Search results for: CBCT images
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2404

Search results for: CBCT images

1684 Revealing Single Crystal Quality by Insight Diffraction Imaging Technique

Authors: Thu Nhi Tran Caliste

Abstract:

X-ray Bragg diffraction imaging (“topography”)entered into practical use when Lang designed an “easy” technical setup to characterise the defects / distortions in the high perfection crystals produced for the microelectronics industry. The use of this technique extended to all kind of high quality crystals, and deposited layers, and a series of publications explained, starting from the dynamical theory of diffraction, the contrast of the images of the defects. A quantitative version of “monochromatic topography” known as“Rocking Curve Imaging” (RCI) was implemented, by using synchrotron light and taking advantage of the dramatic improvement of the 2D-detectors and computerised image processing. The rough data is constituted by a number (~300) of images recorded along the diffraction (“rocking”) curve. If the quality of the crystal is such that a one-to-onerelation between a pixel of the detector and a voxel within the crystal can be established (this approximation is very well fulfilled if the local mosaic spread of the voxel is < 1 mradian), a software we developped provides, from the each rocking curve recorded on each of the pixels of the detector, not only the “voxel” integrated intensity (the only data provided by the previous techniques) but also its “mosaic spread” (FWHM) and peak position. We will show, based on many examples, that this new data, never recorded before, open the field to a highly enhanced characterization of the crystal and deposited layers. These examples include the characterization of dislocations and twins occurring during silicon growth, various growth features in Al203, GaNand CdTe (where the diffraction displays the Borrmannanomalous absorption, which leads to a new type of images), and the characterisation of the defects within deposited layers, or their effect on the substrate. We could also observe (due to the very high sensitivity of the setup installed on BM05, which allows revealing these faint effects) that, when dealing with very perfect crystals, the Kato’s interference fringes predicted by dynamical theory are also associated with very small modifications of the local FWHM and peak position (of the order of the µradian). This rather unexpected (at least for us) result appears to be in keeping with preliminary dynamical theory calculations.

Keywords: rocking curve imaging, X-ray diffraction, defect, distortion

Procedia PDF Downloads 131
1683 Presence and Absence: The Use of Photographs in Paris, Texas

Authors: Yi-Ting Wang, Wen-Shu Lai

Abstract:

The subject of this paper is the photography in the 1983 film Paris, Texas, directed by Wim Wenders. Wenders is well known as a film director as well as a photographer. We have found that photography is shown as a photographic element in many of his films. Some of these photographs serve as details within the films, while others play important roles that are relevant to the story. This paper aims to consider photographs in film as a specific type of text, which is the output of both still photography and the film itself. In the film Paris, Texas, three sets of important photographs appear whose symbolic meanings are as dialectical as their text types. The relationship between the existence of these photos and the storyline is both dependent and isolated. The film’s images fly by and progress into other images, while the photos in the film serve a unique narrative function by stopping the continuously flowing images thus provide the viewer a space for imagination and contemplation. They are more than just artistic forms; they also contained multiple meanings. The photographs in Paris, Texas play the role of both presence and absence according to their shifting meanings. There are references to their presence: photographs exist between film time and narrative time, so in terms of the interaction between the characters in the film, photographs are a common symbol of the beginning and end of the characters’ journeys. In terms of the audience, the film’s photographs are a link in the viewing frame structure, through which the creative motivation of the film director can be explored. Photographs also point to the absence of certain objects: the scenes in the photos represent an imaginary map of emotion. The town of Paris, Texas is therefore isolated from the physical presence of the photograph, and is far more abstract than the reality in the film. This paper embraces the ambiguous nature of photography and demonstrates its presence and absence in film with regard to the meaning of text. However, it is worth reflecting that the temporary nature of the interpretation of the film’s photographs is far greater than any other type of photographic text: the characteristics of the text cause the interpretation results to change along with the variations in the interpretation process, which makes their meaning a dynamic process. The photographs’ presence or absence in the context of Paris, Texas also demonstrates the presence and absence of the creator, time, the truth, and the imagination. The film becomes more complete as a result of the revelation of the photographs, while the intertextual connection between these two forms simultaneously provides multiple possibilities for the interpretation of the photographs in the film.

Keywords: film, Paris, Texas, photography, Wim Wenders

Procedia PDF Downloads 318
1682 Embedded Visual Perception for Autonomous Agricultural Machines Using Lightweight Convolutional Neural Networks

Authors: René A. Sørensen, Søren Skovsen, Peter Christiansen, Henrik Karstoft

Abstract:

Autonomous agricultural machines act in stochastic surroundings and therefore, must be able to perceive the surroundings in real time. This perception can be achieved using image sensors combined with advanced machine learning, in particular Deep Learning. Deep convolutional neural networks excel in labeling and perceiving color images and since the cost of high-quality RGB-cameras is low, the hardware cost of good perception depends heavily on memory and computation power. This paper investigates the possibility of designing lightweight convolutional neural networks for semantic segmentation (pixel wise classification) with reduced hardware requirements, to allow for embedded usage in autonomous agricultural machines. Using compression techniques, a lightweight convolutional neural network is designed to perform real-time semantic segmentation on an embedded platform. The network is trained on two large datasets, ImageNet and Pascal Context, to recognize up to 400 individual classes. The 400 classes are remapped into agricultural superclasses (e.g. human, animal, sky, road, field, shelterbelt and obstacle) and the ability to provide accurate real-time perception of agricultural surroundings is studied. The network is applied to the case of autonomous grass mowing using the NVIDIA Tegra X1 embedded platform. Feeding case-specific images to the network results in a fully segmented map of the superclasses in the image. As the network is still being designed and optimized, only a qualitative analysis of the method is complete at the abstract submission deadline. Proceeding this deadline, the finalized design is quantitatively evaluated on 20 annotated grass mowing images. Lightweight convolutional neural networks for semantic segmentation can be implemented on an embedded platform and show competitive performance with regards to accuracy and speed. It is feasible to provide cost-efficient perceptive capabilities related to semantic segmentation for autonomous agricultural machines.

