Search results for: aluminum chloride
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1238

Search results for: aluminum chloride

518 Fabrication of Functionalized Multi-Walled Carbon-Nanotubes Paper Electrode for Simultaneous Detection of Dopamine and Ascorbic Acid

Authors: Tze-Sian Pui, Aung Than, Song-Wei Loo, Yuan-Li Hoe

Abstract:

A paper-based electrode devised from an array of carboxylated multi-walled carbon nanotubes (MWNTs) and poly (diallyldimethylammonium chloride) (PDDA) has been successfully developed for the simultaneous detection of dopamine (DA) and ascorbic acid (AA) in 0.1 M phosphate buffer solution (PBS). The PDDA/MWNTs electrodes were fabricated by allowing PDDA to absorb onto the surface of carboxylated MWNTs, followed by drop-casting the resulting mixture onto a paper. Cyclic voltammetry performed using 5 mM [Fe(CN)₆]³⁻/⁴⁻ as the redox marker showed that the PDDA/MWNTs electrode has higher redox activity compared to non-functionalized carboxylated MWNT electrode. Differential pulse voltammetry was conducted with DA concentration ranging from 2 µM to 500 µM in the presence of 1 mM AA. The distinctive potential of 0.156 and -0.068 V (vs. Ag/AgCl) measured on the surface of the PDDA/MWNTs electrode revealed that both DA and AA were oxidized. The detection limit of DA was estimated to be 0.8 µM. This nanocomposite paper-based electrode has great potential for future applications in bioanalysis and biomedicine.

Keywords: dopamine, differential pulse voltammetry, paper sensor, carbon nanotube

Procedia PDF Downloads 130
517 Feasibility of Washing/Extraction Treatment for the Remediation of Deep-Sea Mining Trailings

Authors: Kyoungrean Kim

Abstract:

Importance of deep-sea mineral resources is dramatically increasing due to the depletion of land mineral resources corresponding to increasing human’s economic activities. Korea has acquired exclusive exploration licenses at four areas which are the Clarion-Clipperton Fracture Zone in the Pacific Ocean (2002), Tonga (2008), Fiji (2011) and Indian Ocean (2014). The preparation for commercial mining of Nautilus minerals (Canada) and Lockheed martin minerals (USA) is expected by 2020. The London Protocol 1996 (LP) under International Maritime Organization (IMO) and International Seabed Authority (ISA) will set environmental guidelines for deep-sea mining until 2020, to protect marine environment. In this research, the applicability of washing/extraction treatment for the remediation of deep-sea mining tailings was mainly evaluated in order to present preliminary data to develop practical remediation technology in near future. Polymetallic nodule samples were collected at the Clarion-Clipperton Fracture Zone in the Pacific Ocean, then stored at room temperature. Samples were pulverized by using jaw crusher and ball mill then, classified into 3 particle sizes (> 63 µm, 63-20 µm, < 20 µm) by using vibratory sieve shakers (Analysette 3 Pro, Fritsch, Germany) with 63 µm and 20 µm sieve. Only the particle size 63-20 µm was used as the samples for investigation considering the lower limit of ore dressing process which is tens to 100 µm. Rhamnolipid and sodium alginate as biosurfactant and aluminum sulfate which are mainly used as flocculant were used as environmentally friendly additives. Samples were adjusted to 2% liquid with deionized water then mixed with various concentrations of additives. The mixture was stirred with a magnetic bar during specific reaction times and then the liquid phase was separated by a centrifugal separator (Thermo Fisher Scientific, USA) under 4,000 rpm for 1 h. The separated liquid was filtered with a syringe and acrylic-based filter (0.45 µm). The extracted heavy metals in the filtered liquid were then determined using a UV-Vis spectrometer (DR-5000, Hach, USA) and a heat block (DBR 200, Hach, USA) followed by US EPA methods (8506, 8009, 10217 and 10220). Polymetallic nodule was mainly composed of manganese (27%), iron (8%), nickel (1.4%), cupper (1.3 %), cobalt (1.3%) and molybdenum (0.04%). Based on remediation standards of various countries, Nickel (Ni), Copper (Cu), Cadmium (Cd) and Zinc (Zn) were selected as primary target materials. Throughout this research, the use of rhamnolipid was shown to be an effective approach for removing heavy metals in samples originated from manganese nodules. Sodium alginate might also be one of the effective additives for the remediation of deep-sea mining tailings such as polymetallic nodules. Compare to the use of rhamnolipid and sodium alginate, aluminum sulfate was more effective additive at short reaction time within 4 h. Based on these results, sequencing particle separation, selective extraction/washing, advanced filtration of liquid phase, water treatment without dewatering and solidification/stabilization may be considered as candidate technologies for the remediation of deep-sea mining tailings.

Keywords: deep-sea mining tailings, heavy metals, remediation, extraction, additives

Procedia PDF Downloads 147
516 Experimental Study of the Microstructure and Properties of Aluminum Alloy Composites Reinforced with Pod Ash Nanoparticles Composites

Authors: A. P .I. Popoola, V. S. Aigbodion, O. S. I. Fayomi

Abstract:

The experimental study of the microstructure and properties of Al-Cu-Mg alloy/bean pod ash (BPA) nanoparticles was investigated. The aluminium matrix composites (AMCs) were produced by varying the BPA nanoparticles from 1-4wt%. The microstructure and phases of the composites produced were examined by SEM/EDS and XRD. Properties such as: hardness, tensile strength, impact energy, fatigue and wear were evaluated. The results showed that tensile strength and hardness values increased by 35 and 44.1% at 4wt% BPA nanoparticles with appreciable impact energy. The fatigue limit of 167MPa, 135 MPa and 75Mpa were obtained for the nano-particle (55nm), micro-particle (100µm) BPA composites and unreinforced alloy respectively. The wear properties of the as-cast Al–3.7%Cu-1.4%Mg/BPA nanoparticle have been improved significantly even with a low weight percent of BPA nanoparticle. The properties of the as-cast aluminium nanoparticles (MMNCs) have been improved significantly even with a low weight percent of nano-sized BPAp.

