Search results for: stress concentration at the root of tooth
2252 Solar Photovoltaic Pumping and Water Treatment Tools: A Case Study in Ethiopian Village
Authors: Corinna Barraco, Ornella Salimbene
Abstract:
This research involves the Ethiopian locality of Jeldi (North Africa), an area particularly affected by water shortage and in which the pumping and treatment of drinking water are extremely sensitive issues. The study aims to develop and apply low-cost tools for the design of solar water pumping and water purification systems in a not developed country. Consequently, two technical tools have been implemented in Excel i) Solar photovoltaic Pumping (Spv-P) ii) Water treatment (Wt). The Spv-P tool was applied to the existing well (depth 110 [m], dynamic water level 90 [m], static water level 53 [m], well yield 0.1728 [m³h⁻¹]) in the Jeldi area, where estimated water demand is about 50 [m3d-1]. Through the application of the tool, it was designed the water extraction system of the well, obtaining the number of pumps and solar panels necessary for water pumping from the well of Jeldi. Instead, the second tool Wt has been applied in the subsequent phase of extracted water treatment. According to the chemical-physical parameters of the water, Wt returns as output the type of purification treatment(s) necessary to potable the extracted water. In the case of the well of Jeldi, the tool identified a high criticality regarding the turbidity parameter (12 [NTU] vs 5 [NTU]), and a medium criticality regarding the exceeding limits of sodium concentration (234 [mg/L Na⁺] vs 200 [mg/L Na⁺]) and ammonia (0.64 [mg/L NH³-N] vs 0.5 [mg/L NH³-N]). To complete these tools, two specific manuals are provided for the users. The joint use of the two tools would help reduce problems related to access to water resources compared to the current situation and represents a simplified solution for the design of pumping systems and analysis of purification treatments to be performed in undeveloped countries.Keywords: drinking water, Ethiopia, treatments, water pumping
Procedia PDF Downloads 1632251 Enhancing Food Quality and Safety Management in Ethiopia's Food Processing Industry: Challenges, Causes, and Solutions
Authors: Tuji Jemal Ahmed
Abstract:
Food quality and safety challenges are prevalent in Ethiopia's food processing industry, which can have adverse effects on consumers' health and wellbeing. The country is known for its diverse range of agricultural products, which are essential to its economy. However, poor food quality and safety policies and management systems in the food processing industry have led to several health problems, foodborne illnesses, and economic losses. This paper aims to highlight the causes and effects of food safety and quality issues in the food processing industry of Ethiopia and discuss potential solutions to address these issues. One of the main causes of poor food quality and safety in Ethiopia's food processing industry is the lack of adequate regulations and enforcement mechanisms. The absence of comprehensive food safety and quality policies and guidelines has led to substandard practices in the food manufacturing process. Moreover, the lack of monitoring and enforcement of existing regulations has created a conducive environment for unscrupulous businesses to engage in unsafe practices that endanger the public's health. The effects of poor food quality and safety are significant, ranging from the loss of human lives, increased healthcare costs, and loss of consumer confidence in the food processing industry. Foodborne illnesses, such as diarrhea, typhoid fever, and cholera, are prevalent in Ethiopia, and poor food quality and safety practices contribute significantly to their prevalence. Additionally, food recalls due to contamination or mislabeling often result in significant economic losses for businesses in the food processing industry. To address these challenges, the Ethiopian government has begun to take steps to improve food quality and safety in the food processing industry. One of the most notable initiatives is the Ethiopian Food and Drug Administration (EFDA), which was established in 2010 to regulate and monitor the quality and safety of food and drug products in the country. The EFDA has implemented several measures to enhance food safety, such as conducting routine inspections, monitoring the importation of food products, and enforcing strict labeling requirements. Another potential solution to improve food quality and safety in Ethiopia's food processing industry is the implementation of food safety management systems (FSMS). An FSMS is a set of procedures and policies designed to identify, assess, and control food safety hazards throughout the food manufacturing process. Implementing an FSMS can help