Keywords: autonomous agricultural machines, deep learning, safety, visual perception

Procedia PDF Downloads 395
1681 Artificial Intelligence-Based Chest X-Ray Test of COVID-19 Patients

Authors: Dhurgham Al-Karawi, Nisreen Polus, Shakir Al-Zaidi, Sabah Jassim

Abstract:

The management of COVID-19 patients based on chest imaging is emerging as an essential tool for evaluating the spread of the pandemic which has gripped the global community. It has already been used to monitor the situation of COVID-19 patients who have issues in respiratory status. There has been increase to use chest imaging for medical triage of patients who are showing moderate-severe clinical COVID-19 features, this is due to the fast dispersal of the pandemic to all continents and communities. This article demonstrates the development of machine learning techniques for the test of COVID-19 patients using Chest X-Ray (CXR) images in nearly real-time, to distinguish the COVID-19 infection with a significantly high level of accuracy. The testing performance has covered a combination of different datasets of CXR images of positive COVID-19 patients, patients with viral and bacterial infections, also, people with a clear chest. The proposed AI scheme successfully distinguishes CXR scans of COVID-19 infected patients from CXR scans of viral and bacterial based pneumonia as well as normal cases with an average accuracy of 94.43%, sensitivity 95%, and specificity 93.86%. Predicted decisions would be supported by visual evidence to help clinicians speed up the initial assessment process of new suspected cases, especially in a resource-constrained environment.

Keywords: COVID-19, chest x-ray scan, artificial intelligence, texture analysis, local binary pattern transform, Gabor filter

Procedia PDF Downloads 145
1680 Landsat 8-TIRS NEΔT at Kīlauea Volcano and the Active East Rift Zone, Hawaii

Authors: Flora Paganelli

Abstract:

The radiometric performance of remotely sensed images is important for volcanic monitoring. The Thermal Infrared Sensor (TIRS) on-board Landsat 8 was designed with specific requirements in regard to the noise-equivalent change in temperature (NEΔT) at ≤ 0.4 K at 300 K for the two thermal infrared bands B10 and B11. This study investigated the on-orbit NEΔT of the TIRS two bands from a scene-based method using clear-sky images over the volcanic activity of Kīlauea Volcano and the active East Rift Zone (Hawaii), in order to optimize the use of TIRS data. Results showed that the NEΔTs of the two bands exceeded the design specification by an order of magnitude at 300 K. Both separate bands and split window algorithm were examined to estimate the effect of NEΔT on the land surface temperature (LST) retrieval, and NEΔT contribution to the final LST error. These results were also useful in the current efforts to assess the requirements for volcanology research campaign using the Hyperspectral Infrared Imager (HyspIRI) whose airborne prototype MODIS/ASTER instruments is plan to be flown by NASA as a single campaign to the Hawaiian Islands in support of volcanology and coastal area monitoring in 2016.

Keywords: landsat 8, radiometric performance, thermal infrared sensor (TIRS), volcanology

Procedia PDF Downloads 241
1679 Digital Art Fabric Prints: Procedure, Process and Progress

Authors: Tripti Singh

Abstract:

Digital tools are merging boundaries of different mediums as endeavoured artists exploring new areas. Digital fabric printing has motivated artists to create prints by combining images acquired by photograph, scanned images, computer graphics and microscopic imaginary etc to name few, with traditional media such as hand drawing, weaving, hand printed patterns, printing making techniques and so on. It opened whole new world of possibilities for artists to search, research and combine old and contemporary mediums for their unique art prints. As artistic medium digital art fabrics have aesthetic values which have impact and influence on not only on a personality but also interiors of a living or work space. In this way it can be worn, as fashion statement and also an interior decoration. Digital art fabric prints gives opportunity to print almost everything on any fabric with long lasting prints quality. Single edition and limited editions are possible for maintaining scarcity and uniqueness of an art form. These fabric prints fulfill today’s need, as they are eco-friendly in nature and they produce less wastage compared to traditional fabric printing techniques. These prints can be used to make unique and customized curtains, quilts, clothes, bags, furniture, dolls, pillows, framed artwork, costumes, banners and much, much more. This paper will explore the procedure, process, and progress techniques of digital art fabric printing in depth with suitable pictorial examples.

Keywords: digital art, fabric prints, digital fabric prints, new media

Procedia PDF Downloads 515
1678 Non-Targeted Adversarial Object Detection Attack: Fast Gradient Sign Method

Authors: Bandar Alahmadi, Manohar Mareboyana, Lethia Jackson

Abstract:

Today, there are many applications that are using computer vision models, such as face recognition, image classification, and object detection. The accuracy of these models is very important for the performance of these applications. One challenge that facing the computer vision models is the adversarial examples attack. In computer vision, the adversarial example is an image that is intentionally designed to cause the machine learning model to misclassify it. One of very well-known method that is used to attack the Convolution Neural Network (CNN) is Fast Gradient Sign Method (FGSM). The goal of this method is to find the perturbation that can fool the CNN using the gradient of the cost function of CNN. In this paper, we introduce a novel model that can attack Regional-Convolution Neural Network (R-CNN) that use FGSM. We first extract the regions that are detected by R-CNN, and then we resize these regions into the size of regular images. Then, we find the best perturbation of the regions that can fool CNN using FGSM. Next, we add the resulted perturbation to the attacked region to get a new region image that looks similar to the original image to human eyes. Finally, we placed the regions back to the original image and test the R-CNN with the attacked images. Our model could drop the accuracy of the R-CNN when we tested with Pascal VOC 2012 dataset.

Keywords: adversarial examples, attack, computer vision, image processing

Procedia PDF Downloads 193
1677 Difference Between Planning Target Volume (PTV) Based Slow-Ct and Internal Target Volume (ITV) Based 4DCT Imaging Techniques in Stereotactic Body Radiotherapy for Lung Cancer: A Comparative Study

Authors: Madhumita Sahu, S. S. Tiwary

Abstract:

The Radiotherapy of Carcinoma Lung has always been difficult and a matter of great concern. The significant movement due to fractional motion caused due to non-rhythmic respiratory motion poses a great challenge for the treatment of Lung cancer using Ionizing Radiation. The present study compares the accuracy in the measurement of Target Volume using Slow-CT and 4DCT Imaging in SBRT for Lung Tumor. The experimental samples were extracted from patients with Lung Cancer who underwent SBRT. Slow-CT and 4DCT images were acquired under free breathing for each patient. PTV were delineated on Slow CT images. Similarly, ITV was also delineated on each of the 4DCT volumes. Volumetric and Statistical analysis were performed for each patient by measuring corresponding PTV and ITV volumes. The study showed (1) The Maximum Deviation observed between Slow-CT-based PTV and 4DCT imaging-based ITV is 248.58 cc. (2) The Minimum Deviation observed between Slow-CT-based PTV and 4DCT imaging-based ITV is 5.22 cc. (3) The Mean Deviation observed between Slow-CT-based PTV and 4DCT imaging-based ITV is 63.21 cc. The present study concludes that irradiated volume ITV with 4DCT is less as compared to the PTV with Slow-CT. A better and more precise treatment could be given more accurately with 4DCT Imaging by sparing 63.21 CC of mean body volume.