Keywords: bean pod ash nanoparticles, al-cu-mg alloy, mechanical properties, wear, microstructures

Procedia PDF Downloads 255
515 Reliability Assessment Using Full Probabilistic Modelling for Carbonation and Chloride Exposures, Including Initiation and Propagation Periods

Authors: Frank Papworth, Inam Khan

Abstract:

Fib’s model code 2020 has four approaches for design life verification. Historically ‘deemed to satisfy provisions have been the principal approach, but this has limited options for materials and covers. The use of an equation in fib’s model code for service life design to predict time to corrosion initiation has become increasingly popular to justify further options, but in some cases, the analysis approaches are incorrect. Even when the equations are computed using full probabilistic analysis, there are common mistakes. This paper reviews the work of recent fib commissions on implementing the service life model to assess the reliability of durability designs, including initiation and propagation periods. The paper goes on to consider the assessment of deemed to satisfy requirements in national codes and considers the influence of various options, including different steel types, various cement systems, quality of concrete and cover, on reliability achieved. As modelling is based on achieving agreed target reliability, consideration is given to how a project might determine appropriate target reliability.

Keywords: chlorides, marine, exposure, design life, reliability, modelling

Procedia PDF Downloads 224
514 Improving Dyeability of Cotton Fabric with Juglans regia L. Natural Dyestuff

Authors: M. Heysem Arslan, Ikilem Gocek, U. Kivanc Sahin

Abstract:

Natural dyestuff, extracted from Juglans Regia L., a kind of walnut, was used to dye 100% cotton gabardine fabric. The main goal of this study was to enhance dyeing process of cotton fabric with Juglans Regia L. dyestuff in terms of color fastness values by designing and developing a mordant application process. Within the context of this study, different mordants such as tannic acid, gallic acid, ascorbic acid, potassium sodium tartrate tetrahydrate, calcium carbonate, iron (II) sulphate heptahydrate, aluminum potassium sulphate dodecahydrate and their combinations were applied in the mordanting processes. Spectrophotometric analysis, color fastness to washing and color fastness to light tests were carried out on the fabric samples. In this study, it was shown that by using the right combination of mordants with a proper application process, it is possible to improve color fastness values of cotton fabric samples dyed with natural dyestuff.

Keywords: extraction, Juglans Regia L., mordanting process, natural dyestuff

Procedia PDF Downloads 295
513 Isolation and Identification of Biosurfactant Producing Microorganism for Bioaugmentation

Authors: Karthick Gopalan, Selvamohan Thankiah

Abstract:

Biosurfactants are lipid compounds produced by microbes, which are amphipathic molecules consisting of hydrophophic and hydrophilic domains. In the present investigation, ten bacterial strains were isolated from petroleum oil contaminated sites near petrol bunk. Oil collapsing test, haemolytic activity were used as a criteria for primary isolation of biosurfactant producing bacteria. In this study, all the bacterial strains gave positive results. Among the ten strains, two were observed as good biosurfactant producers, they utilize the diesel as a sole carbon source. Optimization of biosurfactant producing bacteria isolated from petroleum oil contaminated sites was carried out using different parameters such as, temperature (20ºC, 25ºC, 30ºC, 37ºC and 45ºC), pH (5,6,7,8 & 9) and nitrogen sources (ammonium chloride, ammonium carbonate and sodium nitrate). Biosurfactants produced by bacteria were extracted, dried and quantified. As a result of optimization of parameters the suitable values for the production of more amount of biosurfactant by the isolated bacterial species was observed as 30ºC (0.543 gm/lt) in the pH 7 (0.537 gm/lt) with ammonium nitrate (0.431 gm/lt) as sole carbon source.

Keywords: isolation and identification, biosurfactant, microorganism, bioaugmentation

Procedia PDF Downloads 337
512 Low-carbon Footprint Diluents in Solvent Extraction for Lithium-ion Battery Recycling

Authors: Abdoulaye Maihatchi Ahamed, Zubin Arora, Benjamin Swobada, Jean-yves Lansot, Alexandre Chagnes

Abstract:

Lithium-ion battery (LiB) is the technology of choice in the development of electric vehicles. But there are still many challenges, including the development of positive electrode materials exhibiting high cycle ability, high energy density, and low environmental impact. For this latter, LiBs must be manufactured in a circular approach by developing the appropriate strategies to reuse and recycle them. Presently, the recycling of LiBs is carried out by the pyrometallurgical route, but more and more processes implement or will implement the hydrometallurgical route or a combination of pyrometallurgical and hydrometallurgical operations. After producing the black mass by mineral processing, the hydrometallurgical process consists in leaching the black mass in order to uptake the metals contained in the cathodic material. Then, these metals are extracted selectively by liquid-liquid extraction, solid-liquid extraction, and/or precipitation stages. However, liquid-liquid extraction combined with precipitation/crystallization steps is the most implemented operation in the LiB recycling process to selectively extract copper, aluminum, cobalt, nickel, manganese, and lithium from the leaching solution and precipitate these metals as high-grade sulfate or carbonate salts. Liquid-liquid extraction consists in contacting an organic solvent and an aqueous feed solution containing several metals, including the targeted metal(s) to extract. The organic phase is non-miscible with the aqueous phase. It is composed of an extractant to extract the target metals and a diluent, which is usually aliphatic kerosene produced from the petroleum industry. Sometimes, a phase modifier is added in the formulation of the extraction solvent to avoid the third phase formation. The extraction properties of the diluent do not depend only on the chemical structure of the extractant, but it may also depend on the nature of the diluent. Indeed, the interactions between the diluent can influence more or less the interactions between extractant molecules besides the extractant-diluent interactions. Only a few studies in the literature addressed the influence of the diluent on the extraction properties, while many studies focused on the effect of the extractants. Recently, new low-carbon footprint aliphatic diluents were produced by catalytic dearomatisation and distillation of bio-based oil. This study aims at investigating the influence of the nature of the diluent on the extraction properties of three extractants towards cobalt, nickel, manganese, copper, aluminum, and lithium: Cyanex®272 for nickel-cobalt separation, DEHPA for manganese extraction, and Acorga M5640 for copper extraction. The diluents used in the formulation of the extraction solvents are (i) low-odor aliphatic kerosene produced from the petroleum industry (ELIXORE 180, ELIXORE 230, ELIXORE 205, and ISANE IP 175) and (ii) bio-sourced aliphatic diluents (DEV 2138, DEV 2139, DEV 1763, DEV 2160, DEV 2161 and DEV 2063). After discussing the effect of the diluents on the extraction properties, this conference will address the development of a low carbon footprint process based on the use of the best bio-sourced diluent for the production of high-grade cobalt sulfate, nickel sulfate, manganese sulfate, and lithium carbonate, as well as metal copper.

Keywords: diluent, hydrometallurgy, lithium-ion battery, recycling

Procedia PDF Downloads 74
511 Biosorption of Gold from Chloride Media in a Simultaneous Adsorption-Reduction Process

Authors: Shafiq Alam, Yen Ning Lee

Abstract:

Conventional hydrometallurgical processing of metals involves the use of large quantities of toxic chemicals. Realizing a need to develop sustainable technologies, extensive research studies are being carried out to recover and recycle base, precious and rare earth metals from their pregnant leach solutions (PLS) using green chemicals/biomaterials prepared from biomass wastes derived from agriculture, marine and forest resources. Our innovative research showed that bio-adsorbents prepared from such biomass wastes can effectively adsorb precious metals, especially gold after conversion of their functional groups in a very simple process. The highly effective ‘Adsorption-coupled-Reduction’ phenomenon witnessed appears promising for the potential use of this gold biosorption process in the mining industry. Proper management and effective use of biomass wastes as value added green chemicals will not only reduce the volume of wastes being generated every day in our society, but will also have a high-end value to the mining and mineral processing industries as those biomaterials would be cheap, but very selective for gold recovery/recycling from low grade ore, leach residue or e-wastes.

Keywords: biosorption, hydrometallurgy, gold, adsorption, reduction, biomass, sustainability

Procedia PDF Downloads 369
510 Insertion Loss Improvement of a Two-Port Saw Resonator Based on AlN via Alloying with Transition Metals

Authors: Kanouni Fares

Abstract:

This paper describes application of X-doped AlN (X=Sc, Cr and Y) to wideband surface acoustic wave (SAW) resonators in 200–300 MHz range. First, it is shown theoretically that Cr doped AlN thin film has the highest piezoelectric strain constant, accompanied by a lowest mechanical softening compared to Sc doped AlScN and Y doped AlN thin films for transition metals concentrations ranging from 0 to 25%. Next, the impact of transition metals (Sc, Cr and Y) concentration have been carried out for the first time, in terms of surface wave velocity, electrode reflectivity, transduction coefficient and distributed finger capacitance. Finely, the insertion loss of two-port SAW resonator based on AlXN (X=Sc, Cr and Y) deposited on sapphire substrate is obtained using P-matrix model, and it is shown that AlCrN-SAW resonator exhibit lower insertion loss compared to those based on AlScN and AlYN for metal concentrations of 25%.This finding may position Cr doped AlN as a prime piezoelectric material for low loss SAW resonators whose performance can be tuned via Cr composition.

Keywords: P-Matrix, SAW-delay line, interdigital transducer, nitride aluminum, metals transition

Procedia PDF Downloads 109
509 Experimental Investigation on the Effects of Electroless Nickel Phosphorus Deposition, pH and Temperature with the Varying Coating Bath Parameters on Impact Energy by Taguchi Method

Authors: D. Kari Basavaraja, M. G. Skanda, C. Soumya, V. Ramesh

Abstract:

This paper discusses the effects of sodium hypophosphite concentration, pH, and temperature on deposition rate. This paper also discusses the evaluation of coating strength, surface, and subsurface by varying the bath parameters, percentage of phosphate, plating temperature, and pH of the plating solution. Taguchi technique has been used for the analysis. In the experiment, nickel chloride which is a source of nickel when mixed with sodium hypophosphite has been used as the reducing agent and the source of phosphate and sodium hydroxide has been used to vary the pH of the coating bath. The coated samples are tested for impact energy by conducting impact test. Finally, the effects of coating bath parameters on the impact energy absorbed have been plotted, and analysis has been carried out. Further, percentage contribution of coating bath parameters using Design of Experiments approach (DOE) has been analysed. Finally, it can be concluded that the bath parameters of the Ni-P coating will certainly influence on the strength of the specimen.

