Search results for: chemical vapor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4787

Search results for: chemical vapor

4067 Discriminating Between Energy Drinks and Sports Drinks Based on Their Chemical Properties Using Chemometric Methods

Authors: Robert Cazar, Nathaly Maza

Abstract:

Energy drinks and sports drinks are quite popular among young adults and teenagers worldwide. Some concerns regarding their health effects – particularly those of the energy drinks - have been raised based on scientific findings. Differentiating between these two types of drinks by means of their chemical properties seems to be an instructive task. Chemometrics provides the most appropriate strategy to do so. In this study, a discrimination analysis of the energy and sports drinks has been carried out applying chemometric methods. A set of eleven samples of available commercial brands of drinks – seven energy drinks and four sports drinks – were collected. Each sample was characterized by eight chemical variables (carbohydrates, energy, sugar, sodium, pH, degrees Brix, density, and citric acid). The data set was standardized and examined by exploratory chemometric techniques such as clustering and principal component analysis. As a preliminary step, a variable selection was carried out by inspecting the variable correlation matrix. It was detected that some variables are redundant, so they can be safely removed, leaving only five variables that are sufficient for this analysis. They are sugar, sodium, pH, density, and citric acid. Then, a hierarchical clustering `employing the average – linkage criterion and using the Euclidian distance metrics was performed. It perfectly separates the two types of drinks since the resultant dendogram, cut at the 25% similarity level, assorts the samples in two well defined groups, one of them containing the energy drinks and the other one the sports drinks. Further assurance of the complete discrimination is provided by the principal component analysis. The projection of the data set on the first two principal components – which retain the 71% of the data information – permits to visualize the distribution of the samples in the two groups identified in the clustering stage. Since the first principal component is the discriminating one, the inspection of its loadings consents to characterize such groups. The energy drinks group possesses medium to high values of density, citric acid, and sugar. The sports drinks group, on the other hand, exhibits low values of those variables. In conclusion, the application of chemometric methods on a data set that features some chemical properties of a number of energy and sports drinks provides an accurate, dependable way to discriminate between these two types of beverages.

Keywords: chemometrics, clustering, energy drinks, principal component analysis, sports drinks

Procedia PDF Downloads 108
4066 Estimation of the Acute Toxicity of Halogenated Phenols Using Quantum Chemistry Descriptors

Authors: Khadidja Bellifa, Sidi Mohamed Mekelleche

Abstract:

Phenols and especially halogenated phenols represent a substantial part of the chemicals produced worldwide and are known as aquatic pollutants. Quantitative structure–toxicity relationship (QSTR) models are useful for understanding how chemical structure relates to the toxicity of chemicals. In the present study, the acute toxicities of 45 halogenated phenols to Tetrahymena Pyriformis are estimated using no cost semi-empirical quantum chemistry methods. QSTR models were established using the multiple linear regression technique and the predictive ability of the models was evaluated by the internal cross-validation, the Y-randomization and the external validation. Their structural chemical domain has been defined by the leverage approach. The results show that the best model is obtained with the AM1 method (R²= 0.91, R²CV= 0.90, SD= 0.20 for the training set and R²= 0.96, SD= 0.11 for the test set). Moreover, all the Tropsha’ criteria for a predictive QSTR model are verified.

Keywords: halogenated phenols, toxicity mechanism, hydrophobicity, electrophilicity index, quantitative stucture-toxicity relationships

Procedia PDF Downloads 301
4065 The Optimisation of Salt Impregnated Matrices as Potential Thermochemical Storage Materials

Authors: Robert J. Sutton, Jon Elvins, Sean Casey, Eifion Jewell, Justin R. Searle

Abstract:

Thermochemical storage utilises chemical salts which store and release energy a fully reversible endo/exothermic chemical reaction. Highly porous vermiculite impregnated with CaCl2, LiNO3 and MgSO4 (SIMs – Salt In Matrices) are proposed as potential materials for long-term thermochemical storage. The behavior of these materials during typical hydration and dehydration cycles is investigated. A simple moisture experiment represents the hydration, whilst thermogravimetric analysis (TGA) represents the dehydration. Further experiments to approximate the energy density and to determine the peak output temperatures of the SIMs are conducted. The CaCl2 SIM is deemed the best performing SIM across most experiments, whilst the results of MgSO4 SIM indicate difficulty associated with energy recovery.

Keywords: hydrated states, inter-seasonal heat storage, moisture sorption, salt in matrix

Procedia PDF Downloads 554
4064 Physicochemical and Biochemical Characterization of Olea europea Var. Oleaster Oil and Determination of Its Effects on Blood Parameters

Authors: Asma Gherib, Imen Merzougui, Cherifa Henchiri

Abstract:

This present study has allowed to evaluate the physico chemical characteristics, fatty acid composition and the hypolipidemic effect of Oleaster oil Olea europea var. Oleaster, from the area of El Kala, "Eastern Algeria" on rats "Wistar albinos". The physico chemical characteristics: acidity (0,73%), peroxide value (14, 16 meqO2/kg oil) and iodine value (74,08 g iodine/100 g of oil) are consistent with international standards. The dosage of FA revealed a wealth of oil with UFA (76,7%), mainly composed of 65.43% of MUFA whose major fatty acid is oleic acid (63,57%). The experiment on rats receiving a diet rich in saturated fats and hydrogenated oils revealed that the consumption of Oleaster oil at the dose of 10 g and 20 g for 15 and 30 days improves plasma lipid profile by decreasing the rates of TC, TG, TL, and LDL-C with an increase in the rate of HDL-C serum. The importance of these effects depends on the dose and period of treatment.