Keywords: CT imaging, 4DCT imaging, lung cancer, statistical analysis

Procedia PDF Downloads 24
1676 Study of Natural Patterns on Digital Image Correlation Using Simulation Method

Authors: Gang Li, Ghulam Mubashar Hassan, Arcady Dyskin, Cara MacNish

Abstract:

Digital image correlation (DIC) is a contactless full-field displacement and strain reconstruction technique commonly used in the field of experimental mechanics. Comparing with physical measuring devices, such as strain gauges, which only provide very restricted coverage and are expensive to deploy widely, the DIC technique provides the result with full-field coverage and relative high accuracy using an inexpensive and simple experimental setup. It is very important to study the natural patterns effect on the DIC technique because the preparation of the artificial patterns is time consuming and hectic process. The objective of this research is to study the effect of using images having natural pattern on the performance of DIC. A systematical simulation method is used to build simulated deformed images used in DIC. A parameter (subset size) used in DIC can have an effect on the processing and accuracy of DIC and even cause DIC to failure. Regarding to the picture parameters (correlation coefficient), the higher similarity of two subset can lead the DIC process to fail and make the result more inaccurate. The pictures with good and bad quality for DIC methods have been presented and more importantly, it is a systematic way to evaluate the quality of the picture with natural patterns before they install the measurement devices.

Keywords: Digital Image Correlation (DIC), deformation simulation, natural pattern, subset size

Procedia PDF Downloads 419
1675 Urban Landscape Composition and Configuration Dynamics and Expansion of Hawassa City Analysis, Ethiopia Using Satellite Images and Spatial Metrics Approach

Authors: Berhanu Keno Terfa

Abstract:

To understand the consequences of urbanization, accurate, and long-term representation of urban dynamics is essential. Remote sensing data from various multi-temporal satellite images viz., TM (1987), TM (1995), ETM+ (2005) and OLI (2017) were used. An integrated method, landscape metrics, built-up density, and urban growth type analysis were employed to analyze the pattern, process, and overall growth status in the city. The result showed that the built-up area had increased by 541.3% between 1987 and 2017, at an average annual increment of 8.9%. The area of urban expansion in a city has tripled during the 2005-2017 period as compared to 187- 1995. The major growth took place in the east and southeast directions during 1987–1995 period, whereas predominant built-up development was observed in south and southeast direction during 1995–2017 period. The analysis using landscape metrics and urban typologies showed that Hawassa experienced a fragmented and irregular spatiotemporal urban growth patterns, mostly by extension, suggesting a strong tendency towards sprawl in the past three decades.

Keywords: Hawassa, spatial patterns, remote sensing, multi-temporal, urban sprawl

Procedia PDF Downloads 148
1674 Image Multi-Feature Analysis by Principal Component Analysis for Visual Surface Roughness Measurement

Authors: Wei Zhang, Yan He, Yan Wang, Yufeng Li, Chuanpeng Hao

Abstract:

Surface roughness is an important index for evaluating surface quality, needs to be accurately measured to ensure the performance of the workpiece. The roughness measurement based on machine vision involves various image features, some of which are redundant. These redundant features affect the accuracy and speed of the visual approach. Previous research used correlation analysis methods to select the appropriate features. However, this feature analysis is independent and cannot fully utilize the information of data. Besides, blindly reducing features lose a lot of useful information, resulting in unreliable results. Therefore, the focus of this paper is on providing a redundant feature removal approach for visual roughness measurement. In this paper, the statistical methods and gray-level co-occurrence matrix(GLCM) are employed to extract the texture features of machined images effectively. Then, the principal component analysis(PCA) is used to fuse all extracted features into a new one, which reduces the feature dimension and maintains the integrity of the original information. Finally, the relationship between new features and roughness is established by the support vector machine(SVM). The experimental results show that the approach can effectively solve multi-feature information redundancy of machined surface images and provides a new idea for the visual evaluation of surface roughness.

Keywords: feature analysis, machine vision, PCA, surface roughness, SVM

Procedia PDF Downloads 212
1673 Density Measurement of Underexpanded Jet Using Stripe Patterned Background Oriented Schlieren Method

Authors: Shinsuke Udagawa, Masato Yamagishi, Masanori Ota

Abstract:

The Schlieren method, which has been conventionally used to visualize high-speed flows, has disadvantages such as the complexity of the experimental setup and the inability to quantitatively analyze the amount of refraction of light. The Background Oriented Schlieren (BOS) method proposed by Meier is one of the measurement methods that solves the problems, as mentioned above. The refraction of light is used for BOS method same as the Schlieren method. The BOS method is characterized using a digital camera to capture the images of the background behind the observation area. The images are later analyzed by a computer to quantitatively detect the amount of shift of the background image. The experimental setup for BOS does not require concave mirrors, pinholes, or color filters, which are necessary in the conventional Schlieren method, thus simplifying the experimental setup. However, the defocusing of the observation results is caused in case of using BOS method. Since the focus of camera on the background image leads to defocusing of the observed object. The defocusing of object becomes greater with increasing the distance between the background and the object. On the other hand, the higher sensitivity can be obtained. Therefore, it is necessary to adjust the distance between the background and the object to be appropriate for the experiment, considering the relation between the defocus and the sensitivity. The purpose of this study is to experimentally clarify the effect of defocus on density field reconstruction. In this study, the visualization experiment of underexpanded jet using BOS measurement system with ronchi ruling as the background that we constructed, have been performed. The reservoir pressure of the jet and the distance between camera and axis of jet is fixed, and the distance between background and axis of jet has been changed as the parameter. The images have been later analyzed by using personal computer to quantitatively detect the amount of shift of the background image from the comparison between the background pattern and the captured image of underexpanded jet. The quantitatively measured amount of shift have been reconstructed into a density flow field using the Abel transformation and the Gradstone-Dale equation. From the experimental results, it is found that the reconstructed density image becomes blurring, and noise becomes decreasing with increasing the distance between background and axis of underexpanded jet. Consequently, it is cralified that the sensitivity constant should be greater than 20, and the circle of confusion diameter should be less than 2.7mm at least in this experimental setup.