Keywords: bath parameters, coatings, design of experiment, fracture toughness, impact strength

Procedia PDF Downloads 343
508 Fused Salt Electrolysis of Rare-Earth Materials from the Domestic Ore and Preparation of Rare-Earth Hydrogen Storage Alloys

Authors: Jeong-Hyun Yoo, Hanjung Kwon, Sung-Wook Cho

Abstract:

Fused salt electrolysis was studied to make the high purity rare-earth metals using domestic rare-earth ore. The target metals of the fused salt electrolysis were Mm (Misch metal), La, Ce, Nd, etc. Fused salt electrolysis was performed with the supporting salt such as chloride and fluoride at the various temperatures and ampere. The metals made by fused salt electrolysis were analyzed to identify the phase and composition using the methods of XRD and ICP. As a result, the acquired rare-earth metals were the high purity ones which had more than 99% purity. Also, VIM (vacuum induction melting) was studied to make the kg level rare-earth alloy for the use of secondary battery and hydrogen storage. In order to indentify the physicochemical properties such as phase, impurity gas, alloy composition and hydrogen storage, the alloys were investigated. The battery characteristics were also analyzed through the various tests in the real production line of a battery company.

Keywords: domestic rare-earth ore, fused salt electrolysis, rare-earth materials, hydrogen storage alloy, secondary battery

Procedia PDF Downloads 521
507 Evaluation of Labelling Conditions, Quality Control, and Biodistribution Study of 99mTc- D-Aminolevulinic Acid (5-ALA)

Authors: Kalimullah Khan, Samina Roohi, Mohammad Rafi, Rizwana Zahoor

Abstract:

Labeling of 5-Aminolevulinic acid (5-ALA) with 99 mTc was achieved by using tin chloride dihydrate (Sncl2.2H2O) as reducing agent. Radiochemical purity and labeling efficiency was determined by Whattman paper No.3 and instant thin layer chromatographic strips impregnated with silica gel (ITLC/SG). Labeling efficiency was dependent on many parameters such as amount of ligand, reducing agent, pH, and incubation time. Therefore, optimum conditions for maximum labeling were selected. Stability of 99 mTc- 5-ALA was also checked in fresh human serum. Tissue bio-distribution of 99 mTc-5-ALA was evaluated in Spargue Dawley rats. 5-ALA was 98% labeled with 99 mTc under optimum conditions, i.e. 100µg of 5-ALA, pH: 4, 10µg of Sncl2.2H2O and 30 minutes incubation at room temperature. 99 mTc labelled 5- ALA remained stable for 24 hours in human serum. Bio-distribution study (%ID/gm) in rats revealed that maximum accumulation of 99 mTc-5-ALA was in liver, spleen, stomach and intestine after half hour, 4 hours, and 24 hours. Significant activity in bladder and urine indicated urinary mode of excretion.

Keywords: 99mTc-ALA, aminolevulinic acid, quality control, radiopharmaceuticals

Procedia PDF Downloads 375
506 Comparative Evaluation of Kinetic Model of Chromium and Lead Uptake from Aqueous Solution by Activated Balanitesaegyptiaca Seeds

Authors: Mohammed Umar Manko

Abstract:

A series of batch experiments were conducted in order to investigate the feasibility of Balanitesaegyptiaca seeds based activated carbon as compared with industrial activated carbon for the removal of chromium and lead ions from aqueous solution by the adsorption process within 30 to 150 minutes contact time. The activated samples were prepared using zinc chloride and tetraoxophophate(VI) acid. The results obtained showed that the activated carbon of Balanitesaegyptiaca seeds studied had relatively high adsorption capacities for these heavy metal ions compared with industrial Activated Carbon. The percentage removal of Cr (VI) and lead (II) ions by the three activated carbon samples were 64%, 70% and 71%; 60%, 66% and 60% respectively. Adsorption equilibrium was established in 90 minutes for the heavy metal ions. The equilibrium data fitted the pseudo second order out of the pseudo first, pseudo second, Elovich ,Natarajan and Khalaf models tested. The investigation also showed that the adsorbents can effectively remove metal ions from similar wastewater and aqueous media.

Keywords: activated carbon, pseudo second order, chromium, lead, Elovich model

Procedia PDF Downloads 314
505 Simulation of Kinetic Friction in L-Bending of Sheet Metals

Authors: Maziar Ramezani, Thomas Neitzert, Timotius Pasang

Abstract:

This paper aims at experimental and numerical investigation of springback behavior of sheet metals during L-bending process with emphasis on Stribeck-type friction modeling. The coefficient of friction in Stribeck curve depends on sliding velocity and contact pressure. The springback behavior of mild steel and aluminum alloy 6022-T4 sheets was studied experimentally and using numerical simulations with ABAQUS software with two types of friction model: Coulomb friction and Stribeck friction. The influence of forming speed on springback behavior was studied experimentally and numerically. The results showed that Stribeck-type friction model has better results in predicting springback in sheet metal forming. The FE prediction error for mild steel and 6022-T4 AA is 23.8%, 25.5% respectively, using Coulomb friction model and 11%, 13% respectively, using Stribeck friction model. These results show that Stribeck model is suitable for simulation of sheet metal forming especially at higher forming speed.