Keywords: oleaster oil, fatty acid, Olea europea, oleic acid, lipid profile

Procedia PDF Downloads 488
4063 Interaction of Metals with Non-Conventional Solvents

Authors: Evgeny E. Tereshatov, C. M. Folden

Abstract:

Ionic liquids and deep eutectic mixtures represent so-called non-conventional solvents. The former, composed of discrete ions, is a salt with a melting temperature below 100°С. The latter, consisting of hydrogen bond donors and acceptors, is a mixture of at least two compounds, resulting in a melting temperature depression in comparison with that of the individual moiety. These systems also can be water-immiscible, which makes them applicable for metal extraction. This work will cover interactions of In, Tl, Ir, and Rh in hydrochloric acid media with eutectic mixtures and Er, Ir, and At in a gas phase with chemically modified α-detectors. The purpose is to study chemical systems based on non-conventional solvents in terms of their interaction with metals. Once promising systems are found, the next step is to modify the surface of α-detectors used in the online element production at cyclotrons to get the detector chemical selectivity. Initially, the metal interactions are studied by means of the liquid-liquid extraction technique. Then appropriate molecules are chemisorbed on the surrogate surface first to understand the coating quality. Finally, a detector is covered with the same molecule, and the metal sorption on such detectors is studied in the online regime. It was found that chemical treatment of the surface can result in 99% coverage with a monolayer formation. This surface is chemically active and can adsorb metals from hydrochloric acid solutions. Similarly, a detector surface was modified and tested during cyclotron-based experiments. Thus, a procedure of detectors functionalization has been developed, and this opens an interesting opportunity of studying chemisorption of elements which do not have stable isotopes.

Keywords: mechanism, radioisotopes, solvent extraction, gas phase sorption

Procedia PDF Downloads 103
4062 Effect of Scattered Vachellia Tortilis (Umbrella Torn) and Vachellia nilotica (Gum Arabic) Trees on Selected Physio-Chemical Properties of the Soil and Yield of Sorghum (Sorghum bicolor (L.) Moench) in Ethiopia

Authors: Sisay Negash, Zebene Asfaw, Kibreselassie Daniel, Michael Zech

Abstract:

A significant portion of the Ethiopian landscape features scattered trees that are deliberately managed in crop fields to enhance soil fertility and crop yield in which the compatibility of crops with these trees varies depending on location, tree species, and annual crop type. This study aimed to examine the effects of scattered Vachellia tortilis and Vachellia nilotica trees on selected physico-chemical properties of the soil, as well as the yield and yield components of sorghum in Ethiopia. Vachellia tortilis and Vachellia nilotica were selected on abundance occurrence and managed in crop fields. A randomized complete block design was used, with a distance from the tree canopy (middle, edge, and outside) as a treatment, and five trees of each species served as replications. Sorghum was planted up to 15 meters in the east, west, south, and north directions from the tree trunk to assess growth and yield. Soil samples were collected from the two tree species, three distance factors, three soil depths(0-20cm, 20-40cm, and 40-60cm), and five replications, totaling 45 samples for each tree species. These samples were analyzed for physical and chemical properties. The results indicated that both V. tortilis and V. nilotica significantly affected soil physico-chemical properties and sorghum yield. Specifically, soil moisture content, EC, total nitrogen, organic carbon, available phosphorus and potassium, CEC, sorghum plant height, panicle length, biomass, and yield decreased with increasing distance from the canopy. Conversely, bulk density and pH increased. Under the canopy, sorghum yield increased by 66.4% and 53.5% for V. tortilis and V. nilotica, respectively, due to higher soil moisture and nutrient availability. The study recommends promoting trees in crop fields, management options for new saplings, and further research on root decomposition and nutrient supply.

Keywords: canopy, crop yield, soil nutrient, soil organic matter, yield components

Procedia PDF Downloads 25
4061 Effect of Dissolved Oxygen Concentration on Iron Dissolution by Liquid Sodium

Authors: Sami Meddeb, M. L Giorgi, J. L. Courouau

Abstract:

This work presents the progress of studies aiming to guarantee the lifetime of 316L(N) steel in a sodium-cooled fast reactor by determining the elementary corrosion mechanism, which is akin to an accelerated dissolution by dissolved oxygen. The mechanism involving iron, the main element of steel, is particularly studied in detail, from the viewpoint of the data available in the literature, the modeling of the various mechanisms hypothesized. Experiments performed in the CORRONa facility at controlled temperature and dissolved oxygen content are used to test both literature data and hypotheses. Current tests, performed at various temperatures and oxygen content, focus on specifying the chemical reaction at play, determining its free enthalpy, as well as kinetics rate constants. Specific test configuration allows measuring the reaction kinetics and the chemical equilibrium state in the same test. In the current state of progress of these tests, the dissolution of iron accelerated by dissolved oxygen appears as directly related to a chemical complexation reaction of mixed iron-sodium oxide (Na-Fe-O), a compound that is soluble in the liquid sodium solution. Results obtained demonstrate the presence in the solution of this corrosion product, whose kinetics is the limiting step under the conditions of the test. This compound, the object of hypotheses dating back more than 50 years, is predominant in solution compared to atomic iron, presumably even for the low oxygen concentration, and cannot be neglected for the long-term corrosion modeling of any heat transfer system.

Keywords: corrosion, sodium fast reactors, iron, oxygen

Procedia PDF Downloads 179
4060 Characterization of Copper Slag and Jarofix Waste Materials for Road Construction

Authors: V. K. Arora, V. G. Havanagi, A. K. Sinha

Abstract:

Copper slag and Jarofix are waste materials, generated during the manufacture of copper and zinc respectively, which have potential for utility in embankment and road construction. Accordingly, a research project was carried out to study the characteristics of copper slag and Jarofix to utilize in the construction of road. In this study, copper slag and Jarofix were collected from Tuticorin, State of Tamil Nadu and Hindustan Zinc Ltd., Chittorgarh, Rajasthan state, India respectively. These materials were investigated for their physical, chemical, and geotechnical characteristics. The materials were collected from the disposal area and laboratory investigations were carried out to study its feasibility for use in the construction of embankment and sub grade layers of road pavement. This paper presents the results of physical, chemical and geotechnical characteristics of copper slag and Jarofix. It was concluded that copper slag and Jarofix may be utilized in the construction of road.