Keywords: BOS method, underexpanded jet, abel transformation, density field visualization

Procedia PDF Downloads 78
1672 Soybean Seed Composition Prediction From Standing Crops Using Planet Scope Satellite Imagery and Machine Learning

Authors: Supria Sarkar, Vasit Sagan, Sourav Bhadra, Meghnath Pokharel, Felix B.Fritschi

Abstract:

Soybean and their derivatives are very important agricultural commodities around the world because of their wide applicability in human food, animal feed, biofuel, and industries. However, the significance of soybean production depends on the quality of the soybean seeds rather than the yield alone. Seed composition is widely dependent on plant physiological properties, aerobic and anaerobic environmental conditions, nutrient content, and plant phenological characteristics, which can be captured by high temporal resolution remote sensing datasets. Planet scope (PS) satellite images have high potential in sequential information of crop growth due to their frequent revisit throughout the world. In this study, we estimate soybean seed composition while the plants are in the field by utilizing PlanetScope (PS) satellite images and different machine learning algorithms. Several experimental fields were established with varying genotypes and different seed compositions were measured from the samples as ground truth data. The PS images were processed to extract 462 hand-crafted vegetative and textural features. Four machine learning algorithms, i.e., partial least squares (PLSR), random forest (RFR), gradient boosting machine (GBM), support vector machine (SVM), and two recurrent neural network architectures, i.e., long short-term memory (LSTM) and gated recurrent unit (GRU) were used in this study to predict oil, protein, sucrose, ash, starch, and fiber of soybean seed samples. The GRU and LSTM architectures had two separate branches, one for vegetative features and the other for textures features, which were later concatenated together to predict seed composition. The results show that sucrose, ash, protein, and oil yielded comparable prediction results. Machine learning algorithms that best predicted the six seed composition traits differed. GRU worked well for oil (R-Squared: of 0.53) and protein (R-Squared: 0.36), whereas SVR and PLSR showed the best result for sucrose (R-Squared: 0.74) and ash (R-Squared: 0.60), respectively. Although, the RFR and GBM provided comparable performance, the models tended to extremely overfit. Among the features, vegetative features were found as the most important variables compared to texture features. It is suggested to utilize many vegetation indices for machine learning training and select the best ones by using feature selection methods. Overall, the study reveals the feasibility and efficiency of PS images and machine learning for plot-level seed composition estimation. However, special care should be given while designing the plot size in the experiments to avoid mixed pixel issues.

Keywords: agriculture, computer vision, data science, geospatial technology

Procedia PDF Downloads 137
1671 Deep Learning-Based Liver 3D Slicer for Image-Guided Therapy: Segmentation and Needle Aspiration

Authors: Ahmedou Moulaye Idriss, Tfeil Yahya, Tamas Ungi, Gabor Fichtinger

Abstract:

Image-guided therapy (IGT) plays a crucial role in minimally invasive procedures for liver interventions. Accurate segmentation of the liver and precise needle placement is essential for successful interventions such as needle aspiration. In this study, we propose a deep learning-based liver 3D slicer designed to enhance segmentation accuracy and facilitate needle aspiration procedures. The developed 3D slicer leverages state-of-the-art convolutional neural networks (CNNs) for automatic liver segmentation in medical images. The CNN model is trained on a diverse dataset of liver images obtained from various imaging modalities, including computed tomography (CT) and magnetic resonance imaging (MRI). The trained model demonstrates robust performance in accurately delineating liver boundaries, even in cases with anatomical variations and pathological conditions. Furthermore, the 3D slicer integrates advanced image registration techniques to ensure accurate alignment of preoperative images with real-time interventional imaging. This alignment enhances the precision of needle placement during aspiration procedures, minimizing the risk of complications and improving overall intervention outcomes. To validate the efficacy of the proposed deep learning-based 3D slicer, a comprehensive evaluation is conducted using a dataset of clinical cases. Quantitative metrics, including the Dice similarity coefficient and Hausdorff distance, are employed to assess the accuracy of liver segmentation. Additionally, the performance of the 3D slicer in guiding needle aspiration procedures is evaluated through simulated and clinical interventions. Preliminary results demonstrate the effectiveness of the developed 3D slicer in achieving accurate liver segmentation and guiding needle aspiration procedures with high precision. The integration of deep learning techniques into the IGT workflow shows great promise for enhancing the efficiency and safety of liver interventions, ultimately contributing to improved patient outcomes.

Keywords: deep learning, liver segmentation, 3D slicer, image guided therapy, needle aspiration

Procedia PDF Downloads 48
1670 Oil-Spill Monitoring in Istanbul Strait and Marmara Sea by RASAT Remote Sensing Images

Authors: Ozgun Oktar, Sevilay Can, Cengiz V. Ekici

Abstract:

The oil spill is a form of pollution caused by releasing of a liquid petroleum hydrocarbon into the marine environment. Considering the growth of ship traffic, increasing of off-shore oil drilling and seaside refineries affect the risk of oil spill upward. The oil spill is easy to spread to large areas when occurs especially on the sea surface. Remote sensing technology offers the easiest way to control/monitor the area of the oil spill in a large region. It’s usually easy to detect pollution when occurs by the ship accidents, however monitoring non-accidental pollution could be possible by remote sensing. It is also needed to observe specific regions daily and continuously by satellite solutions. Remote sensing satellites mostly and effectively used for monitoring oil pollution are RADARSAT, ENVISAT and MODIS. Spectral coverage and transition period of these satellites are not proper to monitor Marmara Sea and Istanbul Strait continuously. In this study, RASAT and GOKTURK-2 are suggested to use for monitoring Marmara Sea and Istanbul Strait. RASAT, with spectral resolution 420 – 730 nm, is the first Turkish-built satellite. GOKTURK-2’s resolution can reach up to 2,5 meters. This study aims to analyze the images from both satellites and produce maps to show the regions which have potentially affected by spills from shipping traffic.

