Search results for: electronic learning
8052 Educators’ Adherence to Learning Theories and Their Perceptions on the Advantages and Disadvantages of E-Learning
Authors: Samson T. Obafemi, Seraphin D. Eyono-Obono
Abstract:
Information and Communication Technologies (ICTs) are pervasive nowadays, including in education where they are expected to improve the performance of learners. However, the hope placed in ICTs to find viable solutions to the problem of poor academic performance in schools in the developing world has not yet yielded the expected benefits. This problem serves as a motivation to this study whose aim is to examine the perceptions of educators on the advantages and disadvantages of e-learning. This aim will be subdivided into two types of research objectives. Objectives on the identification and design of theories and models will be achieved using content analysis and literature review. However, the objective on the empirical testing of such theories and models will be achieved through the survey of educators from different schools in the Pinetown District of the South African Kwazulu-Natal province. SPSS is used to quantitatively analyse the data collected by the questionnaire of this survey using descriptive statistics and Pearson correlations after assessing the validity and the reliability of the data. The main hypothesis driving this study is that there is a relationship between the demographics of educators’ and their adherence to learning theories on one side, and their perceptions on the advantages and disadvantages of e-learning on the other side, as argued by existing research; but this research views these learning theories under three perspectives: educators’ adherence to self-regulated learning, to constructivism, and to progressivism. This hypothesis was fully confirmed by the empirical study except for the demographic factor where teachers’ level of education was found to be the only demographic factor affecting the perceptions of educators on the advantages and disadvantages of e-learning.Keywords: academic performance, e-learning, learning theories, teaching and learning
Procedia PDF Downloads 2738051 Theoretical Investigation of Electronic, Structural and Thermoelectric Properties of Mg₂SiSn (110) Surface
Authors: M. Ramesh, Manish K. Niranjan
Abstract:
The electronic, structural and thermoelectric properties of Mg₂SiSn (110) surface are investigated within the framework of first principle density functional theory and semi classical Boltzmann approach. In particular, directional dependent thermoelectric properties such as electrical conductivity, thermal conductivity, Seebeck coefficient and figure of merit are explored. The (110)-oriented Mg₂SiSn surface exhibits narrow indirect band gap of ~0.17 eV. The thermoelectric properties are found to be significant along the y-axis at 300 K and along x-axis at 500 K. The figure of merit (ZT) for hole carrier concentration is found to be significantly large having magnitude 0.83 (along x-axis) at 500 K and 0.26 (y-axis) at 300 K. Our results suggest that Mg₂SiSn (110) surface is promising for various thermoelectric applications due to its overall good thermoelectric properties.Keywords: thermoelectric, surface science, semiconducting silicide, first principles calculations
Procedia PDF Downloads 2268050 Building in Language Support in a Hong Kong Chemistry Classroom with English as a Medium of Instruction: An Exploratory Study
Authors: Kai Yip Michael Tsang
Abstract:
Science writing has played a crucial part in science assessments. This paper reports a study in an area that has received little research attention – how Language across the Curriculum (LAC, i.e. science language and literacy) learning activities in science lessons can increase the science knowledge development of English as a foreign language (EFL) students in Hong Kong. The data comes from a school-based interventional study in chemistry classrooms, with written data from questionnaires, assessments and teachers’ logs and verbal data from interviews and classroom observations. The effectiveness of the LAC teaching and learning activities in various chemistry classrooms were compared and evaluated, with discussion of some implications. Students in the treatment group with lower achieving students received LAC learning and teaching activities while students in the control group with higher achieving students received conventional learning and teaching activities. After the study, they performed better in control group in formative assessments. Moreover, they had a better attitude to learning chemistry content with a richer language support. The paper concludes that LAC teaching and learning activities yielded positive learning outcomes among chemistry learners with low English ability.Keywords: science learning and teaching, content and language integrated learning, language across the curriculum, English as a foreign language
Procedia PDF Downloads 1908049 Genetic Algorithm Based Deep Learning Parameters Tuning for Robot Object Recognition and Grasping
Authors: Delowar Hossain, Genci Capi
Abstract:
This paper concerns with the problem of deep learning parameters tuning using a genetic algorithm (GA) in order to improve the performance of deep learning (DL) method. We present a GA based DL method for robot object recognition and grasping. GA is used to optimize the DL parameters in learning procedure in term of the fitness function that is good enough. After finishing the evolution process, we receive the optimal number of DL parameters. To evaluate the performance of our method, we consider the object recognition and robot grasping tasks. Experimental results show that our method is efficient for robot object recognition and grasping.Keywords: deep learning, genetic algorithm, object recognition, robot grasping
