Search results for: estimation after selection
3468 An Application of Sinc Function to Approximate Quadrature Integrals in Generalized Linear Mixed Models
Authors: Altaf H. Khan, Frank Stenger, Mohammed A. Hussein, Reaz A. Chaudhuri, Sameera Asif
Abstract:
This paper discusses a novel approach to approximate quadrature integrals that arise in the estimation of likelihood parameters for the generalized linear mixed models (GLMM) as well as Bayesian methodology also requires computation of multidimensional integrals with respect to the posterior distributions in which computation are not only tedious and cumbersome rather in some situations impossible to find solutions because of singularities, irregular domains, etc. An attempt has been made in this work to apply Sinc function based quadrature rules to approximate intractable integrals, as there are several advantages of using Sinc based methods, for example: order of convergence is exponential, works very well in the neighborhood of singularities, in general quite stable and provide high accurate and double precisions estimates. The Sinc function based approach seems to be utilized first time in statistical domain to our knowledge, and it's viability and future scopes have been discussed to apply in the estimation of parameters for GLMM models as well as some other statistical areas.Keywords: generalized linear mixed model, likelihood parameters, qudarature, Sinc function
Procedia PDF Downloads 3953467 Using New Machine Algorithms to Classify Iranian Musical Instruments According to Temporal, Spectral and Coefficient Features
Authors: Ronak Khosravi, Mahmood Abbasi Layegh, Siamak Haghipour, Avin Esmaili
Abstract:
In this paper, a study on classification of musical woodwind instruments using a small set of features selected from a broad range of extracted ones by the sequential forward selection method was carried out. Firstly, we extract 42 features for each record in the music database of 402 sound files belonging to five different groups of Flutes (end blown and internal duct), Single –reed, Double –reed (exposed and capped), Triple reed and Quadruple reed. Then, the sequential forward selection method is adopted to choose the best feature set in order to achieve very high classification accuracy. Two different classification techniques of support vector machines and relevance vector machines have been tested out and an accuracy of up to 96% can be achieved by using 21 time, frequency and coefficient features and relevance vector machine with the Gaussian kernel function.Keywords: coefficient features, relevance vector machines, spectral features, support vector machines, temporal features
Procedia PDF Downloads 3213466 Deep Learning Based Fall Detection Using Simplified Human Posture
Authors: Kripesh Adhikari, Hamid Bouchachia, Hammadi Nait-Charif
Abstract:
Falls are one of the major causes of injury and death among elderly people aged 65 and above. A support system to identify such kind of abnormal activities have become extremely important with the increase in ageing population. Pose estimation is a challenging task and to add more to this, it is even more challenging when pose estimations are performed on challenging poses that may occur during fall. Location of the body provides a clue where the person is at the time of fall. This paper presents a vision-based tracking strategy where available joints are grouped into three different feature points depending upon the section they are located in the body. The three feature points derived from different joints combinations represents the upper region or head region, mid-region or torso and lower region or leg region. Tracking is always challenging when a motion is involved. Hence the idea is to locate the regions in the body in every frame and consider it as the tracking strategy. Grouping these joints can be beneficial to achieve a stable region for tracking. The location of the body parts provides a crucial information to distinguish normal activities from falls.Keywords: fall detection, machine learning, deep learning, pose estimation, tracking
Procedia PDF Downloads 1893465 Technological Innovations and African Export Performances
Authors: Lukman Oyelami
Abstract:
Studies have identified trade as a veritable tool for inclusive economic growth and poverty reduction in developing countries. However, contrary to the overwhelming pieces of evidence of the Asian tiger as a success story of beneficial trade, many African countries still experience poverty unabatedly despite active engagement in trade. Consequently, this study seeks to investigate the contributory effect of technological innovation on total export performance and specifically manufacturing exports of African countries. This is with a view to exploring manufacturing exports as a viable option for diversification. To achieve the empirical investigation this study, require Systems Generalized Method of Moments (sys-GMM) estimation technique was adopted based on the econometric realities inherent in the data utilized. However, the static technique of panel estimation of the Fixed Effects (FE) model was utilized for baseline analysis and robustness check. The conclusion from this study is that innovation generally impacts export performance of African countries positively, however, manufacturing export shows more sensitivity to innovation than total export. And, this provides a clear pathway for export diversification for many African countries that run a resource-based economy.Keywords: innovation, export, GMM, Africa
Procedia PDF Downloads 2203464 Missing Link Data Estimation with Recurrent Neural Network: An Application Using Speed Data of Daegu Metropolitan Area