Keywords: copper slag, Jarofix waste, material, road construction

Procedia PDF Downloads 446
4059 Prediction of the Thermodynamic Properties of Hydrocarbons Using Gaussian Process Regression

Authors: N. Alhazmi

Abstract:

Knowing the thermodynamics properties of hydrocarbons is vital when it comes to analyzing the related chemical reaction outcomes and understanding the reaction process, especially in terms of petrochemical industrial applications, combustions, and catalytic reactions. However, measuring the thermodynamics properties experimentally is time-consuming and costly. In this paper, Gaussian process regression (GPR) has been used to directly predict the main thermodynamic properties - standard enthalpy of formation, standard entropy, and heat capacity -for more than 360 cyclic and non-cyclic alkanes, alkenes, and alkynes. A simple workflow has been proposed that can be applied to directly predict the main properties of any hydrocarbon by knowing its descriptors and chemical structure and can be generalized to predict the main properties of any material. The model was evaluated by calculating the statistical error R², which was more than 0.9794 for all the predicted properties.

Keywords: thermodynamic, Gaussian process regression, hydrocarbons, regression, supervised learning, entropy, enthalpy, heat capacity

Procedia PDF Downloads 222
4058 Effect of Dietary Waste Date Meal (Phoneix dactylifera) on Chemical Body Composition, Nutrition Value and Fatty Acids Profile of Fingerling Common Carp (Cyprinus carpio)

Authors: Mehrdad Kamali-Sanzighi, Maziar Kamali-sanzighi

Abstract:

Effect of waste date meal (WDM) addition to the diet on body chemical composition and fatty acids profile of fingerling cyprinus carpio were evaluated. Four treatments with 3 replication such as control treatment (no additional WDM; T1), 5% WDM (50 gr/kg; T2), 10% WDM (100 gr/kg; T3) and 15% WDM (150 gr/kg; T4) were done. 168 fish with initial weight of 2.48±0.06 gr were fed 3 times per day according to 5 % of fish body weight for 12 weeks. The body composition results showed that there is no significant differences between treatments (P>0.05). All of Fatty acids profile parameters show significant differences between different treatments (P<0.05). Although, the highest value of MUFA+PUFA, PUFA/SFA, MUFA+PUFA/SFA, W3, EPA+DHA parameters belong to control treatment (T1) and 5% WDM treatment (T2) had lowest value of MUFA, PUFA, MUFA+PUFA, PUFA/SFA, MUFA+PUFA/SFA, W3, W3/W6, DHA/EPA and EPA+DHA parameters except of SFA and W6/W3 that show highest value than other treatments. Atherogenic index (AI) had no significant differences between different treatments (P>0.05) but Thrombogenic index (TI) had significant differences between different experimental treatments (P<0.05). The 5% WDM and control treatment show highest and lowest values. Generally, treatments of 10 and 15% WDM (T3-T4) had moderate performance than the other experimental treatments. Finally, addition of WDM to common carp fingerlings diets help to insignificant improvement of chemical body composition and the saturated and unsaturated fatty acids profile of them were significant.

Keywords: waste, date, common carp, nutrition value

Procedia PDF Downloads 91
4057 Scanning Electrochemical Microscopy Studies of Magnesium-Iron Galvanic Couple

Authors: Akram Alfantazi, Tirdad Nickchi

Abstract:

Magnesium galvanic corrosion plays an important role in the commercialization of Mg alloys in the automobile industry. This study aims at visualizing the electrochemical activity of the magnesium surface being coupled with pure iron in sulfate-chloride solutions. Scanning electrochemical microscopy was used to monitor the chemical activity of the surface and the data was compared with the conventional corrosion results such as potentiodynamic polarization, linear polarization, and immersion tests. The SECM results showed that the chemical reactivity of Mg is higher than phosphate-permanganate-coated Mg. Regions in the vicinity of the galvanic couple boundary are very active in the magnesium phase and fully protected in the iron phase. Scanning electrochemical microscopy results showed that the conversion coating provided good corrosion resistance for magnesium in the short-term but fails at long-term testing.

Keywords: corrosion, galvanic corrosion, magnesium, scanning electrochemical microscopy

Procedia PDF Downloads 288
4056 Chemical Fabrication of Gold Nanorings: Controlled Reduction and Optical Tuning for Nanomedicine Applications

Authors: Mehrnaz Mostafavi, Jalaledin Ghanavi

Abstract:

This research investigates the production of nanoring structures through a chemical reduction approach, exploring gradual reduction processes assisted by reductant agents, leading to the formation of these specialized nanorings. The study focuses on the controlled reduction of metal atoms within these agents, crucial for shaping these nanoring structures over time. The paper commences by highlighting the wide-ranging applications of metal nanostructures across fields like Nanomedicine, Nanobiotechnology, and advanced spectroscopy methods such as Surface Enhanced Raman Spectroscopy (SERS) and Surface Enhanced Infrared Absorption Spectroscopy (SEIRA). Particularly, gold nanoparticles, especially in the nanoring configuration, have gained significant attention due to their distinctive properties, offering accessible spaces suitable for sensing and spectroscopic applications. The methodology involves utilizing human serum albumin as a reducing agent to create gold nanoparticles through a chemical reduction process. This process involves the transfer of electrons from albumin's carboxylic groups, converting them into carbonyl, while AuCl4− acquires electrons to form gold nanoparticles. Various characterization techniques like Ultraviolet–visible spectroscopy (UV-Vis), Atomic-force microscopy (AFM), and Transmission electron microscopy (TEM) were employed to examine and validate the creation and properties of the gold nanoparticles and nanorings. The findings suggest that precise and gradual reduction processes, in conjunction with optimal pH conditions, play a pivotal role in generating nanoring structures. Experiments manipulating optical properties revealed distinct responses in the visible and infrared spectrums, demonstrating the tunability of these nanorings. Detailed examinations of the morphology confirmed the formation of gold nanorings, elucidating their size, distribution, and structural characteristics. These nanorings, characterized by an empty volume enclosed by uniform walls, exhibit promising potential in the realms of Nanomedicine and Nanobiotechnology. In summary, this study presents a chemical synthesis approach using organic reducing agents to produce gold nanorings. The results underscore the significance of controlled and gradual reduction processes in crafting nanoring structures with unique optical traits, offering considerable value across diverse nanotechnological applications.