Procedia PDF Downloads 3538048 Effect of Electronic Banking on the Performance of Deposit Money Banks in Nigeria: Using ATM and Mobile Phone as a Case Study
Authors: Charity Ifunanya Osakwe, Victoria Ogochuchukwu Obi-Nwosu, Chima Kenneth Anachedo
Abstract:
The study investigates how automated teller machines (ATM) and mobile banking affect deposit money banks in the Nigerian economy. The study made use of time series data which were obtained from the Central Bank of Nigeria Statistical Bulletin from 2009 to 2021. The Central Bank of Nigeria (CBN) data on automated teller machine and mobile phones were used to proxy electronic banking while total deposit in banks proxied the performance of deposit money banks. The analysis for the study was done using ordinary least square econometric technique with the aid of economic view statistical package. The results show that the automated teller machine has a positive and significant effect on the total deposits of deposit money banks in Nigeria and that making use of deposits of deposit money banks in Nigeria. It was concluded in the study that e-banking has equally increased banking access to customers and also created room for banks to expand their operations to more customers. The study recommends that banks in Nigeria should prioritize the expansion and maintenance of ATM networks as well as continue to invest in and develop more mobile banking services.Keywords: electronic, banking, automated teller machines, mobile, deposit
Procedia PDF Downloads 538047 Structural, Magnetic, and Dielectric Studies of Tetragonally Ordered Sm₂Fe₂O₇ Pyrochlore Nanostructures for Spintronic Application
Authors: S. Nqayi
Abstract:
Understanding the structural, electronic, and magnetic properties of nanomaterials is essential for developing next-generation electronic and spintronic devices, contributing to the progress of nanoscience and nanotechnology applications. Multiferroic materials, with intimately coupled ferroic-order parameters, are widely considered to breed fascinating physical properties and provide unique opportunities for the development of next-generation devices, like multistate non-volatile memory. In this study, we are set to investigate the structural, electronic, and magnetic properties of the frustrated Feᴵᴵ/Smⱽᴵ sublattice in relation to the widely studied perovskites for spintronics applications. The atomic composition, microstructure, crystallography, magnetization, thermal, and dielectric properties of a pyrochlore Sm₂Fe₂O₇ system synthesized using sol-gel methods are currently being investigated. Precursor powders were dissolved in citric acid monohydrate to obtain a solution. The obtained solution was stirred and heated using a magnetic stirrer to obtain the gel phase. Then, the gel was dried at 200°C to remove water and organic compounds and form an orange powder. The X-ray diffraction analysis confirms that the structure crystallized as a pyrochlore structure with a tetragonal F4mm (107) symmetry. The presence of Fe³⁺/Fe⁴⁺ mixed states is also revealed by XPS analysis.Keywords: nanostructures, multiferroic materials, pyrochlores, spintronics
Procedia PDF Downloads 558046 Design of Intelligent Scaffolding Learning Management System for Vocational Education
Authors: Seree Chadcham, Niphon Sukvilai
Abstract:
This study is the research and development which is intended to: 1) design of the Intelligent Scaffolding Learning Management System (ISLMS) for vocational education, 2) assess the suitability of the Design of Intelligent Scaffolding Learning Management System for Vocational Education. Its methods are divided into 2 phases. Phase 1 is the design of the ISLMS for Vocational Education and phase 2 is the assessment of the suitability of the design. The samples used in this study are work done by 15 professionals in the field of Intelligent Scaffolding, Learning Management System, Vocational Education, and Information and Communication Technology in education selected using the purposive sampling method. Data analyzed by arithmetic mean and standard deviation. The results showed that the ISLMS for vocational education consists of 2 main components which are: 1) the Intelligent Learning Management System for Vocational Education, 2) the Intelligent Scaffolding Management System. The result of the system suitability assessment from the professionals is in the highest range.Keywords: intelligent, scaffolding, learning management system, vocational education
Procedia PDF Downloads 7958045 Natural Interaction Game-Based Learning of Elasticity with Kinect
Authors: Maryam Savari, Mohamad Nizam Ayub, Ainuddin Wahid Abdul Wahab
Abstract:
Game-based Learning (GBL) is an alternative that provides learners with an opportunity to experience a volatile environment in a safe and secure place. A volatile environment requires a different technique to facilitate learning and prevent injury and other hazards. Subjects involving elasticity are always considered hazardous and can cause injuries,for instance a bouncing ball. Elasticity is a topic that necessitates hands-on practicality for learners to experience the effects of elastic objects. In this paper the scope is to investigate the natural interaction between learners and elastic objects in a safe environment using GBL. During interaction, the potentials of natural contact in the process of learning were explored and gestures exhibited during the learning process were identified. GBL was developed using Kinect technology to teach elasticity to primary school children aged 7 to 12. The system detects body gestures and defines the meanings of motions exhibited during the learning process. The qualitative approach was deployed to constantly monitor the interaction between the student and the system. Based on the results, it was found that Natural Interaction GBL (Ni-GBL) is engaging for students to learn, making their learning experience more active and joyful.Keywords: elasticity, Game-Based Learning (GBL), kinect technology, natural interaction