Keywords: friction, L-bending, springback, Stribeck curves

Procedia PDF Downloads 479
504 Recovery of Helicobacter Pylori from Stagnant and Moving Water Biofilms

Authors: Maryam Zafar, Sajida Rasheed, Imran Hashmi

Abstract:

Water as an environmental reservoir is reported to act as a habitat and transmission route to microaerophilic bacteria such as Heliobacter pylori. It has been studied that in biofilms are the predominant dwellings for the bacteria to grow in water and protective reservoir for numerous pathogens by protecting them against harsh conditions, such as shear stress, low carbon concentration and less than optimal temperature. In this study, influence of these and many other parameters was studied on H. pylori in stagnant and moving water biofilms both in surface and underground aquatic reservoirs. H. pylori were recovered from pipe of different materials such as Polyvinyl Chloride, Polypropylene and Galvanized iron pipe cross sections from an urban water distribution network. Biofilm swabbed from inner cross section was examined by molecular biology methods coupled with gene sequencing and H. pylori 16S rRNA peptide nucleic acid probe showing positive results for H. pylori presence. Studies showed that pipe material affect growth of biofilm which in turn provide additional survival mechanism for pathogens like H. pylori causing public health concerns.

Keywords: biofilm, gene sequencing, heliobacter pylori, pipe materials

Procedia PDF Downloads 349
503 Effect of Linear Thermal Gradient on Steady-State Creep Behavior of Isotropic Rotating Disc

Authors: Minto Rattan, Tania Bose, Neeraj Chamoli

Abstract:

The present paper investigates the effect of linear thermal gradient on the steady-state creep behavior of rotating isotropic disc using threshold stress based Sherby’s creep law. The composite discs made of aluminum matrix reinforced with silicon carbide particulate has been taken for analysis. The stress and strain rate distributions have been calculated for discs rotating at linear thermal gradation using von Mises’ yield criterion. The material parameters have been estimated by regression fit of the available experimental data. The results are displayed and compared graphically in designer friendly format for the above said temperature profile with the disc operating under uniform temperature profile. It is observed that radial and tangential stresses show minor variation and the strain rates vary significantly in the presence of thermal gradation as compared to disc having uniform temperature.

Keywords: creep, isotropic, steady-state, thermal gradient

Procedia PDF Downloads 263
502 Corrosion and Microstructural Properties of Vanadium-Microalloyed High-Manganese Steels

Authors: Temitope Olumide Olugbade

Abstract:

Low resistance and delayed fracture to corrosion, especially in harsh environmental conditions, often limit the wide application of high-manganese (high-Mn) steels. To address this issue, the present work investigates the influence of microalloying on the corrosion properties of high-Mn steels. Microalloyed and base high-Mn steels were synthesized through an arc melting process under an argon atmosphere. To generate different microstructures, the temperature and duration were varied via thermal homogenization treatments. The electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques were used to determine the corrosion properties in 0.6 M NaCl aqueous solution at room temperature. The relationship between the microstructures and corrosion properties was investigated via Scanning Kelvin Probe Microscopy (SKPFM), energy dispersive X-ray spectroscopy (EDX), and Scanning electron microscopy (SEM) techniques. The local corrosion properties were investigated via in situ atomic force spectroscopy (AFM), considering the homogenization treatments. The results indicate that microalloying is a successful technique for enhancing the corrosion behavior of high-Mn steels. Compared to other alloying elements, Vanadium has shown improvement in corrosion properties for both general and local corrosion in chloride environments.

Keywords: corrosion, high-manganese steel, homogenization, microalloying, vanadium

Procedia PDF Downloads 80
501 Modeling Solute Transport through Porous Media with Scale Dependent Dispersion

Authors: Teodrose Atnafu Abegaze, P. K. Sharma

Abstract:

In this study, an attempt has been made to study the behavior of breakthrough curves in both layered and mixed heterogeneous soil by conducting experiments in long soil columns. Sodium chloride has been used as a conservative tracer in the experiment. Advective dispersive transport equations, including equilibrium sorption and first-order degradation coefficients, are used for solute transport through mobile-immobile porous media. In order to do the governing equation for solute transport, there are explicit and implicit schemes for our condition; we use an implicit scheme to numerically model the solute concentration. Results of experimental breakthrough curves indicate that the behavior of observed breakthrough curves is approximately similar in both cases of layered and mixed soil, while earlier arrival of solute concentration is obtained in the case of mixed soil. It means that the types of heterogeneity of the soil media affect the behavior of solute concentration. Finally, it is also shown that the asymptotic dispersion model simulates the experimental data better than the constant and linear distance-dependent dispersion models.