Keywords: Marmara Sea, monitoring, oil spill, satellite remote sensing

Procedia PDF Downloads 423
1669 Application of the Hit or Miss Transform to Detect Dams Monitored for Water Quality Using Remote Sensing in South Africa

Authors: Brighton Chamunorwa

Abstract:

The current remote sensing of water quality procedures does not provide a step representing physical visualisation of the monitored dam. The application of the remote sensing of water quality techniques may benefit from use of mathematical morphology operators for shape identification. Given an input of dam outline, morphological operators such as the hit or miss transform identifies if the water body is present on input remotely sensed images. This study seeks to determine the accuracy of the hit or miss transform to identify dams monitored by the water resources authorities in South Africa on satellite images. To achieve this objective the study download a Landsat image acquired in winter and tested the capability of the hit or miss transform using shapefile boundaries of dams in the crocodile marico catchment. The results of the experiment show that it is possible to detect most dams on the Landsat image after the adjusting the erosion operator to detect pixel matching a percentage similarity of 80% and above. Successfully implementation of the current study contributes towards optimisation of mathematical morphology image operators. Additionally, the effort helps develop remote sensing of water quality monitoring with improved simulation of the conventional procedures.

Keywords: hit or miss transform, mathematical morphology, remote sensing, water quality monitoring

Procedia PDF Downloads 153
1668 Non-intrusive Hand Control of Drone Using an Inexpensive and Streamlined Convolutional Neural Network Approach

Authors: Evan Lowhorn, Rocio Alba-Flores

Abstract:

The purpose of this work is to develop a method for classifying hand signals and using the output in a drone control algorithm. To achieve this, methods based on Convolutional Neural Networks (CNN) were applied. CNN's are a subset of deep learning, which allows grid-like inputs to be processed and passed through a neural network to be trained for classification. This type of neural network allows for classification via imaging, which is less intrusive than previous methods using biosensors, such as EMG sensors. Classification CNN's operate purely from the pixel values in an image; therefore they can be used without additional exteroceptive sensors. A development bench was constructed using a desktop computer connected to a high-definition webcam mounted on a scissor arm. This allowed the camera to be pointed downwards at the desk to provide a constant solid background for the dataset and a clear detection area for the user. A MATLAB script was created to automate dataset image capture at the development bench and save the images to the desktop. This allowed the user to create their own dataset of 12,000 images within three hours. These images were evenly distributed among seven classes. The defined classes include forward, backward, left, right, idle, and land. The drone has a popular flip function which was also included as an additional class. To simplify control, the corresponding hand signals chosen were the numerical hand signs for one through five for movements, a fist for land, and the universal “ok” sign for the flip command. Transfer learning with PyTorch (Python) was performed using a pre-trained 18-layer residual learning network (ResNet-18) to retrain the network for custom classification. An algorithm was created to interpret the classification and send encoded messages to a Ryze Tello drone over its 2.4 GHz Wi-Fi connection. The drone’s movements were performed in half-meter distance increments at a constant speed. When combined with the drone control algorithm, the classification performed as desired with negligible latency when compared to the delay in the drone’s movement commands.

Keywords: classification, computer vision, convolutional neural networks, drone control

Procedia PDF Downloads 210
1667 Remotely Sensed Data Fusion to Extract Vegetation Cover in the Cultural Park of Tassili, South of Algeria

Authors: Y. Fekir, K. Mederbal, M. A. Hammadouche, D. Anteur

Abstract:

The cultural park of the Tassili, occupying a large area of Algeria, is characterized by a rich vegetative biodiversity to be preserved and managed both in time and space. The management of a large area (case of Tassili), by its complexity, needs large amounts of data, which for the most part, are spatially localized (DEM, satellite images and socio-economic information etc.), where the use of conventional and traditional methods is quite difficult. The remote sensing, by its efficiency in environmental applications, became an indispensable solution for this kind of studies. Multispectral imaging sensors have been very useful in the last decade in very interesting applications of remote sensing. They can aid in several domains such as the de¬tection and identification of diverse surface targets, topographical details, and geological features. In this work, we try to extract vegetative areas using fusion techniques between data acquired from sensor on-board the Earth Observing 1 (EO-1) satellite and Landsat ETM+ and TM sensors. We have used images acquired over the Oasis of Djanet in the National Park of Tassili in the south of Algeria. Fusion technqiues were applied on the obtained image to extract the vegetative fraction of the different classes of land use. We compare the obtained results in vegetation end member extraction with vegetation indices calculated from both Hyperion and other multispectral sensors.

Keywords: Landsat ETM+, EO1, data fusion, vegetation, Tassili, Algeria

Procedia PDF Downloads 433
1666 Automatic Detection of Sugarcane Diseases: A Computer Vision-Based Approach

Authors: Himanshu Sharma, Karthik Kumar, Harish Kumar

Abstract:

The major problem in crop cultivation is the occurrence of multiple crop diseases. During the growth stage, timely identification of crop diseases is paramount to ensure the high yield of crops, lower production costs, and minimize pesticide usage. In most cases, crop diseases produce observable characteristics and symptoms. The Surveyors usually diagnose crop diseases when they walk through the fields. However, surveyor inspections tend to be biased and error-prone due to the nature of the monotonous task and the subjectivity of individuals. In addition, visual inspection of each leaf or plant is costly, time-consuming, and labour-intensive. Furthermore, the plant pathologists and experts who can often identify the disease within the plant according to their symptoms in early stages are not readily available in remote regions. Therefore, this study specifically addressed early detection of leaf scald, red rot, and eyespot types of diseases within sugarcane plants. The study proposes a computer vision-based approach using a convolutional neural network (CNN) for automatic identification of crop diseases. To facilitate this, firstly, images of sugarcane diseases were taken from google without modifying the scene, background, or controlling the illumination to build the training dataset. Then, the testing dataset was developed based on the real-time collected images from the sugarcane field from India. Then, the image dataset is pre-processed for feature extraction and selection. Finally, the CNN-based Visual Geometry Group (VGG) model was deployed on the training and testing dataset to classify the images into diseased and healthy sugarcane plants and measure the model's performance using various parameters, i.e., accuracy, sensitivity, specificity, and F1-score. The promising result of the proposed model lays the groundwork for the automatic early detection of sugarcane disease. The proposed research directly sustains an increase in crop yield.