Keywords: nanoring structures, chemical reduction approach, gold nanoparticles, spectroscopy methods, nano medicine applications

Procedia PDF Downloads 135
4055 Active Bio-Packaging Fabricated from Coated Bagasse Papers with Polystyrene Nanocomposites

Authors: Hesham Moustafa, Ahmed M. Youssef

Abstract:

The demand for green packagingin the food field has been gained increasing attention in recent decades because of its degradability and safely. Thus, this study revealed that the by-product bagasse papers (BPs) derived from sugarcane waste can be decorated with a thin layer of polystyrene (PS) nanocomposites using the spreading approach.Three variable concentrations of TiO2 nanoparticles (i.e. 0.5, 1.0, 1.5 wt.%) were used to fabricate PS nanocomposites. The morphology of coated BP-PS biofilms was examined by X-ray diffraction, Fourier transferred Infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). Moreover, other measurements such as mechanical, thermal stability, flammability, wettability by the contact angle, water vapor, and gas barrier properties were carried out on the fabricated BP-PS biofilms. Most outcomes showed that the major properties were enhanced when the PS nanocomposites were implemented. The use of 1.5 wt.% TiO2 in PS nanocomposite for coated BP-PS biofilm increased the tensile stress by ~ 217 % compared to uncoated BP film. Furthermore, the rate of burning for BP-PS-1.5% film was reduced to ~ 33 mm/min because of the crystallinity of PS and the barrier effect provided by TiO₂ NPs. These coated sheets provide a promising candidate for use in advanced packaging applications.

Keywords: bagasse paper, polystyrene nanocomposites, TiO2 nanoparticles, active packaging, mechanical properties, flammability

Procedia PDF Downloads 85
4054 Scientific Interpretation of “Fertilizing Winds” Mentioned in Verse 15:22 of Al-Quran

Authors: Md. Mamunur Rashid

Abstract:

Allah (SWT) bestowed us with the Divine blessing, providing the wonderful source of water as stated in verse 15:22 of Al-Quran. Arabic “Ar-Riaaha Lawaaqiha (ٱلرِّيَـٰحَ لَوَٰقِحَ)” of this verse is translated as “fertilizing winds.” The “fertilizing winds” literally, refer the winds of having the roles: to fertilize something similar to the “zygotes” in humans and animals (formation of clouds in the sky in this case); to produce fertilizers for the plants, crops, etc.; and to pollinate the plants. In this paper, these roles of “fertilizing winds” have been validated by presenting the modern knowledge of science in this regard. Existing interpretations are mostly focused on the “formation of clouds in the sky” while few of them mention about the pollination of trees. However, production of fertilizers, in this regard, has not been considered by any translator or interpreter. It has been observed that the winds contain, the necessary components of forming the clouds; the necessary components of producing the fertilizers; and the necessary components to pollinate the plants. The Science of Meteorology gives us the clear understanding of the formation of clouds. Moreover, we know that the lightning bolts breaks the nitrogen molecules of winds and the water molecules of vapor to form fertilizers. Pollination is a common role of winds in plants fertilization. All the scientific phenomena presented here give us the better interpretations of “fertilizing winds.”

Keywords: Al-Quran, fertilizing winds, meteorology, scientific

Procedia PDF Downloads 120
4053 Treatment of Cutting Oily-Wastewater by Sono-Fenton Process: Experimental Approach and Combined Process

Authors: Pisut Painmanakul, Thawatchai Chintateerachai, Supanid Lertlapwasin, Nusara Rojvilavan, Tanun Chalermsinsuwan, Nattawin Chawaloesphonsiya, Onanong Larpparisudthi

Abstract:

Conventional coagulation, advance oxidation process (AOPs), and the combined process were evaluated and compared for its suitability to treat the stabilized cutting-oil wastewater. The 90% efficiency was obtained from the coagulation at Al2(SO4)3 dosage of 150 mg/L and pH 7. On the other hands, efficiencies of AOPs for 30 minutes oxidation time were 10% for acoustic oxidation, 12% for acoustic oxidation with hydrogen peroxide, 76% for Fenton, and 92% sono-Fenton processes. The highest efficiency for effective oil removal of AOPs required large amount of chemical. Therefore, AOPs were studied as a post-treatment after conventional separation process. The efficiency was considerable as the effluent COD can pass the standard required for industrial wastewater discharge with less chemical and energy consumption.

Keywords: cutting oily-wastewater, advance oxidation process, sono-fenton, combined process

Procedia PDF Downloads 355
4052 Low-Surface Roughness and High Optical Quality CdS Thin Film Deposited on Heated Substrate Using Room-Temperature Chemical Solution

Authors: A. Elsayed, M. H. Dewaidar, M. Ghali, M. Elkemary

Abstract:

The high production cost of the conventional solar cells requires the search for economic methods suitable for solar energy conversion. Cadmium Sulfide (CdS) is one of the most important semiconductors used in photovoltaics, especially in large area solar cells; and can be prepared in a thin film form by a wide variety of deposition techniques. The preparation techniques include vacuum evaporation, sputtering and molecular beam epitaxy. Other techniques, based on chemical solutions, are also used for depositing CdS films with dramatically low-cost compared to other vacuum-based methods. Although this technique is widely used during the last decades, due to simplicity and low-deposition temperature (~100°C), there is still a strong need for more information on the growth process and its relation with the quality of the deposited films. Here, we report on deposition of high-quality CdS thin films; with low-surface roughness ( < 3.0 nm) and sharp optical absorption edge; on low-temperature glass substrates (70°C) using a new method based on the room-temperature chemical solution. In this method, a mixture solution of cadmium acetate and thiourea at room temperature was used under special growth conditions for deposition of CdS films. X-ray diffraction (XRD) measurements were used to examine the crystal structure properties of the deposited CdS films. In addition, UV-VIS transmittance and low-temperature (4K) photoluminescence (PL) measurements were performed for quantifying optical properties of the deposited films. The deposited films show high optical quality as confirmed by observation of both, sharp edge in the transmittance spectra and strong PL intensity at room temperature. Furthermore, we found a strong effect of the growth conditions on the optical band gap of the deposited films; where remarkable red-shift in the absorption edge with temperature is clearly seen in both transmission and PL spectra. Such tuning of both optical band gap of the deposited CdS films can be utilized for tuning the electronic bands' alignments between CdS and other light-harvesting materials, like CuInGaSe or CdTe, for potential improvement in the efficiency of solar cells devices based on these heterostructures.

Keywords: chemical deposition, CdS, optical properties, surface, thin film

Procedia PDF Downloads 162
4051 Getting to Know the Types of Concrete and its Production Methods

Authors: Mokhtar Nikgoo

Abstract:

Definition of Concrete and Concreting: Concrete (in French: Béton) in a broad sense is any substance or combination that consists of a sticky substance with the property of cementation. In general, concrete refers to concrete made by Portland cement, which is produced by mixing fine and coarse aggregates, Portland cement and water. After enough time, this mixture turns into a stone-like substance. During the hardening or processing of the concrete, cement is chemically combined with water to form strong crystals that bind the aggregates together, a process called hydration. During this process, significant heat is released called hydration heat. Additionally, concrete shrinks slightly, especially as excess water evaporates, a phenomenon known as drying shrinkage. The process of hardening and the gradual increase in concrete strength that occurs with it does not end suddenly unless it is artificially interrupted. Instead, it decreases more over long periods of time, although, in practical applications, concrete is usually set after 28 days and is considered at full design strength. Concrete may be made from different types of cement as well as pozzolans, furnace slag, additives, additives, polymers, fibers, etc. It may also be used in the way it is made, heating, water vapor, autoclave, vacuum, hydraulic pressures and various condensers.

Keywords: concrete, RCC, batching, cement, Pozzolan, mixing plan

Procedia PDF Downloads 98
4050 Green Organic Chemistry, a New Paradigm in Pharmaceutical Sciences

Authors: Pesaru Vigneshwar Reddy, Parvathaneni Pavan

Abstract:

Green organic chemistry which is the latest and one of the most researched topics now-a- days has been in demand since 1990’s. Majority of the research in green organic chemistry chemicals are some of the important starting materials for greater number of major chemical industries. The production of organic chemicals has raw materials (or) reagents for other application is major sector of manufacturing polymers, pharmaceuticals, pesticides, paints, artificial fibers, food additives etc. organic synthesis on a large scale compound to the labratory scale, involves the use of energy, basic chemical ingredients from the petro chemical sectors, catalyst and after the end of the reaction, seperation, purification, storage, packing distribution etc. During these processes there are many problems of health and safety for workers in addition to the environmental problems caused there by use and deposition as waste. Green chemistry with its 12 principles would like to see changes in conventional way that were used for decades to make synthetic organic chemical and the use of less toxic starting materials. Green chemistry would like to increase the efficiency of synthetic methods, to use less toxic solvents, reduce the stage of synthetic routes and minimize waste as far as practically possible. In this way, organic synthesis will be part of the effort for sustainable development Green chemistry is also interested for research and alternatives innovations on many practical aspects of organic synthesis in the university and research labaratory of institutions. By changing the methodologies of organic synthesis, health and safety will be advanced in the small scale laboratory level but also will be extended to the industrial large scale production a process through new techniques. The three key developments in green chemistry include the use of super critical carbondioxide as green solvent, aqueous hydrogen peroxide as an oxidising agent and use of hydrogen in asymmetric synthesis. It also focuses on replacing traditional methods of heating with that of modern methods of heating like microwaves traditions, so that carbon foot print should reduces as far as possible. Another beneficiary of this green chemistry is that it will reduce environmental pollution through the use of less toxic reagents, minimizing of waste and more bio-degradable biproducts. In this present paper some of the basic principles, approaches, and early achievements of green chemistry has a branch of chemistry that studies the laws of passing of chemical reactions is also considered, with the summarization of green chemistry principles. A discussion about E-factor, old and new synthesis of ibuprofen, microwave techniques, and some of the recent advancements also considered.

Keywords: energy, e-factor, carbon foot print, micro-wave, sono-chemistry, advancement

Procedia PDF Downloads 306
4049 Status of Physical, Chemical and Biological Attributes of Isheri, Ogun River, in Relation to the Surrounding Anthropogenic Activities of Kara Abattoir, South West Nigeria

Authors: N. B. Ikenweiwe, A. A. Alimi, N. A. Bamidele, A. O. Ewumi, J. Dairo, I. A. Akinnubi, S. O. Otubusin

Abstract:

A study on the physical, chemical and biological parameters of the lower course of Ogun River, Isheri-Olofin was carried out between January and December 2014 in order to determine the effects of the anthropogenic activities of the Kara abattoir and domestic waste depositions on the quality of the water. Water samples were taken twice each month at three selected stations A, B and C (based on characteristic features or activity levels) along the water course. Samples were analysed using standard methods for chemical and biological parameters the same day in the laboratory while physical parameters were determined in-situ with water parameters kit. Generally, results of Transparency, Dissolved Oxygen, Nitrates, TDS and Alkalinity fall below the permissible limits of WHO and FEPA standards for drinking and fish production. Results of phosphates, lead and cadmium were also low but still within the permissible limit. Only Temperature and pH were within limit. Low plankton community, (phytoplankton, zooplankton), which ranges from 3, 5 to 40, 23 were as a result of low levels of DO, transparency and phosphate. The presence of coliform bacteria of public health importance like Escherichia coli, Proteus vulgaris, Aeromonas sp., Shigella sp, Enterobacter aerogenes as well as gram negative bacteria Proteus morganii are mainly indicators of faecal pollution. Fish and other resources obtained from this water stand the risk of being contaminated with these organisms and man is at the receiving end. The results of the physical, chemical and some biological parameters of Isheri, Ogun River, according to this study showed that the live forms of aquatic and fisheries resources there are dwelling under stress as a result of deposition of bones, horns, faecal components, slurry of suspended solids, fat and blood into the water. Government should therefore establish good monitoring system against illegal waste depositions and create education programmes that will enlighten the community on the social, ecological and economic values of the river.