Authors: JaeHwan Yang, Da-Woon Jeong, Seung-Young Kho, Dong-Kyu Kim
Abstract:
In terms of ITS, information on link characteristic is an essential factor for plan or operation. But in practical cases, not every link has installed sensors on it. The link that does not have data on it is called “Missing Link”. The purpose of this study is to impute data of these missing links. To get these data, this study applies the machine learning method. With the machine learning process, especially for the deep learning process, missing link data can be estimated from present link data. For deep learning process, this study uses “Recurrent Neural Network” to take time-series data of road. As input data, Dedicated Short-range Communications (DSRC) data of Dalgubul-daero of Daegu Metropolitan Area had been fed into the learning process. Neural Network structure has 17 links with present data as input, 2 hidden layers, for 1 missing link data. As a result, forecasted data of target link show about 94% of accuracy compared with actual data.Keywords: data estimation, link data, machine learning, road network
Procedia PDF Downloads 5103463 Formulation of Extended-Release Gliclazide Tablet Using a Mathematical Model for Estimation of Hypromellose
Authors: Farzad Khajavi, Farzaneh Jalilfar, Faranak Jafari, Leila Shokrani
Abstract:
Formulation of gliclazide in the form of extended-release tablet in 30 and 60 mg dosage forms was performed using hypromellose (HPMC K4M) as a retarding agent. Drug-release profiles were investigated in comparison with references Diamicron MR 30 and 60 mg tablets. The effect of size of powder particles, the amount of hypromellose in formulation, hardness of tablets, and also the effect of halving the tablets were investigated on drug release profile. A mathematical model which describes hypromellose behavior in initial times of drug release was proposed for the estimation of hypromellose content in modified-release gliclazide 60 mg tablet. This model is based on erosion of hypromellose in dissolution media. The model is applicable to describe release profiles of insoluble drugs. Therefore, by using dissolved amount of drug in initial times of dissolution and the model, the amount of hypromellose in formulation can be predictable. The model was used to predict the HPMC K4M content in modified-release gliclazide 30 mg and extended-release quetiapine 200 mg tablets.Keywords: Gliclazide, hypromellose, drug release, modified-release tablet, mathematical model
Procedia PDF Downloads 2233462 Selection of Intensity Measure in Probabilistic Seismic Risk Assessment of a Turkish Railway Bridge
Authors: M. F. Yilmaz, B. Ö. Çağlayan
Abstract:
Fragility curve is an effective common used tool to determine the earthquake performance of structural and nonstructural components. Also, it is used to determine the nonlinear behavior of bridges. There are many historical bridges in the Turkish railway network; the earthquake performances of these bridges are needed to be investigated. To derive fragility curve Intensity measures (IMs) and Engineering demand parameters (EDP) are needed to be determined. And the relation between IMs and EDP are needed to be derived. In this study, a typical simply supported steel girder riveted railway bridge is studied. Fragility curves of this bridge are derived by two parameters lognormal distribution. Time history analyses are done for selected 60 real earthquake data to determine the relation between IMs and EDP. Moreover, efficiency, practicality, and sufficiency of three different IMs are discussed. PGA, Sa(0.2s) and Sa(1s), the most common used IMs parameters for fragility curve in the literature, are taken into consideration in terms of efficiency, practicality and sufficiency.Keywords: railway bridges, earthquake performance, fragility analyses, selection of intensity measures
Procedia PDF Downloads 3573461 Downtime Estimation of Building Structures Using Fuzzy Logic
Authors: M. De Iuliis, O. Kammouh, G. P. Cimellaro, S. Tesfamariam
Abstract:
Community Resilience has gained a significant attention due to the recent unexpected natural and man-made disasters. Resilience is the process of maintaining livable conditions in the event of interruptions in normally available services. Estimating the resilience of systems, ranging from individuals to communities, is a formidable task due to the complexity involved in the process. The most challenging parameter involved in the resilience assessment is the 'downtime'. Downtime is the time needed for a system to recover its services following a disaster event. Estimating the exact downtime of a system requires a lot of inputs and resources that are not always obtainable. The uncertainties in the downtime estimation are usually handled using probabilistic methods, which necessitates acquiring large historical data. The estimation process also involves ignorance, imprecision, vagueness, and subjective judgment. In this paper, a fuzzy-based approach to estimate the downtime of building structures following earthquake events is proposed. Fuzzy logic can integrate descriptive (linguistic) knowledge and numerical data into the fuzzy system. This ability allows the use of walk down surveys, which collect data in a linguistic or a numerical form. The use of fuzzy logic permits a fast and economical estimation of parameters that involve uncertainties. The first step of the method is to determine the building’s vulnerability. A rapid visual screening is designed to acquire information about the analyzed building (e.g. year of construction, structural system, site seismicity, etc.). Then, a fuzzy logic is implemented using a hierarchical scheme to determine the building