Keywords: automatic classification, computer vision, convolutional neural network, image processing, sugarcane disease, visual geometry group

Procedia PDF Downloads 116
1665 Neural Network Based Control Algorithm for Inhabitable Spaces Applying Emotional Domotics

Authors: Sergio A. Navarro Tuch, Martin Rogelio Bustamante Bello, Leopoldo Julian Lechuga Lopez

Abstract:

In recent years, Mexico’s population has seen a rise of different physiological and mental negative states. Two main consequences of this problematic are deficient work performance and high levels of stress generating and important impact on a person’s physical, mental and emotional health. Several approaches, such as the use of audiovisual stimulus to induce emotions and modify a person’s emotional state, can be applied in an effort to decreases these negative effects. With the use of different non-invasive physiological sensors such as EEG, luminosity and face recognition we gather information of the subject’s current emotional state. In a controlled environment, a subject is shown a series of selected images from the International Affective Picture System (IAPS) in order to induce a specific set of emotions and obtain information from the sensors. The raw data obtained is statistically analyzed in order to filter only the specific groups of information that relate to a subject’s emotions and current values of the physical variables in the controlled environment such as, luminosity, RGB light color, temperature, oxygen level and noise. Finally, a neural network based control algorithm is given the data obtained in order to feedback the system and automate the modification of the environment variables and audiovisual content shown in an effort that these changes can positively alter the subject’s emotional state. During the research, it was found that the light color was directly related to the type of impact generated by the audiovisual content on the subject’s emotional state. Red illumination increased the impact of violent images and green illumination along with relaxing images decreased the subject’s levels of anxiety. Specific differences between men and women were found as to which type of images generated a greater impact in either gender. The population sample was mainly constituted by college students whose data analysis showed a decreased sensibility to violence towards humans. Despite the early stage of the control algorithm, the results obtained from the population sample give us a better insight into the possibilities of emotional domotics and the applications that can be created towards the improvement of performance in people’s lives. The objective of this research is to create a positive impact with the application of technology to everyday activities; nonetheless, an ethical problem arises since this can also be applied to control a person’s emotions and shift their decision making.

Keywords: data analysis, emotional domotics, performance improvement, neural network

Procedia PDF Downloads 140
1664 Geographic Information Systems and Remotely Sensed Data for the Hydrological Modelling of Mazowe Dam

Authors: Ellen Nhedzi Gozo

Abstract:

Unavailability of adequate hydro-meteorological data has always limited the analysis and understanding of hydrological behaviour of several dam catchments including Mazowe Dam in Zimbabwe. The problem of insufficient data for Mazowe Dam catchment analysis was solved by extracting catchment characteristics and aerial hydro-meteorological data from ASTER, LANDSAT, Shuttle Radar Topographic Mission SRTM remote sensing (RS) images using ILWIS, ArcGIS and ERDAS Imagine geographic information systems (GIS) software. Available observed hydrological as well as meteorological data complemented the use of the remotely sensed information. Ground truth land cover was mapped using a Garmin Etrex global positioning system (GPS) system. This information was then used to validate land cover classification detail that was obtained from remote sensing images. A bathymetry survey was conducted using a SONAR system connected to GPS. Hydrological modelling using the HBV model was then performed to simulate the hydrological process of the catchment in an effort to verify the reliability of the derived parameters. The model output shows a high Nash-Sutcliffe Coefficient that is close to 1 indicating that the parameters derived from remote sensing and GIS can be applied with confidence in the analysis of Mazowe Dam catchment.

Keywords: geographic information systems, hydrological modelling, remote sensing, water resources management

Procedia PDF Downloads 336
1663 Process of the Emergence and Evolution of Socio-Cultural Ideas about the "Asian States" In the Context of the Development of US Cinema in 1941-1945

Authors: Selifontova Darya Yurievna

Abstract:

The study of the process of the emergence and evolution of socio-cultural ideas about the "Asian states" in the context of the development of US cinema in 1941-1945 will contribute both to the approbation of a new approach to the classical subject and will allow using the methodological tools of history, political science, philology, sociology for understanding modern military-political, historical, ideological, socio-cultural processes on a concrete example. This is especially important for understanding the process of constructing the image of the Japanese Empire in the USA. Assessments and images of China and Japan in World War II, created in American cinema, had an immediate impact on the media, public sentiment, and opinions. During the war, the US cinema created new myths and actively exploited old ones, combining them with traditional Hollywood cliches - all this served as a basis for creating the image of China and the Japanese Empire on the screen, which were necessary to solve many foreign policy and domestic political tasks related to the construction of two completely different, but at the same time, similar images of Asia (China and the Japanese Empire). In modern studies devoted to the history of wars, the study of the specifics of the information confrontation of the parties is in demand. A special role in this confrontation is played by propaganda through cinema, which uses images, historical symbols, and stable metaphors, the appeal to which can form a certain public reaction. Soviet documentaries of the war years are proof of this. The relevance of the topic is due to the fact that cinema as a means of propaganda was very popular and in demand during the Second World War. This period was the time of creation of real masterpieces in the field of propaganda films, in the documentary space of the cinema of 1941 – 1945. The traditions of depicting the Second World War were laid down. The study of the peculiarities of visualization and mythologization of the Second World War in Soviet cinema is the most important stage for studying the development of the specifics of propaganda methods since the methods and techniques of depicting the war formed in 1941-1945 are also significant at the present stage of the study of society.

Keywords: asian countries, politics, sociology, domestic politics, USA, cinema

Procedia PDF Downloads 127
1662 The Ugliness of Eating: Resistance to Depicting Consumption in Visual Arts

Authors: Constance Kirker

Abstract:

While there is general agreement that food itself can be beautiful, thousands of still-life masterpieces over the years attest to this, depicting the act of eating, actually placing food in one’s mouth and chewing is seemingly taboo. The environment created around consumption -dining rooms, linens, china, flowers- is consciously choreographed to provide a pleasing aesthetic experience. Yet artists, from Roman frescoes painters to contemporary photographers, create images from feasts to solitary subjects that rarely show food or drink touching lips, chewing, or swallowing. Of the countless paintings of the Last Supper, the food remains on the table. Rarely is Adam or Eve shown taking a bite of the apple, initiating Original Sin. In the few examples that do depict food-in-mouth, Goya’s Saturn Devouring His Son, or the ubiquitous photos of the “wedding smash” with brides and grooms pushing wedding cake into each other’s mouths, the images are seemingly intended to be particularly ugly or humorous in a distasteful way. This paper will explore theories that include the rules of etiquette, some determined hundreds of years ago and still followed today, that imply eating is a metaphor for gluttony, implicit sexuality of eating, the distortion of the face while eating and the simple practicality of the difficulty of an artist’s model maintaining a chewing position. If art is a reflection of society, what drives the universal impulse to hide this very human function?

