolic extract (HAMeOH) in vivo. The acute toxicity study was performed on rats while adopting the OECD-420 Guidelines (fixed dose procedure). Assessment of analgesic activity was performed in rats with two analgesic models. One was acetic acid induced writhing response and the other formalin-induced paw licking. The anti-pyretic effect was tested by brewer’s yeast induced fever in rats. For the acute toxicity test, the higher dose administration of 2000 mg/kg bw. of Hyoscyamus albus did not produce any toxic signs or deaths in rats. There were no significant differences (p>0.05) in the body and organ weights between control and treated groups. The (LD50) of Hyoscyamus albus was higher than 2000 g/kg bw. In subacute toxicity study, no mortality and toxic signs were observed with the doses of 100 and 200 mg/kg bw. of extracts of for 28 consecutive days. These analgesic experimental results indicated that HAMeOH (100 mg/kg and 200 mg/kg) decreased the acetic acid-induced writhing responses and HAMeOH (100 mg/kg and 200 mg/kg) decreased the licking time in the second phase of the formalin test. Moreover, in the model of yeast induced elevation of the body temperature HAMeOH showed dose-dependent lowering of the body temperature up to 3h at both the doses these results obtained, were comparable to that of paracetamol. The present findings indicate that the leaves of Hyoscyamus albus L. possess potent analgesic and antipyretic activity.

Keywords: Hyoscyamus albus, methanolic extract, toxicity, analgesic activity, antipyretic activity, formalin test

Procedia PDF Downloads 306
317 New Ethanol Method for Soft Tissue Imaging in Micro-CT

Authors: Matej Patzelt, Jan Dudak, Frantisek Krejci, Jan Zemlicka, Vladimir Musil, Jitka Riedlova, Viktor Sykora, Jana Mrzilkova, Petr Zach

Abstract:

Introduction: Micro-CT is well used for examination of bone structures and teeth. On the other hand visualization of the soft tissues is still limited. The goal of our study was to create a new fixation method for soft tissue imaging in micro-CT. Methodology: We used organs of 18 mice - heart, lungs, kidneys, liver and brain, which we fixated in ethanol after meticulous preparation. We fixated organs in different concentrations of ethanol and for different period of time. We used three types of ethanol concentration - 97%, 50% and ascending ethanol concentration (25%, 50%, 75%, 97% each for 12 hours). Fixated organs were scanned after 72 hours, 168 hours and 336 hours period of fixation. We scanned all specimens in micro-CT MARS (Medipix All Resolution System). Results: Ethanol method provided contrast enhancement in all studied organs in all used types of fixation. Fixation in 97% ethanol provided very fast fixation and the contrast among the tissues was visible already after 72 hours of fixation. Fixation for the period of 168 and 336 hours gave better details, especially in lung tissue, where alveoli were visualized. On the other hand, this type of fixation caused organs to petrify. Fixation in 50% ethanol provided best results in 336 hours fixation, details were visualized better than in 97% ethanol and samples were not as hard as in fixation in 97% ethanol. Best results were obtained in fixation in ascending ethanol concentration. All organs were visualized in great details, best-visualized organ was heart, where trabeculae and valves were visible. In this type of fixation, organs stayed soft for whole time. Conclusion: New ethanol method is a great option for soft tissue fixation as well as the method for enhancing contrast among tissues in organs. The best results were obtained with fixation of the organs in ascending ethanol concentration, the best visualized organ was the heart.

Keywords: x-ray imaging, small animals, ethanol, ex-vivo

Procedia PDF Downloads 302
316 Entry Inhibitors Are Less Effective at Preventing Cell-Associated HIV-2 Infection than HIV-1

Authors: A. R. Diniz, P. Borrego, I. Bártolo, N. Taveira

Abstract:

Cell-to-cell transmission plays a critical role in the spread of HIV-1 infection in vitro and in vivo. Inhibition of HIV-1 cell-associated infection by antiretroviral drugs and neutralizing antibodies (NAbs) is more difficult compared to cell-free infection. Limited data exists on cell-associated infection by HIV-2 and its inhibition. In this work, we determined the ability of entry inhibitors to inhibit HIV-1 and HIV-2 cell-to cell fusion as a proxy to cell-associated infection. We developed a method in which Hela-CD4-cells are first transfected with a Tat expressing plasmid (pcDNA3.1+/Tat101) and infected with recombinant vaccinia viruses expressing either the HIV-1 (vPE16: from isolate HTLV-IIIB, clone BH8, X4 tropism) or HIV-2 (vSC50: from HIV-2SBL/ISY, R5 and X4 tropism) envelope glycoproteins (M.O.I.=1 PFU/cell).These cells are added to TZM-bl cells. When cell-to-cell fusion (syncytia) occurs the Tat protein diffuses to the TZM-bl cells activating the expression of a reporter gene (luciferase). We tested several entry inhibitors including the fusion inhibitors T1249, T20 and P3, the CCR5 antagonists MVC and TAK-779, the CXCR4 antagonist AMD3100 and several HIV-2 neutralizing antibodies (Nabs). All compounds inhibited HIV-1 and HIV-2 cell fusion albeit to different levels. Maximum percentage of HIV-2 inhibition (MPI) was higher for fusion inhibitors (T1249- 99.8%; P3- 95%, T20-90%) followed by co-receptor antagonists (MVC- 63%; TAK-779- 55%; AMD3100- 45%). NAbs from HIV-2 infected patients did not prevent cell fusion up to the tested concentration of 4μg/ml. As for HIV-1, MPI reached 100% with TAK-779 and T1249. For the other antivirals, MPIs were: P3-79%; T20-75%; AMD3100-61%; MVC-65%.These results are consistent with published data. Maraviroc had the lowest IC50 both for HIV-2 and HIV-1 (IC50 HIV-2= 0.06 μM; HIV-1=0.0076μM). Highest IC50 were observed with T20 for HIV-2 (3.86μM) and with TAK-779 for HIV-1 (12.64μM). Overall, our results show that entry inhibitors in clinical use are less effective at preventing Env mediated cell-to-cell-fusion in HIV-2 than in HIV-1 which suggests that cell-associated HIV-2 infection will be more difficult to inhibit compared to HIV-1. The method described here will be useful to screen for new HIV entry inhibitors.

Keywords: cell-to-cell fusion, entry inhibitors, HIV, NAbs, vaccinia virus

Procedia PDF Downloads 290
315 University of Sciences and Technology of Oran Mohamed Boudiaf (USTO-MB)

Authors: Patricia Mikchaela D. L. Feliciano, Ciela Kadeshka A. Fuentes, Bea Trixia B. Gales, Ethel Princess A. Gepulango, Martin R. Hernandez, Elina Andrea S. Lantion, Jhoe Cynder P. Legaspi, Peter F. Quilala, Gina C. Castro

Abstract:

Propolis is a resin-like material used by bees to fill large gap holes in the beehive. It has been found to possess anti-inflammatory property, which stimulates hair growth in rats by inducing hair keratinocytes proliferation, causing water retention and preventing damage caused by heat, ultraviolet rays, and other microorganisms without abnormalities in hair follicles. The present study aimed to formulate 10% and 30% Propolis Hair Cream for use in enhancing hair properties. Raw propolis sample was tested for heavy metals using Atomic Absorption Spectroscopy; zinc and chromium were found to be present. Likewise, propolis was extracted in a percolator using 70% ethanol and concentrated under vacuum using a rotary evaporator. The propolis extract was analyzed for total flavonoid content. Compatibility of the propolis extract with excipients was evaluated using Differential Scanning Calorimetry (DSC). No significant changes in organoleptic properties, pH and viscosity of the formulated creams were noted after four weeks of storage at 2-8°C, 30°C, and 40°C. The formulated creams were found to be non-irritating based on the Modified Draize Rabbit Test. In vivo efficacy was evaluated based on thickness and tensile strength of hair grown on previously shaved rat skin. Results show that the formulated 30% propolis-based cream had greater hair enhancing properties than the 10% propolis cream, which had a comparable effect with minoxidil.