Keywords: water parameters, Isheri Ogun river, anthropogenic activities, Kara abattoir

Procedia PDF Downloads 539
4048 Investigations of Heavy Metals Pollution in Sediments of Small Urban Lakes in Karelia Republic

Authors: Aleksandr Medvedev, Zakhar Slukovsii

Abstract:

Waterbodies, which are located either within urban areas or nearby towns, permanently undergo anthropogenic load. The extent of the load can be determined via investigations of chemical composition of both water and sediments. Lakes, as a rule, are considered as a landscape depressions, hence they are capable of natural material accumulating, which has been delivered from the catchment area through rivers as well as temporary flows. As a result, lacustrine sediments (especially closed-basin lakes sediments) are considered as perfect archives, which are served for reconstructing past sedimentation process, assessment of the modern contamination level, and prognostication of possible ways of changing in the future. The purposes of the survey are to define a heavy metals content in lake sediments cores, which were retrieved from four urban lakes located in the southern part of Karelia Republic, and to ascertain the main sources of heavy metals input to these waterbodies. It is really crucial to be aware of heavy metals content in environment, because chemical composition of a landscape may have a significant effect on living organisms and people’s health. Sediment columns were sampled in a field with 2-cm intervals by a gravitational corer called «Limnos». The sediment samples were analyzed by inductively coupled plasma spectrometry (ICP MS) for 8 chemical elements (Pb, Cd, Zn, Cr, Ni, Cu, Mn, V). The highest concentrations of trace elements were established in the upper and middle layers of the cores. It has also been ascertained that the extent of contamination mostly depends on a remoteness of a lake from various pollution sources and features of the sources.

Keywords: bottom sediments, environmental pollution, heavy metals, lakes

Procedia PDF Downloads 143
4047 The Impact of COVID-19 Health Measures on Adults with Multiple Chemical Sensitivity

Authors: Riina I. Bray, Yifan Wang, Nikolas Argiropoulos, Stephanie Robins, John Molot, Kelly Tragash, Lynn M. Marshall, Margaret E. Sears, Marie-Andrée Pigeon, Michel Gaudet, Pierre Auger, Emily Bélanger, Rohini Peris

Abstract:

Multiple chemical sensitivity (MCS) is a chronic medical condition characterized by intolerances to chemical substances. Since the arrival of the COVID-19 pandemic and associated health measures, people experiencing MCS (PEMCS) are at a heightened risk of environmental exposures associated with cleaners, disinfectants, and sanitizers. Little attention has been paid to the well-being of PEMCS in the context of the COVID-19 pandemic. Objective: This study assesses the lived experiences of Canadian adults with MCS in relation to their living environment, access to healthcare, and levels of perceived social support before and during the pandemic. Methods: A total of 119 PEMCS completed an online questionnaire. McNemar Chi-Squared and Wilcoxon Signed Rank tests were used to evaluate if there were statistically significant changes in participants’ perception of their living environment, access to healthcare, and levels of social support before and after March 11, 2020. Results: Both positive and negative outcomes were noted. Participants reported an increase in exposure to disinfectants/sanitizers that entered their living environment (p<.001). There was a reported decrease in access to a family doctor during the pandemic (p<0.001). Although PEMCS experienced increased social isolation (p<0.001), they also reported an increase in understanding from family (p<0.029) and a decrease in stigma for wearing personal protective equipment (p<0.001). Conclusion: PEMCS reported experiencing: increased exposure to disinfectants or sanitizers, a loss of social support, and barriers in accessing healthcare during the pandemic. However, COVID-19 provided an opportunity to normalize the living conditions of PEMCS, such as wearing masks and social isolation. These findings can guide decision-makers on the importance of implementing nontoxic alternatives for cleaning and disinfection, as well as improving accommodation measures for PEMCS.

Keywords: covid-19, multiple chemical sensitivity, MCS, quality of life, social isolation, physical environment, healthcare

Procedia PDF Downloads 86
4046 Study on the Neurotransmitters and Digestion of Amino Acids Affecting Psychological Chemical Imbalance

Authors: Yoonah Lee, Richard Kyung

Abstract:

With technological advances in the computational biomedical field, the ability to measure neurotransmitters’ chemical imbalances that affect depression and anxiety has been established. By comparing the thermodynamics stability of amino acid supplements, such as glutamine, tyrosine, phe-nylalanine, and methionine, this research analyzes mood-regulating neurotransmitters, amino acid supplements, and antipsychotic substances (ie. Reserpine molecule and CRF complexes) in relation to depression and anxiety and suggests alternative complexes that are low in energy to act as more efficient treatments for mood disorders. To determine a molecule’s thermodynamic stability, this research examines the molecular energy using Avogadro, a software for building virtual molecules and calculating optimized geometry using GAFF (General Amber Force Field) and UFF (Universal Force Field). The molecules, built using Avogadro, is analyzed using their theoretical values and atomic properties.