Keywords: numerical method, distance dependant dispersion, reactive transport, experiment

Procedia PDF Downloads 57
500 Effects of Combined Lewis Acid and Ultrasonic Pretreatment on the Physicochemical Properties of Heat-Treated Moso Bamboo

Authors: Tianfang Zhang, Luxi He, Zhengbin He, Songlin Yi

Abstract:

Moso bamboo is a common non-wood forest resource in Asia that is widely used in construction, furniture, and other fields. Influenced by the heterogeneous structure and various hygroscopic groups of bamboo, the deformation occurs as moisture absorption and desorption when the environment temperature and humidity conditions change. Thermal modification is a well-established commercial technology for improving the dimensional stability of bamboo. However, the higher energy consumption and carbon emissions limit its further development. Previous studies have indicated that inorganic salt-assisted thermal modification could lead to significant reductions in moisture absorption and energy consumption. Represented by metal chlorides, it could show Lewis acid properties when dissolved in water, generating metal ion ligand complexes. In addition, ultrasonic treatment, as an efficient and environmentally friendly physical treatment method, improved the accessibility of pretreatment chemical impregnation agents and intensified mass and heat transfer during reactions. To save energy and reduce deformation, this study elucidates the influence of zinc chloride-ultrasonic treatment on the physicochemical properties of heat-treated bamboo, and the details of the bamboo deformation mechanism with Lewis acid are explained. Three sets of parameters (inorganic salt concentration, ultrasonic frequency and heat treatment temperature) were designed, and an optimized process was proposed to clarify this scientific question, that is: 5% (w/w) zinc chloride solution, 40 kHz ultrasonic waves and heat treatment at 160 °C. The samples were characterized by different means to analyze changes in their macroscopic features, pore structure, chemical structure and chemical composition. The results suggested that the maximum weight loss rate was reduced by at least 19.75%. The maximum thermal degradation peak of hemicellulose was significantly shifted forward. The hygroscopicity was reduced by 10.15%, the relative crystallinity was increased by 4.4%, the surface contact angle was increased by 25.2%, and the color change was increased by 23.60 in the optimal condition. From the electron microscope observation, the treated surface became rougher, and cracks appeared in some weaker areas, accelerating starch loss and removing granular attachments around the pits. By ion diffusion, zinc ions diffused into hemicellulose and a partial amorphous region of cellulose. Parts of the cell wall structure were subjected to swelling and degradation, leading to the broken state of parenchyma cells. From the Raman spectrum, compared to conventional thermal modifications, hemicellulose thermal degradation and lignin migration is promoted by Lewis acid under dilute acid-thermal condition. As shown in this work, the combined Lewis acid and ultrasonic pretreatment as an environmentally friendly, safe, and efficient physic-chemical combined pretreatment method improved the dimensional stability of Moso bamboo and lowered the thermal degradation conditions. This method has great potential for development in the field of bamboo heat treatment, and it might provide some guidance for making dark bamboo flooring.

Keywords: Moso bamboo, Lewis acid, ultrasound, heat treatment

Procedia PDF Downloads 67
499 Orthophthalic Polyester Composite Reinforced with Sodium Alginate-Treated Anahaw (Saribus rotundifolius) Fibers

Authors: Terence Tumolva, Johannes Kristoff Vito, Joanna Crystelle Ragasa, Renz Marion Dela Cruz

Abstract:

Natural fiber reinforced polymer (NFRP) composites have been the focus of various research projects due to their advantages over synthetic fiber-reinforced composites. For this study, ana haw is used as the fiber source due to its abundance throughout the Philippines. A problem addressed in this study is the need for an environment-friendly method of fiber treatment. The use of sodium alginate to treat fibers was thus investigated. The fibers were immersed in a sodium alginate solution and then in a calcium chloride solution afterwards. The treated fibers were used to reinforce orthophthalic unsaturated polyester (ortho-UP) resin. The mechanical properties were tested using a universal testing machine (UTM), and the fracture surfaces were characterized using scanning electron microscope (SEM). Results showed that the sodium alginate treatment had increased the tensile and flexural strength of the composite. The increase in fiber load had also been found to increase the stiffness of the composite. However, sodium alginate treatment did not provide any significant improvement in the wet mechanical properties of the NFRP. The composite is comparable to some commercially available polymeric materials.

Keywords: NFRP, composite, alginate, anahaw, polymer

Procedia PDF Downloads 329
498 Fundamental Research Dissension between Hot and Cold Chamber High Pressure Die Casting

Authors: Sahil Kumar, Surinder Pal, Rahul Kapoor

Abstract:

This paper is focused on to define the basic difference between hot and cold chamber high pressure die casting process which is not fully defined in a research before paper which we have studied. The pressure die casting is basically defined into two types (1) Hot chamber Die Casting (2) Cold chamber Die Casting. Cold chamber die casting is used for casting alloys that require high pressure and have a high melting temperature, such as brass, aluminum, magnesium, copper based alloys and other high melting point nonferrous alloys. Hot chamber die casting is suitable for casting zinc, tin, lead, and low melting point alloys. In hot chamber die casting machine, the molten metal is an integral pan of the machine. It mainly consists of hot chamber and gooseneck type metal container made of cast iron. This machine is mainly used for low melting alloys and alloys of metals like zinc, lead etc. Metals and alloys having a high melting point and those which are having an affinity for iron cannot be cast by this machine, which could otherwise attack the shot sleeve and damage the machine.