Procedia PDF Downloads 4838044 The Design of Intelligent Classroom Management System with Raspberry PI
Authors: Sathapath Kilaso
Abstract:
Attendance checking in the classroom for student is object to record the student’s attendance in order to support the learning activities in the classroom. Despite the teaching trend in the 21st century is the student-center learning and the lecturer duty is to mentor and give an advice, the classroom learning is still important in order to let the student interact with the classmate and the lecturer or for a specific subject which the in-class learning is needed. The development of the system prototype by applied the microcontroller technology and embedded system with the “internet of thing” trend and the web socket technique will allow the lecturer to be alerted immediately whenever the data is updated.Keywords: arduino, embedded system, classroom, raspberry PI
Procedia PDF Downloads 3748043 Teachers’ Involvement in their Designed Play Activities in a Chinese Context
Authors: Shu-Chen Wu
Abstract:
This paper will present a study by the author which investigates Chinese teachers’ perspectives on learning at play and their teaching activities in the designed play activities. It asks the question of how Chinese teachers understand learning at play and how they design play activities in the classroom. Six kindergarten teachers in Hong Kong were invited to select and record exemplary play episodes which contain the largest amount of learning elements in their own classrooms. Applying video-stimulated interview, eight teachers in two focus groups were interviewed to elicit their perspectives on designing play activity and their teaching activities. The findings reveal that Chinese teachers have a very structured representation of learning at play, and the phenomenon of uniformity of teachers’ act was found. The contributions of which are important and useful for professional practices and curricular policies.Keywords: learning at play, teacher involvement, video-stimulated interview, uniformity
Procedia PDF Downloads 1428042 Study on Evaluating the Utilization of Social Media Tools (SMT) in Collaborative Learning Case Study: Faculty of Medicine, King Khalid University
Authors: Vasanthi Muniasamy, Intisar Magboul Ejalani, M.Anandhavalli, K. Gauthaman
Abstract:
Social Media (SM) are websites increasingly popular and built to allow people to express themselves and to interact socially with others. Most SMT are dominated by youth particularly college students. The proliferation of popular social media tools, which can accessed from any communication devices has become pervasive in the lives of today’s student life. Connecting traditional education to social media tools are a relatively new era and any collaborative tool could be used for learning activities. This study focuses (i) how the social media tools are useful for the learning activities of the students of faculty of medicine in King Khalid University (ii) whether the social media affects the collaborative learning with interaction among students, among course instructor, their engagement, perceived ease of use and perceived ease of usefulness (TAM) (iii) overall, the students satisfy with this collaborative learning through Social media.Keywords: social media, Web 2.0, perceived ease of use, perceived usefulness, collaborative Learning
Procedia PDF Downloads 5088041 The Use of Webquests in Developing Inquiry Based Learning: Views of Teachers and Students in Qatar
Authors: Abdullah Abu-Tineh, Carol Murphy, Nigel Calder, Nasser Mansour
Abstract:
This paper reports on an aspect of e-learning in developing inquiry-based learning (IBL). We present data on the views of teachers and students in Qatar following a professional development programme intended to help teachers implement IBL in their science and mathematics classrooms. Key to this programme was the use of WebQuests. Views of the teachers and students suggested that WebQuests helped students to develop technical skills, work collaboratively and become independent in their learning. The use of WebQuests also enabled a combination of digital and non-digital tools that helped students connect ideas and enhance their understanding of topics.Keywords: digital technology, inquiry-based learning, mathematics and science education, professional development
Procedia PDF Downloads 1428040 Design Dual Band Band-Pass Filter by Using Stepped Impedance
Authors: Fawzia Al-Sakeer, Hassan Aldeeb
Abstract:
Development in the communications field is proceeding at an amazing speed, which has led researchers to improve and develop electronic circuits by increasing their efficiency and reducing their size to reduce the weight of electronic devices. One of the most important of these circuits is the band-pass filter, which is what made us carry out this research, which aims to use an alternate technology to design a dual band-pass filter by using a stepped impedance microstrip transmission line. We designed a filter that works at two center frequency bands by designing with the ADS program, and the results were excellent, as we obtained the two design frequencies, which are 1 and 3GHz, and the values of insertion loss S11, which was more than 21dB with a small area.Keywords: band pass filter, dual band band-pass filter, ADS, microstrip filter, stepped impedance
Procedia PDF Downloads 688039 Effective Learning and Testing Methods in School-Aged Children
Authors: Farzaneh Badinlou, Reza Kormi-Nouri, Monika Knopf, Kamal Kharrazi
Abstract:
When we teach, we have two critical elements at our disposal to help students: learning styles as well as testing styles. There are many different ways in which educators can effectively teach their students; verbal learning and experience-based learning. Lecture as a form of verbal learning style is a traditional arrangement in which teachers are more active and share information verbally with students. In experienced-based learning as the process of through, students learn actively through hands-on learning materials and observing teachers or others. Meanwhile, standard testing or assessment is the way to determine progress toward proficiency. Teachers and instructors mainly use essay (requires written responses), multiple choice questions (includes the correct answer and several incorrect answers as distractors), or open-ended questions (respondents answers it with own words). The current study focused on exploring an effective teaching style and testing methods as the function of age over school ages. In the present study, totally 410 participants were selected randomly from four grades (2ⁿᵈ, 4ᵗʰ, 6ᵗʰ, and 8ᵗʰ). Each subject was tested individually in one session lasting around 50 minutes. In learning tasks, the participants were presented three different instructions for learning materials (learning by doing, learning by observing, and learning by listening). Then, they were tested via different standard assessments as free recall, cued recall, and recognition tasks. The results revealed that generally students remember more of what they do and what they observe than what they hear. The age effect was more pronounced in learning by doing than in learning by observing, and learning by listening, becoming progressively stronger in the free-recall, cued-recall, and recognition tasks. The findings of this study indicated that learning by doing and free recall task is more age sensitive, suggesting that both of them are more strategic and more affected by developmental differences. Pedagogically, these results denoted that learning by modeling and engagement in program activities have the special role for learning. Moreover, the findings indicated that the multiple-choice questions can produce the best performance for school-aged children but is less age-sensitive. By contrast, the essay as essay can produce the lowest performance but is more age-sensitive. It will be very helpful for educators to know that what types of learning styles and test methods are most effective for students in each school grade.Keywords: experience-based learning, learning style, school-aged children, testing methods, verbal learning
Procedia PDF Downloads 2028038 Empowering a New Frontier in Heart Disease Detection: Unleashing Quantum Machine Learning
Authors: Sadia Nasrin Tisha, Mushfika Sharmin Rahman, Javier Orduz
Abstract:
Machine learning is applied in a variety of fields throughout the world. The healthcare sector has benefited enormously from it. One of the most effective approaches for predicting human heart diseases is to use machine learning applications to classify data and predict the outcome as a classification. However, with the rapid advancement of quantum technology, quantum computing has emerged as a potential game-changer for many applications. Quantum algorithms have the potential to execute substantially faster than their classical equivalents, which can lead to significant improvements in computational performance and efficiency. In this study, we applied quantum machine learning concepts to predict coronary heart diseases from text data. We experimented thrice with three different features; and three feature sets. The data set consisted of 100 data points. We pursue to do a comparative analysis of the two approaches, highlighting the potential benefits of quantum machine learning for predicting heart diseases.Keywords: quantum machine learning, SVM, QSVM, matrix product state
Procedia PDF Downloads 948037 Learning Motivation Factors for Pre-Cadets in Armed Forces Academies Preparatory School, Ministry of Defense
Authors: Prachya Kamonphet
Abstract:
The purposes of this research were to study the learning motivation factors for Pre-cadets in Armed Forces Academies Preparatory School, Ministry of Defense. The subjects were 320 Pre-cadets (from all 3-year classes of Pre-cadets, the academic year 2015). The research instruments were questionnaires. The collected data were analyzed by means of Descriptive Statistic and One-Way Analysis of Variance. The results of this study were as follows: The relation between the Pre-cadets’ average grade and the motivation in studying was significance.In the aspect of the environment related to Pre-cadets’ families and the motivation in studying.In the aspect of the environment related to Pre-cadets’ studying, it was found that teaching method, learning place, educational media, relationship between teachers and Pre-cadets, relationship between Pre-cadets and their friends, and relationship between Pre-cadets and the commanders were significant.Keywords: learning motivation factors, learning motivation, armed forces academies preparatory school, learning
Procedia PDF Downloads 2428036 A Machine Learning Approach for Classification of Directional Valve Leakage in the Hydraulic Final Test
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
Due to increasing cost pressure in global markets, artificial intelligence is becoming a technology that is decisive for competition. Predictive quality enables machinery and plant manufacturers to ensure product quality by using data-driven forecasts via machine learning models as a decision-making basis for test results. The use of cross-process Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the quality characteristics of workpieces.Keywords: predictive quality, hydraulics, machine learning, classification, supervised learning