damageability, which is the main ingredient to estimate the downtime. Generally, the downtime can be divided into three main components: downtime due to the actual damage (DT1); downtime caused by rational and irrational delays (DT2); and downtime due to utilities disruption (DT3). In this work, DT1 is computed by relating the building damageability results obtained from the visual screening to some already-defined components repair times available in the literature. DT2 and DT3 are estimated using the REDITM Guidelines. The Downtime of the building is finally obtained by combining the three components. The proposed method also allows identifying the downtime corresponding to each of the three recovery states: re-occupancy; functional recovery; and full recovery. Future work is aimed at improving the current methodology to pass from the downtime to the resilience of buildings. This will provide a simple tool that can be used by the authorities for decision making.Keywords: resilience, restoration, downtime, community resilience, fuzzy logic, recovery, damage, built environment
Procedia PDF Downloads 1603460 Artificial Neural Network and Satellite Derived Chlorophyll Indices for Estimation of Wheat Chlorophyll Content under Rainfed Condition
Authors: Muhammad Naveed Tahir, Wang Yingkuan, Huang Wenjiang, Raheel Osman
Abstract:
Numerous models used in prediction and decision-making process but most of them are linear in natural environment, and linear models reach their limitations with non-linearity in data. Therefore accurate estimation is difficult. Artificial Neural Networks (ANN) found extensive acceptance to address the modeling of the complex real world for the non-linear environment. ANN’s have more general and flexible functional forms than traditional statistical methods can effectively deal with. The link between information technology and agriculture will become more firm in the near future. Monitoring crop biophysical properties non-destructively can provide a rapid and accurate understanding of its response to various environmental influences. Crop chlorophyll content is an important indicator of crop health and therefore the estimation of crop yield. In recent years, remote sensing has been accepted as a robust tool for site-specific management by detecting crop parameters at both local and large scales. The present research combined the ANN model with satellite-derived chlorophyll indices from LANDSAT 8 imagery for predicting real-time wheat chlorophyll estimation. The cloud-free scenes of LANDSAT 8 were acquired (Feb-March 2016-17) at the same time when ground-truthing campaign was performed for chlorophyll estimation by using SPAD-502. Different vegetation indices were derived from LANDSAT 8 imagery using ERADAS Imagine (v.2014) software for chlorophyll determination. The vegetation indices were including Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Chlorophyll Absorbed Ratio Index (CARI), Modified Chlorophyll Absorbed Ratio Index (MCARI) and Transformed Chlorophyll Absorbed Ratio index (TCARI). For ANN modeling, MATLAB and SPSS (ANN) tools were used. Multilayer Perceptron (MLP) in MATLAB provided very satisfactory results. For training purpose of MLP 61.7% of the data, for validation purpose 28.3% of data and rest 10% of data were used to evaluate and validate the ANN model results. For error evaluation, sum of squares error and relative error were used. ANN model summery showed that sum of squares error of 10.786, the average overall relative error was .099. The MCARI and NDVI were revealed to be more sensitive indices for assessing wheat chlorophyll content with the highest coefficient of determination R²=0.93 and 0.90 respectively. The results suggested that use of high spatial resolution satellite imagery for the retrieval of crop chlorophyll content by using ANN model provides accurate, reliable assessment of crop health status at a larger scale which can help in managing crop nutrition requirement in real time.Keywords: ANN, chlorophyll content, chlorophyll indices, satellite images, wheat
Procedia PDF Downloads 1463459 Analysis of the Predictive Performance of Value at Risk Estimations in Times of Financial Crisis
Authors: Alexander Marx
Abstract:
Measuring and mitigating market risk is essential for the stability of enterprises, especially for major banking corporations and investment bank firms. To employ these risk measurement and mitigation processes, the Value at Risk (VaR) is the most commonly used risk metric by practitioners. In the past years, we have seen significant weaknesses in the predictive performance of the VaR in times of financial market crisis. To address this issue, the purpose of this study is to investigate the value-at-risk (VaR) estimation models and their predictive performance by applying a series of backtesting methods on the stock market indices of the G7 countries (Canada, France, Germany, Italy, Japan, UK, US, Europe). The study employs parametric, non-parametric, and semi-parametric VaR estimation models and is conducted during three different periods which cover the most recent financial market crisis: the overall period (2006–2022), the global financial crisis period (2008–2009), and COVID-19 period (2020–2022). Since the regulatory authorities have introduced and mandated the Conditional Value at Risk (Expected Shortfall) as an additional regulatory risk management metric, the study will analyze and compare both risk metrics on their predictive performance.Keywords: value at risk, financial market risk, banking, quantitative risk management
Procedia PDF Downloads 953458 Repeatable Scalable Business Models: Can Innovation Drive an Entrepreneurs Un-Validated Business Model?