Keywords: hot chamber die casting, cold chamber die casting, metals and alloys, casting technology

Procedia PDF Downloads 608
497 Efficiency Enhancement of Photovoltaic Panels Using an Optimised Air Cooled Heat Sink

Authors: Wisam K. Hussam, Ali Alfeeli, Gergory J. Sheard

Abstract:

Solar panels that use photovoltaic (PV) cells are popular for converting solar radiation into electricity. One of the major problems impacting the performance of PV panels is the overheating caused by excessive solar radiation and high ambient temperatures, which degrades the efficiency of the PV panels remarkably. To overcome this issue, an aluminum heat sink was used to dissipate unwanted heat from PV cells. The dimensions of the heat sink were determined considering the optimal fin spacing that fulfils hot climatic conditions. In this study, the effects of cooling on the efficiency and power output of a PV panel were studied experimentally. Two PV modules were used: one without and one with a heat sink. The experiments ran for 11 hours from 6:00 a.m. to 5:30 p.m. where temperature readings in the rear and front of both PV modules were recorded at an interval of 15 minutes using sensors and an Arduino microprocessor. Results are recorded for both panels simultaneously for analysis, temperate comparison, and for power and efficiency calculations. A maximum increase in the solar to electrical conversion efficiency of 35% and almost 55% in the power output were achieved with the use of a heat sink, while temperatures at the front and back of the panel were reduced by 9% and 11%, respectively.

Keywords: photovoltaic cell, natural convection, heat sink, efficiency

Procedia PDF Downloads 143
496 Evaluation of Water Quality on the Strength of Simple Concrete: Case Study of Wells in Jipijapa, Manabí, Ecuador

Authors: Julio Cesar Pino Tarragó, Dunia Lisbet Domínguez Gálvez, Luis Alfonso Moreno Ponce, Jhony Julio Regalado Jalca

Abstract:

This study investigates the influence of three types of water on the compressive strength of plain concrete, focusing on water from three wells in Jipijapa, Manabí, Ecuador: Joa water, highly sulfur-containing; Chade 1 water, with low sulfur content; and Chade 2 water, very brackish. Compression tests were performed at 7, 14 and 28 days to evaluate how these types of water affect the structural strength of the concrete. The results show that brackish and sulfur water have a significant negative impact on concrete strength, while Chade 1 and Chade 2 water, while initially improving strength, exhibit inconsistencies in their long-term effectiveness. These findings are in contrast to previous studies that indicate the potential corrosion and degradation of concrete when using water with high sulfate and chloride concentrations. In a region like Jipijapa, where drinking water scarcity is a constant concern, these findings are key to optimize construction practices and explore sustainable alternatives for the use of non-potable water, thus contributing to the preservation of limited water resources.

Keywords: compressive strength, plain concrete, sulfur water, brackish water, water quality

Procedia PDF Downloads 5
495 Regenerated Cotton/Feather Keratin Composite Materials Prepared Using Ionic Liquids

Authors: Rasike De Silva, Xungai Wang, Nolene Byrne

Abstract:

We report on the blending of cotton and duck feather towards developing a new textile fibre. The cotton and duck feather were blended together by dissolving both components in an ionic liquid. Ionic liquids are designer solvents consisting entirely of ions with a melting point below 100˚C. Ionic liquids can be designed to have numerous and varied properties which include the ability to dissolve bio polymers. The dissolution of bio polymers such as cotton or wool generally requires very harsh acid or alkaline conditions and high temperatures. The ionic liquids which can dissolve bio polymers can be considered environmentally benign since they have negligible vapor pressure and can be recycled and reused. We have selected the cellulose dissolving and recyclable ionic liquid 1-allyl-3-methylimidazolium chloride (AMIMCl) as the dissolving and blending solvent for the cotton and duck feather materials. We have casted films and wet spun fibres at varying cotton and duck feather compositions and characterized the material properties of these. We find that the addition of duck feather enhances the elasticity of regenerated cotton. The strain% at breakage of the regenerated film was increased from 4.2% to 11.63% with a 10% duck feather loading, while the corresponding stress at breakage reduced from 54.89 MPa to 47.16 MPa.

Keywords: textile materials, bio polymers, ionic liquids, duck feather

Procedia PDF Downloads 469
494 Analysis of the Suspension Rocker of Formula SAE Prototype by Finite Element Method

Authors: Jessyca A. Bessa, Darlan A. Barroso, Jonas P. Reges, Auzuir R. Alexandria

Abstract:

This work aims to study the rocker. This is a device of the suspension of Formula SAE vehicle that receives efforts from the motion scrolling of the vehicle and transmits them to the chassis frame minimized by a momentum ratio and smoothed by the set spring - damper. A review of parameters used in vehicle dynamics and a geometric analysis of the forces and stresses caused by such was carried out. The main function of the rocker is to reduce the force transmitted to the frame due to movement of rolling and subsequent application of the suspension. This functions is taken as satisfactory, since the force applied to the wheel and which would be transmitted to the chassis is reduced from 3833.9N to 3496.48N. From these values can be further more detailed simulations using the finite element method aimed at mass reduction or even rocker manufacturing feasibility aluminum. Then, the analysis by the finite element method was applied. This analysis uses the theory of discretization of systems and examines the strength of the component based on the distortion energy, determining the maximum straining experienced by the component and the region of higher demand.

Keywords: rocker, suspension, the finite element method, mechatronics engineering

Procedia PDF Downloads 533
493 Separating Permanent and Induced Magnetic Signature: A Simple Approach

Authors: O. J. G. Somsen, G. P. M. Wagemakers

Abstract:

Magnetic signature detection provides sensitive detection of metal objects, especially in the natural environment. Our group is developing a tabletop setup for magnetic signatures of various small and model objects. A particular issue is the separation of permanent and induced magnetization. While the latter depends only on the composition and shape of the object, the former also depends on the magnetization history. With common deperming techniques, a significant permanent signature may still remain, which confuses measurements of the induced component. We investigate a basic technique of separating the two. Measurements were done by moving the object along an aluminum rail while the three field components are recorded by a detector attached near the center. This is done first with the rail parallel to the Earth magnetic field and then with anti-parallel orientation. The reversal changes the sign of the induced- but not the permanent magnetization so that the two can be separated. Our preliminary results on a small iron block show excellent reproducibility. A considerable permanent magnetization was indeed present, resulting in a complex asymmetric signature. After separation, a much more symmetric induced signature was obtained that can be studied in detail and compared with theoretical calculations.