Procedia PDF Downloads 2308035 Structural Alteration of MoS₂ by Incorporating Fe, Co Composite for an Enhanced Oxygen Evolution Reaction
Authors: Krishnamoorthy Sathiyan, Shanti Gopal Patra, Ronen Bar-Ziv, Tomer Zidki
Abstract:
Developing efficient non-noble metal catalysts that are cheap and durable for oxygen evolution reaction (OER) is a great challenge. Moreover, altering the electronic structure of the catalyst and structural engineering of the materials provide a new direction for enhancing the OER. Herein, we have successfully synthesized Fe and Co incorporated MoS₂ catalysts, which show improved catalytic activity for OER when compared with MoS₂, Fe-MoS₂, and Co-MoS₂. It was found that at an optimal ratio of Fe and Co, the electronic and structural modification of MoS₂ occurs, which leads to change in orientation and thereby enhances the active catalytic sites on the edges, which are more exposed for OER. The nanocomposites have been well characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive X-ray analysis (EDX), Elemental Mapping, transmission electron microscope (TEM), and high-resolution transmission electron microscope (HR-TEM) analysis. Among all, a particular ratio of FeCo-MoS₂ exhibits a much smaller onset with better catalytic current density. The remarkable catalytic activity is mainly attributed to the synergistic effect from the Fe and Co. Most importantly, our work provides an essential insight in altering the electronic structure of MoS₂ based materials by incorporating promoters such as Co and Fe in an optimal amount, which enhances OER activity.Keywords: electrocatalysts, molybdenum disulfide, oxygen evolution reaction, transition metals
Procedia PDF Downloads 1308034 Efficient Deep Neural Networks for Real-Time Strawberry Freshness Monitoring: A Transfer Learning Approach
Authors: Mst. Tuhin Akter, Sharun Akter Khushbu, S. M. Shaqib
Abstract:
A real-time system architecture is highly effective for monitoring and detecting various damaged products or fruits that may deteriorate over time or become infected with diseases. Deep learning models have proven to be effective in building such architectures. However, building a deep learning model from scratch is a time-consuming and costly process. A more efficient solution is to utilize deep neural network (DNN) based transfer learning models in the real-time monitoring architecture. This study focuses on using a novel strawberry dataset to develop effective transfer learning models for the proposed real-time monitoring system architecture, specifically for evaluating and detecting strawberry freshness. Several state-of-the-art transfer learning models were employed, and the best performing model was found to be Xception, demonstrating higher performance across evaluation metrics such as accuracy, recall, precision, and F1-score.Keywords: strawberry freshness evaluation, deep neural network, transfer learning, image augmentation
Procedia PDF Downloads 908033 Advanced Techniques in Semiconductor Defect Detection: An Overview of Current Technologies and Future Trends
Authors: Zheng Yuxun
Abstract:
This review critically assesses the advancements and prospective developments in defect detection methodologies within the semiconductor industry, an essential domain that significantly affects the operational efficiency and reliability of electronic components. As semiconductor devices continue to decrease in size and increase in complexity, the precision and efficacy of defect detection strategies become increasingly critical. Tracing the evolution from traditional manual inspections to the adoption of advanced technologies employing automated vision systems, artificial intelligence (AI), and machine learning (ML), the paper highlights the significance of precise defect detection in semiconductor manufacturing by discussing various defect types, such as crystallographic errors, surface anomalies, and chemical impurities, which profoundly influence the functionality and durability of semiconductor devices, underscoring the necessity for their precise identification. The narrative transitions to the technological evolution in defect detection, depicting a shift from rudimentary methods like optical microscopy and basic electronic tests to more sophisticated techniques including electron microscopy, X-ray imaging, and infrared spectroscopy. The incorporation of AI and ML marks a pivotal advancement towards more adaptive, accurate, and expedited defect detection mechanisms. The paper addresses current challenges, particularly the constraints imposed by the diminutive scale of contemporary semiconductor devices, the elevated costs associated with advanced imaging technologies, and the demand for rapid processing that aligns with mass production standards. A critical gap is identified between the capabilities of existing technologies and the industry's requirements, especially concerning scalability and processing velocities. Future research directions are proposed to bridge these gaps, suggesting enhancements in the computational efficiency of AI algorithms, the development of novel materials to improve imaging contrast in defect detection, and the seamless integration of these systems into semiconductor production lines. By offering a synthesis of existing technologies and forecasting upcoming trends, this review aims to foster the dialogue and development of more effective defect detection methods, thereby facilitating the production of more dependable and robust semiconductor devices. This thorough analysis not only elucidates the current technological landscape but also paves the way for forthcoming innovations in semiconductor defect detection.Keywords: semiconductor defect detection, artificial intelligence in semiconductor manufacturing, machine learning applications, technological evolution in defect analysis