Authors: Paul Ojeaga
Abstract:
Can the level of innovation use drive un-validated business models across regions? To what extent does industrial sector attractiveness drive firm’s success across regions at the time of start-up? This study examines the role of innovation on start-up success in six regions of the world (namely Sub Saharan Africa, the Middle East and North Africa, Latin America, South East Asia Pacific, the European Union and the United States representing North America) using macroeconomic variables. While there have been studies using firm level data, results from such studies are not suitable for national policy decisions. The need to drive a regional innovation policy also begs for an answer, therefore providing room for this study. Results using dynamic panel estimation show that innovation counts in the early infancy stage of new business life cycle. The results are robust even after controlling for time fixed effects and the study present variance-covariance estimation robust standard errors.Keywords: industrial economics, un-validated business models, scalable models, entrepreneurship
Procedia PDF Downloads 2833457 Ultra-High Frequency Passive Radar Coverage for Cars Detection in Semi-Urban Scenarios
Authors: Pedro Gómez-del-Hoyo, Jose-Luis Bárcena-Humanes, Nerea del-Rey-Maestre, María-Pilar Jarabo-Amores, David Mata-Moya
Abstract:
A study of achievable coverages using passive radar systems in terrestrial traffic monitoring applications is presented. The study includes the estimation of the bistatic radar cross section of different commercial vehicle models that provide challenging low values which make detection really difficult. A semi-urban scenario is selected to evaluate the impact of excess propagation losses generated by an irregular relief. A bistatic passive radar exploiting UHF frequencies radiated by digital video broadcasting transmitters is assumed. A general method of coverage estimation using electromagnetic simulators in combination with estimated car average bistatic radar cross section is applied. In order to reduce the computational cost, hybrid solution is implemented, assuming free space for the target-receiver path but estimating the excess propagation losses for the transmitter-target one.Keywords: bistatic radar cross section, passive radar, propagation losses, radar coverage
Procedia PDF Downloads 3363456 Simple Multiple-Attribute Rating Technique for Optimal Decision-Making Model on Selecting Best Spiker of World Grand Prix
Authors: Chen Chih-Cheng, Chen I-Cheng, Lee Yung-Tan, Kuo Yen-Whea, Yu Chin-Hung
Abstract:
The purpose of this study is to construct a model for best spike player selection in a top volleyball tournament of the world. Data consisted of the records of 2013 World Grand Prix declared by International Volleyball Federation (FIVB). Simple Multiple-Attribute Rating Technique (SMART) was used for optimal decision-making model on the best spike player selection. The research results showed that the best spike player ranking by SMART is different than the ranking by FIVB. The results demonstrated the effectiveness and feasibility of the proposed model.Keywords: simple multiple-attribute rating technique, World Grand Prix, best spike player, International Volleyball Federation
Procedia PDF Downloads 4743455 Investigation of Additives' Corrosion Inhibition Effects on Dye
Authors: Abdullah Bilal Ozturk, Nil Acarali, Hediye Irem Ozgunduz, Hava Gizem Kandilci, Hanifi Sarac
Abstract:
In this study, zeolite, shellac and different boron chemicals were used as additive to dye and effects were comprehensively investigated. Considering previous studies additive materials that had not used before were determined for produce dye with physical properties. Literature research about the materials provides determining easily sufficient amount of additive materials. Accessible of additives or yearly production amounts are become important issue at selection of materials. Zeolite and boron chemicals are suitable selection in that easy access and has large amount of production in our country. Previous research about boron chemicals shows they have flame retardant effect on textile materials besides numerous usage areas. Also, from previous research, shellac was used widely for protection and insulation of metallic materials. Zeolite added to dye to increase adhesive effect of dye. In this study, corrosion tests were applied to find out if there are positive effects of zeolite, shellac, and boron chemicals to dye’s physical properties.Keywords: dye, corrosion, zeolite, shellac, boron
Procedia PDF Downloads 3383454 An Estimating Parameter of the Mean in Normal Distribution by Maximum Likelihood, Bayes, and Markov Chain Monte Carlo Methods
Authors: Autcha Araveeporn
Abstract:
This paper is to compare the parameter estimation of the mean in normal distribution by Maximum Likelihood (ML), Bayes, and Markov Chain Monte Carlo (MCMC) methods. The ML estimator is estimated by the average of data, the Bayes method is considered from the prior distribution to estimate Bayes estimator, and MCMC estimator is approximated by Gibbs sampling from posterior distribution. These methods are also to estimate a parameter then the hypothesis testing is used to check a robustness of the estimators. Data are simulated from normal distribution with the true parameter of mean 2, and variance 4, 9, and 16 when the sample sizes is set as 10, 20, 30, and 50. From the results, it can be seen that the estimation of MLE, and MCMC are perceivably different from the true parameter when the sample size is 10 and 20 with variance 16. Furthermore, the Bayes estimator is estimated from the prior distribution when mean is 1, and variance is 12 which showed the significant difference in mean with variance 9 at the sample size 10 and 20.Keywords: Bayes method, Markov chain Monte Carlo method, maximum likelihood method, normal distribution
Procedia PDF Downloads 3563453 Consumers’ Willingness to Pay for Organic Vegetables in Oyo State
Authors: Olanrewaju Kafayat, O., Salman Kabir, K.