Keywords: amino acids, anxiety, depression, neurotransmitters

Procedia PDF Downloads 162
4045 A FR Fire-Off with Polysilicic Acid for Pes/Co Blends

Authors: Raziye Atakan, Ebru Celebi, Gulay Ozcan, Neda Soydan, A. Sezai Sarac

Abstract:

In this study, a novel polymeric flame retardant chemical with phosphorous-nitrogen synergism was synthesized by polyvinyl alcohol (PVA), hydrophilic polyester resin (PR), phosphoric acid and dicyandiamide (DCDA). Polyester/Cotton (Pes/Co) blend fabrics were treated via pad-dry-cure process with this synthesized chemical. PVA (PR)-P-DCDA has shown that it is an effective flame retardant on the fabrics. In order to improve durable flame retardancy for cotton part of the blend, polysilicic acid and citric acid monohydrate auxiliaries were added in FR finishing bath at different concentrations. Flammability and characteristic properties of the sample were tested according to relevant ISO standard and procedures. To do so, ISO 6940 vertical flammability test, TGA, DTA, LOI and FTIR analysis have been performed. The obtained results showed that this new finishing formulation is a good char-forming agent for the PES/CO blends and polysilicic acid could be used for cellulosic blends with PVA (PR)-P-DCDA.

Keywords: flame retardancy, flammability, Pes/Co blends, polysilicic acid

Procedia PDF Downloads 415
4044 Geochemical Investigation of Weathering and Sorting for Tepeköy Sandstones

Authors: M. Yavuz Hüseyinca, Şuayip Küpeli

Abstract:

The Chemical Index of Alteration (CIA) values of Late Eocene-Oligocene aged sandstones that exposed on the eastern edge of Tuz Lake (Central Anatolia, Turkey) range from 49 to 59 with an average of 51. The A-CN-K diagram indicates that sandstones underwent post-depositional K-metasomatism. The original average CIA value before the K-metasomatism is calculated as 55. This value is lower than that of Post Archean Australian Shale (PAAS) and defines a low intense chemical weathering in the source-area. Extrapolation of sandstones back to the plagioclase-alkali feldspar line in the A-CN-K diagram suggests a high average plagioclase to alkali feldspar ratio in the provenance and a composition close to granodiorite. The Zr/Sc and Th/Sc ratios with the Al₂O₃-Zr-TiO₂ space do not show zircon addition that refuse both recycling of sediments and sorting effect. All these data suggest direct and rapid transportation from the source due to topographic uplift and probably arid to semi-arid climate conditions for the sandstones.

Keywords: central Anatolia, sandstone, sorting, weathering

Procedia PDF Downloads 378
4043 Shelf Life of Frozen Processed Foods for Extended Durability

Authors: Manfreda Gerardo, Pasquali Frederique, Pepe Tiziana, Anastasio Aniello, Ianieri Adriana

Abstract:

The aim of the research was to evaluate the shelf life of a REPFED’s product (lasagna alla bolognese), developed as a product to be marketed fresh after defrosting. Three different samples were prepared: A, B and C, which presented differences in relation to the recipe, pasteurization technique and packaging on which the trend of the shelf-life indicator parameters was evaluated during a period of prolonged shelf life. The analytical plan involved the measurement of microbiological, chemical-physical and organoleptic parameters over 7 moments of storage selected in a period of 33 days. CBT, LAB, enterobacteria, E. coli, yeasts, molds, S. coagulase positive, B. cereus, Salmonella spp and L. monocytogenes, pH, Aw, Kreiss test, peroxides, atmosphere inside the packages, and organoleptic characteristics were determined. The results demonstrated the effect of post-packaging pasteurization on the shelf life of fresh from frozen products. However, the products pasteurized at 95°C in the absence of steam showed microbiological parameters that were not appropriate for an extended shelf life of up to 60 days. On the contrary, the samples pasteurized at 98°C with steam saturation and counterpressure showed values compatible with an extended shelf life. The results of the chemical-physical analyses highlighted how recipe and packaging affect the chemical-physical and organoleptic parameters. In conclusion, this preliminary study confirmed the effectiveness of post-packaging pasteurization treatments aimed at extending the shelf life of the product, helping the food company to occupy market niches even very distant from the production sites.

Keywords: shelf life, REPFED’s product, extended durability, pasteurization

Procedia PDF Downloads 28
4042 Composition, Abundance and Diversity of Zooplankton in Sarangani Bay, Sarangani Province, Philippines

Authors: Jeter Canete, Noreen Joyce Estrella, Yedda Sachi Patrice Madelo

Abstract:

Zooplankton plays a crucial role in aquatic ecosystems and a number of water parameters involved in it. Despite their relevance, there is inadequate information about zooplankton communities in Sarangani Bay, Sarangani Province: one of the most essential waterbodies in Mindanao. The aim of the present study was to determine the composition, abundance, and diversity of zooplankton as well as to provide more recent data about the physico-chemical characteristics of Sarangani Bay. Zooplankton samples were collected by vertical hauls using a zooplankton net (mouth diameter: 0.5m; mesh size opening: round, 350μm) in three stations in the coastal waters of Alabel, Malapatan, and Maasim during November 2018. A total of 74 species of zooplankton belonging mainly to Kingdom Protozoa, Phylum Arthropoda, Chaetognatha, and Chordata were identified. Results showed a total zooplankton abundance of 1,984,166 ind/m³ with the highest count recorded at Malapatan (717,169 ind/m³) and the lowest at Maasim (624,411 ind/m³). Among 22 zooplankton groups identified, subclass Copepoda was found to be the most dominant (73.10%), followed by Appendicularia (12.18%) and Vertebrata (3.54%). Diversity analysis revealed an even distribution of species and a diverse ecosystem in all stations sampled. Correlation analysis indicated a strong relationship between zooplankton abundance and physico-chemical parameters. Overall, the physico-chemical profile of Sarangani Bay did not differ from the standards set by DENR, and analysis of the zooplankton communities revealed that Sarangani Bay favorably supports marine organisms to flourish. The findings of this study provide useful knowledge on zooplankton communities and can be used to create management strategies to protect the aquatic biodiversity in Sarangani Bay.