Procedia PDF Downloads 518032 On the Effectiveness of Educational Technology on the Promotion of Exceptional Children or Children with Special Needs
Authors: Nasrin Badrkhani
Abstract:
The increasing use of educational technologies has created a tremendous transformation in all fields and most importantly, in the field of education and learning. In recent decades, traditional learning approaches have undergone fundamental changes with the emergence of new learning technologies. Research shows that suitable educational tools play an effective role in the transmission, comprehension, and impact of educational concepts. These tools provide a tangible basis for thinking and constructing concepts, resulting in an increased interest in learning. They provide real and true experiences to students and convey educational meanings and concepts more quickly and clearly. It can be said that educational technology, as an active and modern teaching method, with capabilities such as engaging multiple senses in the educational process and involving the learner, makes the learning environment more flexible. It effectively impacts the skills of children with special needs by addressing their specific needs. Teachers are no longer the sole source of information, and students are not mere recipients of information. They are considered the main actors in the field of education and learning. Since education is one of the basic rights of every human being and children with special needs face unique challenges and obstacles in education, these challenges can negatively affect their abilities and learning. To combat these challenges, one of the ways is to use educational technologies for more diverse, effective learning. Also, the use of educational technology for students with special needs has increasingly proven effective in boosting their self-confidence and helping them overcome learning challenges, enhancing their learning outcomes.Keywords: communication technology, students with special needs, self-confidence, raising the expectations and progress
Procedia PDF Downloads 138031 Plant Disease Detection Using Image Processing and Machine Learning
Authors: Sanskar, Abhinav Pal, Aryush Gupta, Sushil Kumar Mishra
Abstract:
One of the critical and tedious assignments in agricultural practices is the detection of diseases on vegetation. Agricultural production is very important in today’s economy because plant diseases are common, and early detection of plant diseases is important in agriculture. Automatic detection of such early diseases is useful because it reduces control efforts in large productive farms. Using digital image processing and machine learning algorithms, this paper presents a method for plant disease detection. Detection of the disease occurs on different leaves of the plant. The proposed system for plant disease detection is simple and computationally efficient, requiring less time than learning-based approaches. The accuracy of various plant and foliar diseases is calculated and presented in this paper.Keywords: plant diseases, machine learning, image processing, deep learning
Procedia PDF Downloads 78030 Improving Security in Healthcare Applications Using Federated Learning System With Blockchain Technology
Authors: Aofan Liu, Qianqian Tan, Burra Venkata Durga Kumar
Abstract:
Data security is of the utmost importance in the healthcare area, as sensitive patient information is constantly sent around and analyzed by many different parties. The use of federated learning, which enables data to be evaluated locally on devices rather than being transferred to a central server, has emerged as a potential solution for protecting the privacy of user information. To protect against data breaches and unauthorized access, federated learning alone might not be adequate. In this context, the application of blockchain technology could provide the system extra protection. This study proposes a distributed federated learning system that is built on blockchain technology in order to enhance security in healthcare. This makes it possible for a wide variety of healthcare providers to work together on data analysis without raising concerns about the confidentiality of the data. The technical aspects of the system, including as the design and implementation of distributed learning algorithms, consensus mechanisms, and smart contracts, are also investigated as part of this process. The technique that was offered is a workable alternative that addresses concerns about the safety of healthcare while also fostering collaborative research and the interchange of data.Keywords: data privacy, distributed system, federated learning, machine learning
Procedia PDF Downloads 1338029 An Approach to Integrate Ontologies of Open Educational Resources in Knowledge Base Management Systems
Authors: Firas A. Al Laban, Mohamed Chabi, Sammani Danwawu Abdullahi
Abstract:
There are a real needs to integrate types of Open Educational Resources (OER) with an intelligent system to extract information and knowledge in the semantic searching level. Those needs raised because most of current learning standard adopted web based learning and the e-learning systems does not always serve all educational goals. Semantic Web systems provide educators, students, and researchers with intelligent queries based on a semantic knowledge management learning system. An ontology-based learning system is an advanced system, where ontology plays the core of the semantic web in a smart learning environment. The objective of this paper is to discuss the potentials of ontologies and mapping different kinds of ontologies; heterogeneous or homogenous to manage and control different types of Open Educational Resources. The important contribution of this research is to approach a methodology uses logical rules and conceptual relations to map between ontologies of different educational resources. We expect from this methodology to establish for an intelligent educational system supporting student tutoring, self and lifelong learning system.Keywords: knowledge management systems, ontologies, semantic web, open educational resources