Abstract:
The role of organic agriculture in providing food and income is now gaining wider recognition (Van Elzakker et al 2007). The increasing public concerns about food safety issues on the use of fertilizers, pesticide residues, growth hormones, GM organisms, and increasing awareness of environmental quality issues have led to an expanding demand for environmentally friendly products (Thompson, 1998; Rimal et al., 2005). As a result national governments are concerned about diet and health, and there has been renewed recognition of the role of public policy in promoting healthy diets, thus to provide healthier, safer, more confident citizens (Poole et al., 2007), With these benefits, a study into organic vegetables is very vital to all the major stakeholders. This study analyzed the willingness of consumers to pay for organic vegetables in Oyo state, Nigeria. Primary data was collected with the aid of structured questionnaire administered to 168 respondents. These were selected using multistage random sampling. The first stage involved the selection two (2) ADP zones out of the three (3) ADP zones in Oyo state, The second stage involved the random selection of two (2) local government areas each out of the two (2) ADP zones which are; Ibadan South West and Ogbomoso North and random selection of 4 wards each from the local government areas. The third stage involved random selection of 42 household each from of the local government areas. Descriptive statistics, the principal component analysis, and the logistic regression were used to analyze the data. Results showed 55 percent of the respondents were female while 80 percent were 50 years. 74 percent of the respondents agreed that organic vegetables are of better quality. 31 percent of the respondents were aware of organic vegetables as against 69 percent who were not aware. From the logistic model, educational attainment, amount spent on organic vegetables monthly, better quality of organic vegetables and accessibility to organic vegetables were significant and had a positive relationship on willingness to pay for organic vegetable. The variables that were significant and had a negative relationship with WTP are less attractiveness of organic vegetables and household size of the respondents. This study concludes that consumers with higher level of education were more likely to be aware and willing to pay for organic vegetables than those with low levels of education, the study therefore recommends creation of awareness on the relevance of consuming organic vegetables through effective marketing and educational campaigns.Keywords: consumers awareness, willingness to pay, organic vegetables, Oyo State
Procedia PDF Downloads 2713452 Adaptation of Hough Transform Algorithm for Text Document Skew Angle Detection
Authors: Kayode A. Olaniyi, Olabanji F. Omotoye, Adeola A. Ogunleye
Abstract:
The skew detection and correction form an important part of digital document analysis. This is because uncompensated skew can deteriorate document features and can complicate further document image processing steps. Efficient text document analysis and digitization can rarely be achieved when a document is skewed even at a small angle. Once the documents have been digitized through the scanning system and binarization also achieved, document skew correction is required before further image analysis. Research efforts have been put in this area with algorithms developed to eliminate document skew. Skew angle correction algorithms can be compared based on performance criteria. Most important performance criteria are accuracy of skew angle detection, range of skew angle for detection, speed of processing the image, computational complexity and consequently memory space used. The standard Hough Transform has successfully been implemented for text documentation skew angle estimation application. However, the standard Hough Transform algorithm level of accuracy depends largely on how much fine the step size for the angle used. This consequently consumes more time and memory space for increase accuracy and, especially where number of pixels is considerable large. Whenever the Hough transform is used, there is always a tradeoff between accuracy and speed. So a more efficient solution is needed that optimizes space as well as time. In this paper, an improved Hough transform (HT) technique that optimizes space as well as time to robustly detect document skew is presented. The modified algorithm of Hough Transform presents solution to the contradiction between the memory space, running time and accuracy. Our algorithm starts with the first step of angle estimation accurate up to zero decimal place using the standard Hough Transform algorithm achieving minimal running time and space but lacks relative accuracy. Then to increase accuracy, suppose estimated angle found using the basic Hough algorithm is x degree, we then run again basic algorithm from range between ±x degrees with accuracy of one decimal place. Same process is iterated till level of desired accuracy is achieved. The procedure of our skew estimation and correction algorithm of text images is implemented using MATLAB. The memory space estimation and process time are also tabulated with skew angle assumption of within 00 and 450. The simulation results which is demonstrated in Matlab show the high performance of our algorithms with less computational time and memory space used in detecting document skew for a variety of documents with different levels of complexity.Keywords: hough-transform, skew-detection, skew-angle, skew-correction, text-document
Procedia PDF Downloads 1593451 Machine Learning for Feature Selection and Classification of Systemic Lupus Erythematosus
Authors: H. Zidoum, A. AlShareedah, S. Al Sawafi, A. Al-Ansari, B. Al Lawati
Abstract:
Systemic lupus erythematosus (SLE) is an autoimmune disease with genetic and environmental components. SLE is characterized by a wide variability of clinical manifestations and a course frequently subject to unpredictable flares. Despite recent progress in classification tools, the early diagnosis of SLE is still an unmet need for many patients. This study proposes an interpretable disease classification model that combines the high and efficient predictive performance of CatBoost and the model-agnostic interpretation tools of Shapley Additive exPlanations (SHAP). The CatBoost model was trained on a local cohort of 219 Omani patients with SLE as well as other control diseases. Furthermore, the SHAP library was used to generate individual explanations of the model's decisions as well as rank clinical features by contribution. Overall, we achieved an AUC score of 0.945, F1-score of 0.92 and identified four clinical features (alopecia, renal disorders, cutaneous lupus, and hemolytic anemia) along with the patient's age that was shown to have the greatest contribution on the prediction.Keywords: feature selection, classification, systemic lupus erythematosus, model interpretation, SHAP, Catboost