Keywords: aesthetics, senses, taboo, consumption

Procedia PDF Downloads 73
1661 Unspoken Playground Rules Prompt Adolescents to Avoid Physical Activity: A Focus Group Study of Constructs in the Prototype Willingness Model

Authors: Catherine Wheatley, Emma L. Davies, Helen Dawes

Abstract:

The health benefits of exercise are widely recognised, but numerous interventions have failed to halt a sharp decline in physical activity during early adolescence. Many such projects are underpinned by the Theory of Planned Behaviour, yet this model of rational decision-making leaves variance in behavior unexplained. This study investigated whether the Prototype Willingness Model, which proposes a second, reactive decision-making path to account for spontaneous responses to the social environment, has potential to improve understanding of adolescent exercise behaviour in school by exploring constructs in the model with young people. PE teachers in 4 Oxfordshire schools each nominated 6 pupils who were active in school, and 6 who were inactive, to participate in the study. Of these, 45 (22 male) aged 12-13 took part in 8 focus group discussions. These were transcribed and subjected to deductive thematic analysis to search for themes relating to the prototype willingness model. Participants appeared to make rational decisions about commuting to school or attending sports clubs, but spontaneous choices to be inactive during both break and PE. These reactive decisions seemed influenced by a social context described as more ‘judgmental’ than primary school, characterised by anxiety about physical competence, negative peer evaluation and inactive playground norms. Participants described their images of typical active and inactive adolescents: active images included negative social characteristics including ‘show-off’. There was little concern about the long-term risks of inactivity, although participants seemed to recognise that physical activity is healthy. The Prototype Willingness Model might more fully explain young adolescents’ physical activity in school than rational behavioural models, indicating potential for physical activity interventions that target social anxieties in response to the changing playground environment. Images of active types could be more complex than earlier research has suggested, and their negative characteristics might influence willingness to be active.

Keywords: adolescence, physical activity, prototype willingness model, school

Procedia PDF Downloads 346
1660 Multimodal Analysis of News Magazines' Front-Page Portrayals of the US, Germany, China, and Russia

Authors: Alena Radina

Abstract:

On the global stage, national image is shaped by historical memory of wars and alliances, government ideology and particularly media stereotypes which represent countries in positive or negative ways. News magazine covers are a key site for national representation. The object of analysis in this paper is the portrayals of the US, Germany, China, and Russia in the front pages and cover stories of “Time”, “Der Spiegel”, “Beijing Review”, and “Expert”. Political comedy helps people learn about current affairs even if politics is not their area of interest, and thus satire indirectly sets the public agenda. Coupled with satirical messages, cover images and the linguistic messages embedded in the covers become persuasive visual and verbal factors, known to drive about 80% of magazine sales. Preliminary analysis identified satirical elements in magazine covers, which are known to influence and frame understandings and attract younger audiences. Multimodal and transnational comparative framing analyses lay the groundwork to investigate why journalists, editors and designers deploy certain frames rather than others. This research investigates to what degree frames used in covers correlate with frames within the cover stories and what these framings can tell us about media professionals’ representations of their own and other nations. The study sample includes 32 covers consisting of two covers representing each of the four chosen countries from the four magazines. The sampling framework considers two time periods to compare countries’ representation with two different presidents, and between men and women when present. The countries selected for analysis represent each category of the international news flows model: the core nations are the US and Germany; China is a semi-peripheral country; and Russia is peripheral. Examining textual and visual design elements on the covers and images in the cover stories reveals not only what editors believe visually attracts the reader’s attention to the magazine but also how the magazines frame and construct national images and national leaders. The cover is the most powerful editorial and design page in a magazine because images incorporate less intrusive framing tools. Thus, covers require less cognitive effort of audiences who may therefore be more likely to accept the visual frame without question. Analysis of design and linguistic elements in magazine covers helps to understand how media outlets shape their audience’s perceptions and how magazines frame global issues. While previous multimodal research of covers has focused mostly on lifestyle magazines or newspapers, this paper examines the power of current affairs magazines’ covers to shape audience perception of national image.

Keywords: framing analysis, magazine covers, multimodality, national image, satire

Procedia PDF Downloads 100
1659 Change of Taste Preference after Bariatric Surgery

Authors: Piotr Tylec, Julia Wierzbicka, Natalia Gajewska, Krzysztof Przeczek, Grzegorz Torbicz, Alicja Dudek, Magdalena Pisarska-Adamczyk, Mateusz Wierdak, Michal Pedziwiatr

Abstract:

Introduction: Many patients have described changes in taste perception after weight loss surgery. However, little data is available about short term changes in taste after surgery. Aim: We aimed to evaluate short-term changes in taste preference after bariatric surgeries in comparison to colorectal surgeries. Material and Methods: Between April 2018 and April 2019, a total of 121 bariatric patients and 63 controls participated. Bariatric patients underwent laparoscopic sleeve gastrectomy or Roux-en-Y gastric by-pass. Controls underwent oncological colorectal surgeries. Patients who developed clinical complications requiring restriction of oral intake after surgery or withdraw their consent were excluded from the study. In the end, 85 bariatric patients and 44 controls were included. In all of them, the 16-item ERAS Protocol was applied. Using 10-points Numeric Rating Scale (1-10) patients completed questionnaire and rated their appetite and thirst (1 - no appetite/not thirsty, 10 – normal appetite/very thirsty) and flavoured standardized liquids' taste (1- horrible, 10-very tasty) and food images for the 6 group of taste (sweet, umami, sour, spicy, bitter and salty) (1 - not appetizing, 10 - very appetizing) preoperatively and on the first postoperative day. Data were analysed with Statistica 13.0 PL. Results: Analysed group consist of 129 patients (85 bariatric, 44 controls). Mean age and BMI in a research group was 44.91 years old, 46.22 kg/m² and in control group 62.09 years old, 25.87 kg/m², respectively. Our analysis revealed significant differences in changes of appetite between both groups (research: -4.55 ± 3.76 vs. control: -0.85 ± 4.37; p < 0.05), ratings bitter (research: 0.60 ± 2.98 vs. control: -0.88 ± 2.58; p < 0.05) and salty (research: 1.20 ± 3.50 vs. control: -0.52 ± 2.90; p < 0.05) flavoured liquids and ratings for sweet (research: 1.62 ± 3.31 vs. control: 0.01 ± 2.63; p < 0.05) and bitter (research: 1.21 ± 3.15 vs. control: -0.09 ± 2.25; p < 0.05) food images. There were statistically significant results in the ratings of other images, but in comparison to the control group, they were not statistically significant. Conclusion: The study showed that bariatric surgeries quickly decreases appetite and desire to eat certain types of food, such as salty. Moreover, the bitter taste was more desirable in the research group in comparison to control group. Nevertheless, the sweet taste was more appetible in the bariatric group than in control.