businesses in the food processing industry identify and address potential hazards before they cause harm to consumers. Additionally, the implementation of an FSMS can help businesses comply with existing food safety regulations and guidelines. In conclusion, improving food quality and safety policies and management systems in Ethiopia's food processing industry is critical to protecting public health and enhancing the country's economy. Addressing the root causes of poor food quality and safety and implementing effective solutions, such as the establishment of regulatory agencies and the implementation of food safety management systems, can help to improve the overall safety and quality of the country's food supply.Keywords: food quality, food safety, policy, management system, food processing industry
Procedia PDF Downloads 932250 2D Numerical Modeling of Ultrasonic Measurements in Concrete: Wave Propagation in a Multiple-Scattering Medium
Authors: T. Yu, L. Audibert, J. F. Chaix, D. Komatitsch, V. Garnier, J. M. Henault
Abstract:
Linear Ultrasonic Techniques play a major role in Non-Destructive Evaluation (NDE) for civil engineering structures in concrete since they can meet operational requirements. Interpretation of ultrasonic measurements could be improved by a better understanding of ultrasonic wave propagation in a multiple scattering medium. This work aims to develop a 2D numerical model of ultrasonic wave propagation in a heterogeneous medium, like concrete, integrating the multiple scattering phenomena in SPECFEM software. The coherent field of multiple scattering is obtained by averaging numerical wave fields, and it is used to determine the effective phase velocity and attenuation corresponding to an equivalent homogeneous medium. First, this model is applied to one scattering element (a cylinder) in a homogenous medium in a linear-elastic system, and its validation is completed thanks to the comparison with analytical solution. Then, some cases of multiple scattering by a set of randomly located cylinders or polygons are simulated to perform parametric studies on the influence of frequency and scatterer size, concentration, and shape. Also, the effective properties are compared with the predictions of Waterman-Truell model to verify its validity. Finally, the mortar viscoelastic behavior is introduced in the simulation in order to considerer the dispersion and the attenuation due to porosity included in the cement paste. In the future, different steps will be developed: The comparisons with experimental results, the interpretation of NDE measurements, and the optimization of NDE parameters before an auscultation.Keywords: attenuation, multiple-scattering medium, numerical modeling, phase velocity, ultrasonic measurements
Procedia PDF Downloads 2772249 Rapid, Label-Free, Direct Detection and Quantification of Escherichia coli Bacteria Using Nonlinear Acoustic Aptasensor
Authors: Shilpa Khobragade, Carlos Da Silva Granja, Niklas Sandström, Igor Efimov, Victor P. Ostanin, Wouter van der Wijngaart, David Klenerman, Sourav K. Ghosh
Abstract:
Rapid, label-free and direct detection of pathogenic bacteria is critical for the prevention of disease outbreaks. This paper for the first time attempts to probe the nonlinear acoustic response of quartz crystal resonator (QCR) functionalized with specific DNA aptamers for direct detection and quantification of viable E. coli KCTC 2571 bacteria. DNA aptamers were immobilized through biotin and streptavidin conjugation, onto the gold surface of QCR to capture the target bacteria and the detection was accomplished by shift in amplitude of the peak 3f signal (3 times the drive frequency) upon binding, when driven near fundamental resonance frequency. The developed nonlinear acoustic aptasensor system demonstrated better reliability than conventional resonance frequency shift and energy dissipation monitoring that were recorded simultaneously. This sensing system could directly detect 10⁽⁵⁾ cells/mL target bacteria within 30 min or less and had high specificity towards E. coli KCTC 2571 bacteria as compared to the same concentration of S.typhi bacteria. Aptasensor response was observed for the bacterial suspensions ranging from 10⁽⁵⁾-10⁽⁸⁾ cells/mL. Conclusively, this nonlinear acoustic aptasensor is simple to use, gives real-time output, cost-effective and has the potential for rapid, specific, label-free direction detection of bacteria.Keywords: acoustic, aptasensor, detection, nonlinear
Procedia PDF Downloads 5712248 Analysis of Eating Habits of Working People in Shopping Centers on a 12-Hour Basis
Authors: A. Sadowska, R. Polaniak, P. Boczarski, E. Grochowska-Niedworok
Abstract:
Working in a shopping center 12 hours a day as a shop assistant is a very demanding and stressful job, which is still underestimated. Proper eating habits, including recommended fruits, vegetables, products rich in fiber, omega-3 fatty acids, and proper hydration, can contribute to improvement in health and make shop assistants more resistant to stress. The aim of this study was to analyze the eating habits of shop assistants working in shopping centers 12 hours a day. Participant 101 sellers from Poland filled out authorial surveys. Nearly 50% of participants consumed the recommended number of 4 to 5 meals per day. There was a slight dependence between the number of meals consumed per day and the time that employers allowed for employee mealtimes. Respondents declared that they engaged in snacking, and they generally chose fruit, chocolates, and other sweets. Survey results indicated a low liquid intake, which was about 1,05 liters daily. Mineral water was chosen most often (63%) by participants. Participant fish consumption was very low in comparison with the norms, which can pose a risk of developing omega-3 fatty acids deficiency. Shop assistants stated that a change in their eating habits was necessary. Study findings suggest a moderate dependence between being on a diet and counting calories and macronutrients contained in meals. The number of meals eaten per day is correlated with the number of meals eaten at the worksite. The percentage of snacking by shop assistants was so high that it suggested a need for more nutrition education. The topic of eating habits among shop assistants should be examined using a larger group of participants. It is necessary to note a connection between nutrition and health problems.Keywords: eating habits, work during 12 hours a day, shopping center, nutrition
Procedia PDF Downloads 1302247 Application of Typha domingensis Pers. in Artificial Floating for Sewage Treatment
Authors: Tatiane Benvenuti, Fernando Hamerski, Alexandre Giacobbo, Andrea M. Bernardes, Marco A. S. Rodrigues
Abstract:
Population growth in urban areas has caused damages to the environment, a consequence of the uncontrolled dumping of domestic and industrial wastewater. The capacity of some plants to purify domestic and agricultural wastewater has been demonstrated by several studies. Since natural wetlands have the ability to transform, retain and remove nutrients, constructed wetlands have been used for wastewater treatment. They are widely recognized as an economical, efficient and environmentally acceptable means of treating many different types of wastewater. T. domingensis Pers. species have shown a good performance and low deployment cost to extract, detoxify and sequester pollutants. Constructed Floating Wetlands (CFWs) consist of emergent vegetation established upon a buoyant structure, floating on surface waters. The upper parts of the vegetation grow and remain primarily above the water level, while the roots extend down in the water column, developing an extensive under water-level root system. Thus, the vegetation grows hydroponically, performing direct nutrient uptake from the water column. Biofilm is attached on the roots and rhizomes, and as physical and biochemical processes take place, the system functions as a natural filter. The aim of this study is to diagnose the application of macrophytes in artificial floating in the treatment of domestic sewage in south Brazil. The T. domingensis Pers. plants were placed in a flotation system (polymer structure), in full scale, in a sewage treatment plant. The sewage feed rate was 67.4 m³.d⁻¹ ± 8.0, and the hydraulic retention time was 11.5 d ± 1.3. This CFW treat the sewage generated by 600 inhabitants, which corresponds to 12% of the population served by this municipal treatment plant. During 12 months, samples were collected every two weeks, in order to evaluate parameters as chemical oxygen demand (COD), biochemical oxygen demand in 5 days (BOD5), total Kjeldahl nitrogen (TKN), total phosphorus, total solids, and metals. The average removal of organic matter was around 55% for both COD and BOD5. For nutrients, TKN was reduced in 45.9% what was similar to the total phosphorus removal, while for total solids the reduction was 33%. For metals, aluminum, copper, and cadmium, besides in low concentrations, presented the highest percentage reduction, 82.7, 74.4 and 68.8% respectively. Chromium, iron, and manganese removal achieved values around 40-55%. The use of T. domingensis Pers. in artificial floating for sewage treatment is an effective and innovative alternative in Brazilian sewage treatment systems. The evaluation of additional parameters in the treatment system may give useful information in order to improve the removal efficiency and increase the quality of the water bodies.Keywords: constructed wetland, floating system, sewage treatment, Typha domingensis Pers.