Procedia PDF Downloads 843450 English Language Proficiency and Use as Determinants of Transactional Success in Gbagi Market, Ibadan, Nigeria
Authors: A. Robbin
Abstract:
Language selection can be an efficient negotiation strategy employed by both service or product providers and their customers to achieve transactional success. The transactional scenario in Gbagi Market, Ibadan, Nigeria provides an appropriate setting for the exploration of the Nigerian multilingual situation with its own interesting linguistic peculiarities which questions the functionality of the ‘Lingua Franca’ in trade situations. This study examined English Language proficiency among Yoruba Traders in Gbagi Market, Ibadan and its use as determinants of transactional success during service encounters. Randomly selected Yoruba-English bilingual traders and customers were administered questionnaires and the data subjected to statistical and descriptive analysis using Giles Communication Accommodation Theory. Findings reveal that only fifty percent of the traders used for the study were proficient in speaking English language. Traders with minimal proficiency in Standard English, however, resulted in the use of the Nigerian Pidgin English. Both traders and customers select the Mother Tongue, which is the Yoruba Language during service encounters but are quick to converge to the other’s preferred language as the transactional exchange demands. The English language selection is not so much for the prestige or lingua franca status of the language as it is for its functions, which include ease of communication, negotiation, and increased sales. The use of English during service encounters is mostly determined by customer’s linguistic preference which the trader accommodates to for better negotiation and never as a first choice. This convergence is found to be beneficial as it ensures sales and return patronage. Although the English language is not a preferred code choice in Gbagi Market, it serves a functional trade strategy for transactional success during service encounters in the market.Keywords: communication accommodation theory, language selection, proficiency, service encounter, transaction
Procedia PDF Downloads 1583449 Fatigue Life Estimation Using N-Code for Drive Shaft of Passenger Vehicle
Authors: Tae An Kim, Hyo Lim Kang, Hye Won Han, Seung Ho Han
Abstract:
The drive shaft of passenger vehicle has its own function such as transmitting the engine torque from the gearbox and differential gears to the wheels. It must also compensate for all variations in angle or length resulting from manoeuvring and deflection for perfect synchronization between joints. Torsional fatigue failures occur frequently at the connection parts of the spline joints in the end of the drive shaft. In this study, the fatigue life of a drive shaft of passenger vehicle was estimated by using the finite element analysis. A commercial software of n-Code was applied under twisting load conditions, i.e. 0~134kgf•m and 0~188kgf•m, in which the shear strain range-fatigue life relationship considering Signed Shear method, Smith-Watson-Topper equation, Neuber-Hoffman Seeger method, size sensitivity factor and surface roughness effect was taken into account. The estimated fatigue life was verified by a twisting load test of the real drive shaft in a test rig. (Human Resource Training Project for Industry Matched R & D, KIAT, N036200004).Keywords: drive shaft, fatigue life estimation, passenger vehicle, shear strain range-fatigue life relationship, torsional fatigue failure
Procedia PDF Downloads 2753448 Time Bound Parallel Processing of a Disaster Management Alert System Using Random Selection of Target Audience: Bangladesh Context
Authors: Hasan Al Bashar Abul Ulayee, AKM Saifun Nabi, MD Mesbah-Ul-Awal
Abstract:
Alert system for disaster management is common now a day and can play a vital role reducing devastation and saves lives and costs. An alert in right time can save thousands of human life, help to take shelter, manage other assets including live stocks and above all, a right time alert will help to take preparation to face and early recovery of the situation. In a country like Bangladesh where populations is more than 170 million and always facing different types of natural calamities and disasters, an early right time alert is very effective and implementation of alert system is challenging. The challenge comes from the time constraint of alerting the huge number of population. The other method of existing disaster management pre alert is traditional, sequential and non-selective so efficiency is not good enough. This paper describes a way by which alert can be provided to maximum number of people within the short time bound using parallel processing as well as random selection of selective target audience.Keywords: alert system, Bangladesh, disaster management, parallel processing, SMS
Procedia PDF Downloads 4703447 A Study of Mode Choice Model Improvement Considering Age Grouping
Authors: Young-Hyun Seo, Hyunwoo Park, Dong-Kyu Kim, Seung-Young Kho
Abstract:
The purpose of this study is providing an improved mode choice model considering parameters including age grouping of prime-aged and old age. In this study, 2010 Household Travel Survey data were used and improper samples were removed through the analysis. Chosen alternative, date of birth, mode, origin code, destination code, departure time, and arrival time are considered from Household Travel Survey. By preprocessing data, travel time, travel cost, mode, and ratio of people aged 45 to 55 years, 55 to 65 years and over 65 years were calculated. After the manipulation, the mode choice model was constructed using LIMDEP by maximum likelihood estimation. A significance test was conducted for nine parameters, three age groups for three modes. Then the test was conducted again for the mode choice model with significant parameters, travel cost variable and travel time variable. As a result of the model estimation, as the age increases, the preference for the car decreases and the preference for the bus increases. This study is meaningful in that the individual and households characteristics are applied to the aggregate model.Keywords: age grouping, aging, mode choice model, multinomial logit model
Procedia PDF Downloads 3223446 Identification and Validation of Co-Dominant Markers for Selection of the CO-4 Anthracnose Disease Resistance Gene in Common Bean Cultivar G2333