Keywords: magnetic signature, data analysis, magnetization, deperming techniques

Procedia PDF Downloads 445
492 Piezoelectric Actuator for Controlling Robotics Organs

Authors: Lemoussi Somia, Ouali Mohammed, Zemirline Adel

Abstract:

In precision engineering, including precision positioning, micro-manipulation, robotic systems... a majority of these applications actuated by piezo stack used the compliant amplifier mechanism to amplifying motion and guiding it as needed utilize the flexibility of their components, in this paper, we present a novel approach introducing a symmetric structure comprising three stages, featuring rectangular flexure hinges with a compact size of 77mm×42mm×10mm. This design provides the capability for rotation, translation or a combination of both movements in both directions. The system allows for a displacement of 2107.5 μm when the input displacement of PZT is 50 μm while considering the material constraints of the aluminum alloy (7075 T6) which has a maximum admissible stress of 500 MPa However, our proposed design imposes additional constraints to ensure the stress remains below 361 MPa for optimal performance. These findings were obtained through finite element simulations conducted using ANSYS Workbench. Furthermore, our module facilitates precise control of various components within robotic systems, allowing for adjustable speeds based on specific requirements or desired outcomes.

Keywords: robotic, piezoelectric, compliant mechanism, flexure hinge

Procedia PDF Downloads 71
491 Design and Construction of an Impulse Current Generator for Lightning Strike Experiments

Authors: Kamran Yousefpour, Mojtaba Rostaghi-Chalaki, Jason Warden, Chanyeop Park

Abstract:

There has been a rising trend in using impulse current generators to investigate the lightning strike protection of materials including aluminum and composites in structures such as wind turbine blade and aircraft body. The focus of this research is to present a new impulse current generator built in the High Voltage Lab at Mississippi State University. The generator is capable of producing component A and D of the natural lightning discharges in accordance with the Society of Automotive Engineers (SAE) standard, which is widely used in the aerospace industry. The generator can supply lightning impulse energy up to 400 kJ with the capability of producing impulse currents with magnitudes greater than 200 kA. The electrical circuit and physical components of an improved impulse current generator are described and several lightning strike waveforms with different amplitudes is presented for comparing with the standard waveform. The results of this study contribute to the fundamental understanding the functionality of the impulse current generators and present a new impulse current generator developed at the High Voltage Lab of Mississippi State University.

Keywords: impulse current generator, lightning, society of automotive engineers, capacitor

Procedia PDF Downloads 158
490 Green Delivery Systems for Fruit Polyphenols

Authors: Boris M. Popović, Tatjana Jurić, Bojana Blagojević, Denis Uka, Ružica Ždero Pavlović

Abstract:

Green solvents are environmentally friendly and greatly improve the sustainability of chemical processes. There is a growing interest in the green extraction of polyphenols from fruits. In this study, we consider three Natural Deep Eutectic Solvents (NADES) systems based on choline chloride as a hydrogen bond acceptor and malic acid, urea, and fructose as hydrogen bond donors. NADES systems were prepared by heating and stirring, ultrasound, and microwave (MW) methods. Sour cherry pomace was used as a natural source of polyphenols. Polyphenol extraction from cherry pomace was performed by ultrasound-assisted extraction and microwave-assisted extraction and compared with conventional heat and stirring method extraction. It was found that MW-assisted preparation of NADES was the fastest, requiring less than 30 s. Also, MW extraction of polyphenols was the most rapid, with less than 5 min necessary for the extract preparation. All three NADES systems were highly efficient for anthocyanin extraction, but the most efficient was the system with malic acid as a hydrogen bond donor (yield of anthocyanin content was enhanced by 62.33% after MW extraction with NADES compared with the conventional solvent).

Keywords: anthocyanins, green extraction, NADES, polyphenols

Procedia PDF Downloads 86
489 Construction of Large Scale UAVs Using Homebuilt Composite Techniques

Authors: Brian J. Kozak, Joshua D. Shipman, Peng Hao Wang, Blake Shipp

Abstract:

The unmanned aerial system (UAS) industry is growing at a rapid pace. This growth has increased the demand for low cost, custom made and high strength unmanned aerial vehicles (UAV). The area of most growth is in the area of 25 kg to 200 kg vehicles. Vehicles this size are beyond the size and scope of simple wood and fabric designs commonly found in hobbyist aircraft. These high end vehicles require stronger materials to complete their mission. Traditional aircraft construction materials such as aluminum are difficult to use without machining or advanced computer controlled tooling. However, by using general aviation composite aircraft homebuilding techniques and materials, a large scale UAV can be constructed cheaply and easily. Furthermore, these techniques could be used to easily manufacture cost made composite shapes and airfoils that would be cost prohibitive when using metals. These homebuilt aircraft techniques are being demonstrated by the researchers in the construction of a 75 kg aircraft.

Keywords: composite aircraft, homebuilding, unmanned aerial system industry, UAS, unmanned aerial vehicles, UAV

Procedia PDF Downloads 128