Keywords: aquatic biomonitoring, biodiversity, physicochemical analysis, population survey, Sarangani Bay, Sarangani Province, zooplankton

Procedia PDF Downloads 328
4041 Ecotoxicological Safety of Wastewater Treated with Lignocellulosic Adsorbents

Authors: Luísa P. Cruz-Lopes, Artur Figueirinha, Isabel Brás, Bruno Esteves

Abstract:

Portugal is an important wine and olive oil producer, activities which generate a high quantity of residues commonly called grape stalks and olive cake, respectively. In this work grape stalks and olive cake were used as lignocellulosic adsorbents for wastewater containing lead treatment. To attain a better knowledge of the factors that could influence the quality of the treated wastewater, a chemical characterization of the materials used in the treatment was done. To access the ecotoxicological safety of the treated wastewater, several tests were performed. The results of the toxicity test show that the samples leachate has a mild effect on the living models tested. The tests performed in lemna and bacteria were the most sensible to toxicity effects of the samples. The results obtained in this work evidenced the importance of use of simple and fast toxicity tests to predict impacts in the environment.

Keywords: chemical composition, lignocellulosic residues, ecotoxicological safety, wastewater

Procedia PDF Downloads 282
4040 Evaluation of Water-Soluble Ionic Liquids Based on Quaternized Hyperbranched Polyamidoamine and Amino Acids for Chemical Enhanced Oil Recovery

Authors: Rasha Hosny, Ahmed Zahran, Mahmoud Ramzi, Fatma Mahmoud Abdelhafiz, Ammona S. Mohamed, Mahmoud Fathy Mubarak

Abstract:

Ionic liquids' ability to be tuned and stability under challenging environmental conditions are their significant features in enhanced oil recovery. In this study, two amino acid ionic liquids (AAILs) were prepared from quaternized hyperbranched polyamidoamine PAMAM (G0.5 C12) and amino acids (Cysteine and Lysine). The chemical structures of the prepared AAILs were verified by using FTIR and 1H-NMR spectra. These AAILs were tested for solubility, thermal stability, and surface activity in the presence of Egyptian medium crude oils under different PVT parameters after being diluted in several brine solutions of various salt compositions at 10% (w/w) salinity. The measurements reveal that the produced AAILs have good solubility and thermal stability. The effect of different concentrations of AAILs (0.1-5%) and salinity (20000-70000 ppm) on Interfacial tension (IFT) were studied. To test the efficacy of (AAILs) for a CEOR, numerous flooding experiments were carried out in samples of sandstone rock. Rock wettability is important for sandstone rocks, so conduct wettability alteration by contact angle (CA) of (30-55) and IFT of (7-13). The additional oil recovery was largely influenced by ionic liquid concentration, which may be changed by dilution with the formation and injected brines. This research has demonstrated that EOR techniques led to a recovery wt. (22-45%).

Keywords: amino acid ionic liquids, surface activity, critical micelle concentration, interfacial tension, contact angle, chemical enhanced oil recovery, wettability

Procedia PDF Downloads 111
4039 Microbial Degradation of Lignin for Production of Valuable Chemicals

Authors: Fnu Asina, Ivana Brzonova, Keith Voeller, Yun Ji, Alena Kubatova, Evguenii Kozliak

Abstract:

Lignin, a heterogeneous three-dimensional biopolymer, is one of the building blocks of lignocellulosic biomass. Due to its limited chemical reactivity, lignin is currently processed as a low-value by-product in pulp and paper mills. Among various industrial lignins, Kraft lignin represents a major source of by-products generated during the widely employed pulping process across the pulp and paper industry. Therefore, valorization of Kraft lignin holds great potential as this would provide a readily available source of aromatic compounds for various industrial applications. Microbial degradation is well known for using both highly specific ligninolytic enzymes secreted by microorganisms and mild operating conditions compared with conventional chemical approaches. In this study, the degradation of Indulin AT lignin was assessed by comparing the effects of Basidiomycetous fungi (Coriolus versicolour and Trametes gallica) and Actinobacteria (Mycobacterium sp. and Streptomyces sp.) to two commercial laccases, T. versicolour ( ≥ 10 U/mg) and C. versicolour ( ≥ 0.3 U/mg). After 54 days of cultivation, the extent of microbial degradation was significantly higher than that of commercial laccases, reaching a maximum of 38 wt% degradation for C. versicolour treated samples. Lignin degradation was further confirmed by thermal carbon analysis with a five-step temperature protocol. Compared with commercial laccases, a significant decrease in char formation at 850ºC was observed among all microbial-degraded lignins with a corresponding carbon percentage increase from 200ºC to 500ºC. To complement the carbon analysis result, chemical characterization of the degraded products at different stages of the delignification by microorganisms and commercial laccases was performed by Pyrolysis-GC-MS.

Keywords: lignin, microbial degradation, pyrolysis-GC-MS, thermal carbon analysis

Procedia PDF Downloads 412
4038 Synthesis of Silver Powders Destined for Conductive Paste Metallization of Solar Cells Using Butyl-Carbitol and Butyl-Carbitol Acetate Chemical Reduction

Authors: N. Moudir, N. Moulai-Mostefa, Y. Boukennous, I. Bozetine, N. Kamel, D. Moudir

Abstract:

the study focuses on a novel process of silver powders synthesis for the preparation of conductive pastes used for solar cells metalization. Butyl-Carbitol and butyl-carbitol Acetate have been used as solvents and reducing agents of silver nitrate (AgNO3) as precursor to get silver powders. XRD characterization revealed silver powders with a cubic crystal system. SEM micro graphs showed spherical morphology of the particles. Laser granulometer gives similar particles distribution for the two agents. Using same glass frit and organic vehicle for comparative purposes, two conductive pastes were prepared with the synthesized silver powders for the front-side metalization of multi-crystalline cells. The pastes provided acceptable fill factor of 59.5 % and 60.8 % respectively.

Keywords: chemical reduction, conductive paste, silver nitrate, solar cell

Procedia PDF Downloads 304