Keywords: bariatric surgery, general surgery, obesity, taste preference

Procedia PDF Downloads 135
1658 Classification of Multiple Cancer Types with Deep Convolutional Neural Network

Authors: Nan Deng, Zhenqiu Liu

Abstract:

Thousands of patients with metastatic tumors were diagnosed with cancers of unknown primary sites each year. The inability to identify the primary cancer site may lead to inappropriate treatment and unexpected prognosis. Nowadays, a large amount of genomics and transcriptomics cancer data has been generated by next-generation sequencing (NGS) technologies, and The Cancer Genome Atlas (TCGA) database has accrued thousands of human cancer tumors and healthy controls, which provides an abundance of resource to differentiate cancer types. Meanwhile, deep convolutional neural networks (CNNs) have shown high accuracy on classification among a large number of image object categories. Here, we utilize 25 cancer primary tumors and 3 normal tissues from TCGA and convert their RNA-Seq gene expression profiling to color images; train, validate and test a CNN classifier directly from these images. The performance result shows that our CNN classifier can archive >80% test accuracy on most of the tumors and normal tissues. Since the gene expression pattern of distant metastases is similar to their primary tumors, the CNN classifier may provide a potential computational strategy on identifying the unknown primary origin of metastatic cancer in order to plan appropriate treatment for patients.

Keywords: bioinformatics, cancer, convolutional neural network, deep leaning, gene expression pattern

Procedia PDF Downloads 299
1657 Automatic Differential Diagnosis of Melanocytic Skin Tumours Using Ultrasound and Spectrophotometric Data

Authors: Kristina Sakalauskiene, Renaldas Raisutis, Gintare Linkeviciute, Skaidra Valiukeviciene

Abstract:

Cutaneous melanoma is a melanocytic skin tumour, which has a very poor prognosis while is highly resistant to treatment and tends to metastasize. Thickness of melanoma is one of the most important biomarker for stage of disease, prognosis and surgery planning. In this study, we hypothesized that the automatic analysis of spectrophotometric images and high-frequency ultrasonic 2D data can improve differential diagnosis of cutaneous melanoma and provide additional information about tumour penetration depth. This paper presents the novel complex automatic system for non-invasive melanocytic skin tumour differential diagnosis and penetration depth evaluation. The system is composed of region of interest segmentation in spectrophotometric images and high-frequency ultrasound data, quantitative parameter evaluation, informative feature extraction and classification with linear regression classifier. The segmentation of melanocytic skin tumour region in ultrasound image is based on parametric integrated backscattering coefficient calculation. The segmentation of optical image is based on Otsu thresholding. In total 29 quantitative tissue characterization parameters were evaluated by using ultrasound data (11 acoustical, 4 shape and 15 textural parameters) and 55 quantitative features of dermatoscopic and spectrophotometric images (using total melanin, dermal melanin, blood and collagen SIAgraphs acquired using spectrophotometric imaging device SIAscope). In total 102 melanocytic skin lesions (including 43 cutaneous melanomas) were examined by using SIAscope and ultrasound system with 22 MHz center frequency single element transducer. The diagnosis and Breslow thickness (pT) of each MST were evaluated during routine histological examination after excision and used as a reference. The results of this study have shown that automatic analysis of spectrophotometric and high frequency ultrasound data can improve non-invasive classification accuracy of early-stage cutaneous melanoma and provide supplementary information about tumour penetration depth.

Keywords: cutaneous melanoma, differential diagnosis, high-frequency ultrasound, melanocytic skin tumours, spectrophotometric imaging

Procedia PDF Downloads 270
1656 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases

Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar

Abstract:

Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.

Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning

Procedia PDF Downloads 119
1655 35 MHz Coherent Plane Wave Compounding High Frequency Ultrasound Imaging

Authors: Chih-Chung Huang, Po-Hsun Peng

Abstract:

Ultrasound transient elastography has become a valuable tool for many clinical diagnoses, such as liver diseases and breast cancer. The pathological tissue can be distinguished by elastography due to its stiffness is different from surrounding normal tissues. An ultrafast frame rate of ultrasound imaging is needed for transient elastography modality. The elastography obtained in the ultrafast system suffers from a low quality for resolution, and affects the robustness of the transient elastography. In order to overcome these problems, a coherent plane wave compounding technique has been proposed for conventional ultrasound system which the operating frequency is around 3-15 MHz. The purpose of this study is to develop a novel beamforming technique for high frequency ultrasound coherent plane-wave compounding imaging and the simulated results will provide the standards for hardware developments. Plane-wave compounding imaging produces a series of low-resolution images, which fires whole elements of an array transducer in one shot with different inclination angles and receives the echoes by conventional beamforming, and compounds them coherently. Simulations of plane-wave compounding image and focused transmit image were performed using Field II. All images were produced by point spread functions (PSFs) and cyst phantoms with a 64-element linear array working at 35MHz center frequency, 55% bandwidth, and pitch of 0.05 mm. The F number is 1.55 in all the simulations. The simulated results of PSFs and cyst phantom which were obtained using single, 17, 43 angles plane wave transmission (angle of each plane wave is separated by 0.75 degree), and focused transmission. The resolution and contrast of image were improved with the number of angles of firing plane wave. The lateral resolutions for different methods were measured by -10 dB lateral beam width. Comparison of the plane-wave compounding image and focused transmit image, both images exhibited the same lateral resolution of 70 um as 37 angles were performed. The lateral resolution can reach 55 um as the plane-wave was compounded 47 angles. All the results show the potential of using high-frequency plane-wave compound imaging for realizing the elastic properties of the microstructure tissue, such as eye, skin and vessel walls in the future.

Keywords: plane wave imaging, high frequency ultrasound, elastography, beamforming

Procedia PDF Downloads 538