Keywords: atomic absorption spectroscopy, differential scanning calorimetry (DSC), modified draize rabbit test, propolis

Procedia PDF Downloads 315
314 Influence of Cyperus Rotundus Active Principles Inhibit Viral Multiplication and Stimulate Immune System in Indian White Shrimp Fenneropenaeus Indicus against White Spot Syndrome Virus Infection

Authors: Thavasimuthu Citarasu, Mariavincent Michaelbabu, Vikram Vakharia

Abstract:

The rhizome of Java grass, Cyperus rotundus was extracted different organic polar and non-polar solvents and performed the in vitro antiviral and immunostimulant activities against White Spot Syndrome Virus (WSSV) and Vibrio harveyi respectively. Based on the initial screening the ethyl acetate extract of C. rotundus was strong activities and further it was purified through silica column chromatography and the fractions were screened again for antiviral and immunostimulant activity. Among the different fractions screened against the WSSV and V. harveyi, the fractions, F-III to FV had strong activities. In order to study the in vivo influence of C. rotundus, the fractions (F-III to FV) were pooled and delivered to the F. indicus through artificial feed for 30 days. After the feeding trail the experimental and control diet fed F. indicus were challenged with virulent WSSV and studied the survival, molecular diagnosis, biochemical, haematological and immunological parameters. Surprisingly, the pooled fractions (F-III to FV) incorporated diets helped to significantly (P < 0.01) suppressed viral multiplication, showed significant (P < 0.01) differences in protein and glucose levels, improved total haemocyte count (THC), coagulase activity, significantly increased (P < =0.001) prophenol oxidase and intracellular superoxide anion production compared to the control shrimps. Based on the results, C. rotundus extracts effectively suppressed WSSV multiplication and improve the immune system in F. indicus against WSSV infection and this knowledge will helps to develop novel drugs from C. rotundus against WSSV.

Keywords: antiviral drugs, cyperus rotundus, fenneropenaeus indicus, WSSV

Procedia PDF Downloads 435
313 Pyrroloquinoline Quinone Enhances the Mitochondrial Function by Increasing Beta-Oxidation and a Balanced Mitochondrial Recycling in Mice Granulosa Cells

Authors: Moustafa Elhamouly, Masayuki Shimada

Abstract:

The production of competent oocytes is essential for reproductivity in mammals. Maintenance of mitochondrial efficiency is required to supply the ATP necessary for granulosa cell proliferation during the follicular development process. Treatment with Pyrroloquinoline quinone (PQQ) has been reported to increase the number of ovulated oocytes and pups per delivery in mice by maintaining healthy mitochondrial function. This study aimed to elucidate how PQQ maintains mitochondrial function during ovarian follicle growth. To do this, both in vitro and in vivo experiments were performed with granulosa cells from superovulated immature (3-week-old) mice that were pretreated with or without PQQ. The effects of PQQ on beta-oxidation, mitochondrial function, mitophagy, and mitochondrial biogenesis were examined. PQQ increased beta-oxidation-related genes and CPT1 protein content in granulosa cells and this was associated with a decreased phosphorylation of P38 signaling protein. Using the fatty acid oxidation assay on the flux analyzer, PQQ increased the reliance of beta-oxidation on the endogenous fatty acids and was associated with a mild UCP-dependant mitochondrial uncoupling, ATP production, mitophagy, and mitochondrial biogenesis. PQQ also increased the expression of endogenous antioxidant enzymes. Thus, PQQ induced beta-oxidation in growing granulosa cells relying on endogenous fatty acids. And reduced the Reactive oxygen species (ROS) production by inducing a mild mitochondrial uncoupling with keeping high mitochondrial function. Damaged mitochondria were recycled by the induced mitophagy and replaced by the increased mitochondrial biogenesis. Collectively, PQQ may enhance reproductivity by maintaining the efficiency of mitochondria to produce enough ATP required for normal folliculogenesis.

Keywords: granulosa cells, mitochondrial uncoupling, mitophagy, pyrroloquinoline quinone (PQQ), reactive oxygen species (ROS).

Procedia PDF Downloads 61