Procedia PDF Downloads 4988028 Educational Practices and Brain Based Language Learning
Authors: Dur-E- Shahwar
Abstract:
Much attention has been given to ‘bridging the gap’ between neuroscience and educational practice. In order to gain a better understanding of the nature of this gap and of possibilities to enable the linking process, we have taken a boundary perspective on these two fields and the brain-based learning approach, focusing on boundary-spanning actors, boundary objects, and boundary work. In 26 semi-structured interviews, neuroscientists and education professionals were asked about their perceptions in regard to the gap between science and practice and the role they play in creating, managing, and disrupting this boundary. Neuroscientists and education professionals often hold conflicting views and expectations of both brain-based learning and of each other. This leads us to argue that there are increased prospects for a neuro-scientifically informed learning practice if science and practice work together as equal stakeholders in developing and implementing neuroscience research.Keywords: language learning, explore, educational practices, mentalist, practice
Procedia PDF Downloads 3378027 Guidelines for Enhancing the Learning Environment by the Integration of Design Flexibility and Immersive Technology: The Case of the British University in Egypt’s Classrooms
Authors: Eman Ayman, Gehan Nagy
Abstract:
The learning environment has four main parameters that affect its efficiency which they are: pedagogy, user, technology, and space. According to Morrone, enhancing these parameters to be adaptable for future developments is essential. The educational organization will be in need of developing its learning spaces. Flexibility of design an immersive technology could be used as tools for this development. when flexible design concepts are used, learning spaces that can accommodate a variety of teaching and learning activities are created. To accommodate the various needs and interests of students, these learning spaces are easily reconfigurable and customizable. The immersive learning opportunities offered by technologies like virtual reality, augmented reality, and interactive displays, on the other hand, transcend beyond the confines of the traditional classroom. These technological advancements could improve learning. This thesis highlights the problem of the lack of innovative, flexible learning spaces in educational institutions. It aims to develop guidelines for enhancing the learning environment by the integration of flexible design and immersive technology. This research uses a mixed method approach, both qualitative and quantitative: the qualitative section is related to the literature review theories and case studies analysis. On the other hand, the quantitative section will be identified by the results of the applied studies of the effectiveness of redesigning a learning space from its traditional current state to a flexible technological contemporary space that will be adaptable to many changes and educational needs. Research findings determine the importance of flexibility in learning spaces' internal design as it enhances the space optimization and capability to accommodate the changes and record the significant contribution of immersive technology that assists the process of designing. It will be summarized by the questionnaire results and comparative analysis, which will be the last step of finalizing the guidelines.Keywords: flexibility, learning space, immersive technology, learning environment, interior design
Procedia PDF Downloads 938026 A Study on the Effectiveness of Translanguaging in EFL Classrooms: The Case of First-year Japanese University Students
Authors: Malainine Ebnou
Abstract:
This study investigates the effectiveness of using translanguaging techniques in EFL classrooms. The interest in this topic stems from the lack of research on the effectiveness of translanguaging techniques in foreign language learning, both domestically in Japan and globally, as research has focused on translanguaging from a teaching perspective but not much on it from a learning perspective. The main question that the study departs from is whether students’ use of translanguaging techniques can produce better learning outcomes when used at the university level. The sample population of the study is first-year Japanese university students. The study takes an experimental approach where translanguaging is introduced to one group, the experimental group, and withheld from another group, the control group. Both groups will then be assessed and compared to see if the use of translanguaging has had a positive impact on learning. The impact of the research could be in three ways: challenging the prevailing argument that using learners' mother tongue in the classroom is detrimental to the learning process, challenging native speaker-centered approaches in the EFL field, and arguing that translanguaging in EFL classrooms can produce more meaningful learning outcomes. If the effectiveness of translanguaging is confirmed, it will be possible to promote the use of translanguaging in English learning at Japanese universities and contribute to the improvement of students' English, and even lay the foundations for extending the use of translanguaging to people of other ages/nationalities and other languages in the future.Keywords: translanguaging, EFL, language learning and teaching, applied linguistics