Authors: Annet Namusoke, Annet Namayanja, Peter Wasswa, Shakirah Nampijja
Abstract:
Common bean cultivar G2333 which offers broad resistance for anthracnose has been widely used as a source of resistance in breeding for anthracnose resistance. The cultivar is pyramided with three genes namely CO-4, CO-5 and CO-7 and of these three genes, the CO-4 gene has been found to offer the broadest resistance. The main aim of this work was to identify and validate easily assayable PCR based co-dominant molecular markers for selection of the CO-4 gene in segregating populations derived from crosses of G2333 with RWR 1946 and RWR 2075, two commercial Andean cultivars highly susceptible to anthracnose. Marker sequences for the study were obtained by blasting the sequence of the COK-4 gene in the Phaseolus gene database. Primer sequence pairs that were not provided from the Phaseolus gene database were designed by the use of Primer3 software. PCR conditions were optimized and the PCR products were run on 6% HPAGE gel. Results of the polymorphism test indicated that out of 18 identified markers, only two markers namely BM588 and BM211 behaved co-dominantly. Phenotypic evaluation for reaction to anthracnose disease was done by inoculating 21days old seedlings of three parents, F1 and F2 populations with race 7 of Colletotrichum lindemuthianum in the humid chamber. DNA testing of the BM588 marker onto the F2 segregating population of the crosses RWR 1946 x G 2333 and RWR 2075 x G2333 further revealed that the marker BM588 co-segregated with disease resistance with co-dominance of two alleles of 200bp and 400bp, fitting the expected segregation ratio of 1:2:1. The BM588 marker was significantly associated with disease resistance and gave promising results for marker assisted selection of the CO-4 gene in the breeding lines. Activities to validate the BM211 marker are also underway.Keywords: codominant, Colletotrichum lindemuthianum, MAS, Phaseolus vulgaris
Procedia PDF Downloads 2923445 Study on Errors in Estimating the 3D Gaze Point for Different Pupil Sizes Using Eye Vergences
Authors: M. Pomianek, M. Piszczek, M. Maciejewski
Abstract:
The binocular eye tracking technology is increasingly being used in industry, entertainment and marketing analysis. In the case of virtual reality, eye tracking systems are already the basis for user interaction with the environment. In such systems, the high accuracy of determining the user's eye fixation point is very important due to the specificity of the virtual reality head-mounted display (HMD). Often, however, there are unknown errors occurring in the used eye tracking technology, as well as those resulting from the positioning of the devices in relation to the user's eyes. However, can the virtual environment itself influence estimation errors? The paper presents mathematical analyses and empirical studies of the determination of the fixation point and errors resulting from the change in the size of the pupil in response to the intensity of the displayed scene. The article contains both static laboratory tests as well as on the real user. Based on the research results, optimization solutions were proposed that would reduce the errors of gaze estimation errors. Studies show that errors in estimating the fixation point of vision can be minimized both by improving the pupil positioning algorithm in the video image and by using more precise methods to calibrate the eye tracking system in three-dimensional space.Keywords: eye tracking, fixation point, pupil size, virtual reality
Procedia PDF Downloads 1323444 The Current Situation and Perspectives of Electricity Demand and Estimation of Carbon Dioxide Emissions and Efficiency
Abstract:
This article presents a current and future energy situation in Libya. The electric power efficiency and operating hours in power plants are evaluated from 2005 to 2010. Carbon dioxide emissions in most of power plants are estimated. In 2005, the efficiency of steam power plants achieved a range of 20% to 28%. While, the gas turbine power plants efficiency ranged between 9% and 25%, this can be considered as low efficiency. However, the efficiency improvement has clearly observed in some power plants from 2008 to 2010, especially in the power plant of North Benghazi and west Tripoli. In fact, these power plants have modified to combine cycle. The efficiency of North Benghazi power plant has increased from 25% to 46.6%, while in Tripoli it is increased from 22% to 34%. On the other hand, the efficiency improvement is not observed in the gas turbine power plants. When compared to the quantity of fuel used, the carbon dioxide emissions resulting from electricity generation plants were very high. Finally, an estimation of the energy demand has been done to the maximum load and the annual load factor (i.e., the ratio between the output power and installed power).Keywords: power plant, efficiency improvement, carbon dioxide emissions, energy situation in Libya
Procedia PDF Downloads 4783443 Content Based Face Sketch Images Retrieval in WHT, DCT, and DWT Transform Domain
Authors: W. S. Besbas, M. A. Artemi, R. M. Salman
Abstract:
Content based face sketch retrieval can be used to find images of criminals from their sketches for 'Crime Prevention'. This paper investigates the problem of CBIR of face sketch images in transform domain. Face sketch images that are similar to the query image are retrieved from the face sketch database. Features of the face sketch image are extracted in the spectrum domain of a selected transforms. These transforms are Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT), and Walsh Hadamard Transform (WHT). For the performance analyses of features selection methods three face images databases are used. These are 'Sheffield face database', 'Olivetti Research Laboratory (ORL) face database', and 'Indian face database'. The City block distance measure is used to evaluate the performance of the retrieval process. The investigation concludes that, the retrieval rate is database dependent. But in general, the DCT is the best. On the other hand, the WHT is the best with respect to the speed of retrieving images.Keywords: Content Based Image Retrieval (CBIR), face sketch image retrieval, features selection for CBIR, image retrieval in transform domain
Procedia PDF Downloads 4933442 Estimation of Reservoir Capacity and Sediment Deposition Using Remote Sensing Data
Authors: Odai Ibrahim Mohammed Al Balasmeh, Tapas Karmaker, Richa Babbar
Abstract:
In this study, the reservoir capacity and sediment deposition were estimated using remote sensing data. The satellite images were synchronized with water level and storage capacity to find out the change in sediment deposition due to soil erosion and transport by streamflow. The water bodies spread area was estimated using vegetation indices, e.g., normalize differences vegetation index (NDVI) and normalize differences water index (NDWI). The 3D reservoir bathymetry was modeled by integrated water level, storage capacity, and area. From the models of different time span, the change in reservoir storage capacity was estimated. Another reservoir with known water level, storage capacity, area, and sediment deposition was used to validate the estimation technique. The t-test was used to assess the results between observed and estimated reservoir capacity and sediment deposition.Keywords: satellite data, normalize differences vegetation index, NDVI, normalize differences water index, NDWI, reservoir capacity, sedimentation, t-test hypothesis
Procedia PDF Downloads 1683441 Estimation of Aquifer Properties Using Pumping Tests: Case Study of Pydibhimavaram Industrial Area, Srikakulam, India
Authors: G. Venkata Rao, P. Kalpana, R. Srinivasa Rao
Abstract:
Adequate and reliable estimates of aquifer parameters are of utmost importance for proper management of vital groundwater resources. At present scenario the ground water is polluted because of industrial waste disposed over the land and the contaminants are transported in the aquifer from one area to another area which is depending on the characteristics of the aquifer and contaminants. To know the contaminant transport, the accurate estimation of aquifer properties is highly needed. Conventionally, these properties are estimated through pumping tests carried out on water wells. The occurrence and movement of ground water in the aquifer are characteristically defined by the aquifer parameters. The pumping (aquifer) test is the standard technique for estimating various hydraulic properties of aquifer systems, viz, transmissivity (T), hydraulic conductivity (K), storage coefficient (S) etc., for which the graphical method is widely used. The study area for conducting pumping test is Pydibheemavaram Industrial area near the coastal belt of Srikulam, AP, India. The main objective of the present work is to estimate the aquifer properties for developing contaminant transport model for the study area.Keywords: aquifer, contaminant transport, hydraulic conductivity, industrial waste, pumping test
Procedia PDF Downloads 4463440 RAD-Seq Data Reveals Evidence of Local Adaptation between Upstream and Downstream Populations of Australian Glass Shrimp
Authors: Sharmeen Rahman, Daniel Schmidt, Jane Hughes
Abstract:
Paratya australiensis Kemp (Decapoda: Atyidae) is a widely distributed indigenous freshwater shrimp, highly abundant in eastern Australia. This species has been considered as a model stream organism to study genetics, dispersal, biology, behaviour and evolution in Atyids. Paratya has a filter feeding and scavenging habit which plays a significant role in the formation of lotic community structure. It has been shown to reduce periphyton and sediment from hard substrates of coastal streams and hence acts as a strongly-interacting ecosystem macroconsumer. Besides, Paratya is one of the major food sources for stream dwelling fishes. Paratya australiensis is a cryptic species complex consisting of 9 highly divergent mitochondrial DNA lineages. Among them, one lineage has been observed to favour upstream sites at higher altitudes, with cooler water temperatures. This study aims to identify local adaptation in upstream and downstream populations of this lineage in three streams in the Conondale Range, North-eastern Brisbane, Queensland, Australia. Two populations (up and down stream) from each stream have been chosen to test for local adaptation, and a parallel pattern of adaptation is expected across all streams. Six populations each consisting of 24 individuals were sequenced using the Restriction Site Associated DNA-seq (RAD-seq) technique. Genetic markers (SNPs) were developed using double digest RAD sequencing (ddRAD-seq). These were used for de novo assembly of Paratya genome. De novo assembly was done using the STACKs program and produced 56, 344 loci for 47 individuals from one stream. Among these individuals, 39 individuals shared 5819 loci, and these markers are being used to test for local adaptation using Fst outlier tests (Arlequin) and Bayesian analysis (BayeScan) between up and downstream populations. Fst outlier test detected 27 loci likely to be under selection and the Bayesian analysis also detected 27 loci as under selection. Among these 27 loci, 3 loci showed evidence of selection at a significance level using BayeScan program. On the other hand, up and downstream populations are strongly diverged at neutral loci with a Fst =0.37. Similar analysis will be done with all six populations to determine if there is a parallel pattern of adaptation across all streams. Furthermore, multi-locus among population covariance analysis will be done to identify potential markers under selection as well as to compare single locus versus multi-locus approaches for detecting local adaptation. Adaptive genes identified in this study can be used for future studies to design primers and test for adaptation in related crustacean species.Keywords: Paratya australiensis, rainforest streams, selection, single nucleotide polymorphism (SNPs)
Procedia PDF Downloads 2553439 Estimation of Emanation Properties of Kimberlites and Host Rocks of Lomonosov Diamond Deposit in Russia
Authors: E. Yu. Yakovlev, A. V. Puchkov
Abstract:
The study is devoted to experimental work on the assessment of emanation properties of kimberlites and host rocks of the Lomonosov diamond deposit of the Arkhangelsk diamondiferous province. The aim of the study is estimation the factors influencing on formation of the radon field over kimberlite pipes. For various types of rocks composing the kimberlite pipe and near-pipe space, the following parameters were measured: porosity, density, radium-226 activity, activity of free radon and emanation coefficient. The research results showed that the largest amount of free radon is produced by rocks of near-pipe space, which are the Vendian host deposits and are characterized by high values of the emanation coefficient, radium activity and porosity. The lowest values of these parameters are characteristic of vent-facies kimberlites, which limit the formation of activity of free radon in body of the pipe. The results of experimental work confirm the prospects of using emanation methods for prospecting of kimberlite pipes.Keywords: emanation coefficient, kimberlites, porosity, radon volumetric activity
Procedia PDF Downloads 139