Procedia PDF Downloads 588025 On the Influence of Sleep Habits for Predicting Preterm Births: A Machine Learning Approach
Authors: C. Fernandez-Plaza, I. Abad, E. Diaz, I. Diaz
Abstract:
Births occurring before the 37th week of gestation are considered preterm births. A threat of preterm is defined as the beginning of regular uterine contractions, dilation and cervical effacement between 23 and 36 gestation weeks. To author's best knowledge, the factors that determine the beginning of the birth are not completely defined yet. In particular, the incidence of sleep habits on preterm births is weekly studied. The aim of this study is to develop a model to predict the factors affecting premature delivery on pregnancy, based on the above potential risk factors, including those derived from sleep habits and light exposure at night (introduced as 12 variables obtained by a telephone survey using two questionnaires previously used by other authors). Thus, three groups of variables were included in the study (maternal, fetal and sleep habits). The study was approved by Research Ethics Committee of the Principado of Asturias (Spain). An observational, retrospective and descriptive study was performed with 481 births between January 1, 2015 and May 10, 2016 in the University Central Hospital of Asturias (Spain). A statistical analysis using SPSS was carried out to compare qualitative and quantitative variables between preterm and term delivery. Chi-square test qualitative variable and t-test for quantitative variables were applied. Statistically significant differences (p < 0.05) between preterm vs. term births were found for primiparity, multi-parity, kind of conception, place of residence or premature rupture of membranes and interruption during nights. In addition to the statistical analysis, machine learning methods to look for a prediction model were tested. In particular, tree based models were applied as the trade-off between performance and interpretability is especially suitable for this study. C5.0, recursive partitioning, random forest and tree bag models were analysed using caret R-package. Cross validation with 10-folds and parameter tuning to optimize the methods were applied. In addition, different noise reduction methods were applied to the initial data using NoiseFiltersR package. The best performance was obtained by C5.0 method with Accuracy 0.91, Sensitivity 0.93, Specificity 0.89 and Precision 0.91. Some well known preterm birth factors were identified: Cervix Dilation, maternal BMI, Premature rupture of membranes or nuchal translucency analysis in the first trimester. The model also identifies other new factors related to sleep habits such as light through window, bedtime on working days, usage of electronic devices before sleeping from Mondays to Fridays or change of sleeping habits reflected in the number of hours, in the depth of sleep or in the lighting of the room. IF dilation < = 2.95 AND usage of electronic devices before sleeping from Mondays to Friday = YES and change of sleeping habits = YES, then preterm is one of the predicting rules obtained by C5.0. In this work a model for predicting preterm births is developed. It is based on machine learning together with noise reduction techniques. The method maximizing the performance is the one selected. This model shows the influence of variables related to sleep habits in preterm prediction.Keywords: machine learning, noise reduction, preterm birth, sleep habit
Procedia PDF Downloads 1478024 Structuring Taiwanese Elementary School English Teachers' Professional Dialogue about Teaching and Learning through Protocols
Authors: Chin-Wen Chien
Abstract:
Protocols are tools that help teachers inquire into the teaching and professional learning during the professional dialogue. This study focused on the integration of protocols into elementary school English teachers’ professional dialogue and discussed the influence of protocols on teachers’ teaching and learning. Based on the analysis of documents, observations, and interviews, this study concluded that with the introduction of protocols to elementary school English teachers, three major protocols were used during their professional dialogue. These protocols led the teachers to gain professional learning in content knowledge and pedagogical content knowledge. However, the facilitators’ lack of experience in using protocols led to interruptions during the professional dialogue. Suggestions for effective protocol-based professional dialogue are provided.Keywords: protocols, professional learning, professional dialogue, classroom practice
Procedia PDF Downloads 3828023 Investigation of Learning Challenges in Building Measurement Unit
Authors: Argaw T. Gurmu, Muhammad N. Mahmood
Abstract:
The objective of this research is to identify the architecture and construction management students’ learning challenges of the building measurement. This research used the survey data obtained collected from the students who completed the building measurement unit. NVivo qualitative data analysis software was used to identify relevant themes. The analysis of the qualitative data revealed the major learning difficulties such as inadequacy of practice questions for the examination, inability to work as a team, lack of detailed understanding of the prerequisite units, insufficiency of the time allocated for tutorials and incompatibility of lecture and tutorial schedules. The output of this research can be used as a basis for improving the teaching and learning activities in construction measurement units.Keywords: building measurement, construction management, learning challenges, evaluate survey
Procedia PDF Downloads 138