Procedia PDF Downloads 2152246 The Four Pillars of Islamic Design: A Methodology for an Objective Approach to the Design and Appraisal of Islamic Urban Planning and Architecture Based on Traditional Islamic Religious Knowledge
Authors: Azzah Aldeghather, Sara Alkhodair
Abstract:
In the modern urban planning and architecture landscape, with western ideologies and styles becoming the mainstay of experience and definitions globally, the Islamic world requires a methodology that defines its expression, which transcends cultural, societal, and national styles. This paper will propose a methodology as an objective system to define, evaluate and apply traditional Islamic knowledge to Islamic urban planning and architecture, providing the Islamic world with a system to manifest its approach to design. The methodology is expressed as Four Pillars which are based on traditional meanings of Arab words roughly translated as Pillar One: The Principles (Al Mabade’), Pillar Two: The Foundations (Al Asas), Pillar Three: The Purpose (Al Ghaya), Pillar Four: Presence (Al Hadara). Pillar One: (The Principles) expresses the unification (Tawheed) pillar of Islam: “There is no God but God” and is comprised of seven principles listed as: 1. Human values (Qiyam Al Insan), 2. Universal language as sacred geometry, 3. Fortitude© and Benefitability©, 4. Balance and Integration: conjoining the opposites, 5. Man, time, and place, 6. Body, mind, spirit, and essence, 7. Unity of design expression to achieve unity, harmony, and security in design. Pillar Two: The Foundations is based on two foundations: “Muhammad is the Prophet of God” and his relationship to the renaming of Medina City as a prototypical city or place, which defines a center space for collection conjoined by an analysis of the Medina Charter as a base for the humanistic design. Pillar Three: The Purpose (Al Ghaya) is comprised of four criteria: The naming of the design as a title, the intention of the design as an end goal, the reasoning behind the design, and the priorities of expression. Pillar Four: Presence (Al Hadara) is usually translated as a civilization; in Arabic, the root of Hadara is to be present. This has five primary definitions utilized to express the act of design: Wisdom (Hikma) as a philosophical concept, Identity (Hawiya) of the form, and Dialogue (Hiwar), which are the requirements of the project vis-a-vis what the designer wishes to convey, Expression (Al Ta’abeer) the designer wishes to apply, and Resources (Mawarid) available. The Proposal will provide examples, where applicable, of past and present designs that exemplify the manifestation of the Pillars. The proposed methodology endeavors to return Islamic urban planning and architecture design to its a priori position as a leading design expression adaptable to any place, time, and cultural expression while providing a base for analysis that transcends the concept of style and external form as a definition and expresses the singularity of the esoteric “Spiritual” aspects in a rational, principled, and logical manner clearly addressed in Islam’s essence.Keywords: Islamic architecture, Islamic design, Islamic urban planning, principles of Islamic design
Procedia PDF Downloads 1102245 Utilizing the RhlR/RhlI Quorum Sensing System to Express the ß-Galactosidase Reporter Gene by Using the N-Butanoyl Homoserine Lactone and N-Hexanoyl Homoserine Lactone
Authors: Ngoc Tu Truong, Nuong T. Bui, Ben Rao, Ya L. Shen
Abstract:
Quorum sensing is a phenomenon present in many gram-negative bacteria that allows bacterial communication and controlled expression of a large suite of genes through quorum sensing signals - N-acyl homoserine lactones (AHLs). In order to investigate the ability of the rhlR/rhlI quorum sensing system in Pseudomonas aeruginosa to express the ß-Galactosidase reporter gene, an engineered E. coli strain EpHL02, was genetically engineered. This engineered E. coli strain EpHL02 responded to the presence of the N-butanoyl homoserine lactone and N-hexanoyl homoserine lactone to express the ß-Galactosidase reporter gene at a concentration limit of 5x10⁻⁸ M. This was also found to be comparable to AHLs extraction from Serratia marcescens H31. Moreover, we examined this ability of this engineered E. coli strain for respond of AHLs from extractions of Pseudomonas aeruginosa ATCC9027. The results demonstrated that the rhlR/rhlI quorum sensing system can express the ß-Galactosidase reporter gene by using the N-butanoyl homoserine lactone, N-hexanoyl homoserine lactone and AHLs from extractions of Serratia marcescens H31 and Pseudomonas aeruginosa ATCC9027 in the engineered E. coli strain EpHL02.Keywords: N-butanoyl homoserine lactone, C4-HSL, N-hexanoyl homoserine lactone, C6-HSL, Pseudomonas aeruginosa, quorum sensing, Serratia marcescens, ß-galactosidase reporter gene
Procedia PDF Downloads 3082244 A Thermographic and Energy Based Approach to Define High Cycle Fatigue Strength of Flax Fiber Reinforced Thermoset Composites
Authors: Md. Zahirul Islam, Chad A. Ulven
Abstract:
Fiber-reinforced polymer matrix composites have a wide range of applications in the sectors of automotive, aerospace, sports utilities, among others, due to their high specific strength, stiffness as well as reduced weight. In addition to those favorable properties, composites composed of natural fibers and bio-based resins (i.e., biocomposites) have eco-friendliness and biodegradability. However, the applications of biocomposites are limited due to the lack of knowledge about their long-term reliability under fluctuating loads. In order to explore the long-term reliability of flax fiber reinforced composites under fluctuating loads through high cycle fatigue strength (HCFS), fatigue test were conducted on unidirectional flax fiber reinforced thermoset composites at different percentage loads of ultimate tensile strength (UTS) with a loading frequency of 5 Hz. Change of temperature of the sample during cyclic loading was captured using an IR camera. Initially, the temperature increased rapidly, but after a certain time, it stabilized. A mathematical model was developed to predict the fatigue life from the data of stabilized temperature. Stabilized temperature and dissipated energy per cycle were compared with applied stress. Both showed bilinear behavior and the intersection of those curves were used to determine HCFS. HCFS for unidirectional flax fiber reinforced composites is around 45% of UTS for a loading frequency of 5Hz. Unlike fatigue life, stabilized temperature and dissipated energy-based models are convenient to define HCFS as they have little variation from sample to sample.Keywords: energy method, fatigue, flax fiber reinforced composite, HCFS, thermographic approach
Procedia PDF Downloads 1092243 Thermal-Mechanical Analysis of a Bridge Deck to Determine Residual Weld Stresses
Authors: Evy Van Puymbroeck, Wim Nagy, Ken Schotte, Heng Fang, Hans De Backer
Abstract:
The knowledge of residual stresses for welded bridge components is essential to determine the effect of the residual stresses on the fatigue life behavior. The residual stresses of an orthotropic bridge deck are determined by simulating the welding process with finite element modelling. The stiffener is placed on top of the deck plate before welding. A chained thermal-mechanical analysis is set up to determine the distribution of residual stresses for the bridge deck. First, a thermal analysis is used to determine the temperatures of the orthotropic deck for different time steps during the welding process. Twin wire submerged arc welding is used to construct the orthotropic plate. A double ellipsoidal volume heat source model is used to describe the heat flow through a material for a moving heat source. The heat input is used to determine the heat flux which is applied as a thermal load during the thermal analysis. The heat flux for each element is calculated for different time steps to simulate the passage of the welding torch with the considered welding speed. This results in a time dependent heat flux that is applied as a thermal loading. Thermal material behavior is specified by assigning the properties of the material in function of the high temperatures during welding. Isotropic hardening behavior is included in the model. The thermal analysis simulates the heat introduced in the two plates of the orthotropic deck and calculates the temperatures during the welding process. After the calculation of the temperatures introduced during the welding process in the thermal analysis, a subsequent mechanical analysis is performed. For the boundary conditions of the mechanical analysis, the actual welding conditions are considered. Before welding, the stiffener is connected to the deck plate by using tack welds. These tack welds are implemented in the model. The deck plate is allowed to expand freely in an upwards direction while it rests on a firm and flat surface. This behavior is modelled by using grounded springs. Furthermore, symmetry points and lines are used to prevent the model to move freely in other directions. In the thermal analysis, a mechanical material model is used. The calculated temperatures during the thermal analysis are introduced during the mechanical analysis as a time dependent load. The connection of the elements of the two plates in the fusion zone is realized with a glued connection which is activated when the welding temperature is reached. The mechanical analysis results in a distribution of the residual stresses. The distribution of the residual stresses of the orthotropic bridge deck is compared with results from literature. Literature proposes uniform tensile yield stresses in the weld while the finite element modelling showed tensile yield stresses at a short distance from the weld root or the weld toe. The chained thermal-mechanical analysis results in a distribution of residual weld stresses for an orthotropic bridge deck. In future research, the effect of these residual stresses on the fatigue life behavior of welded bridge components can be studied.Keywords: finite element modelling, residual stresses, thermal-mechanical analysis, welding simulation
Procedia PDF Downloads 1752242 Micro/Nano-Sized Emulsions Exhibit Antifungal Activity against Cucumber Downy Mildew
Authors: Kai-Fen Tu, Jenn-Wen Huang, Yao-Tung Lin
Abstract:
Cucumber is a major economic crop in the world. The global production of cucumber in 2017 was more than 71 million tonnes. Nonetheless, downy mildew, caused by Pseudoperonospora cubensis, is a devastating and common disease on cucumber in around 80 countries and causes severe economic losses. The long-term usage of fungicide also leads to the occurrence of fungicide resistance and decreases host resistance. In this study, six types of oil (neem oil, moringa oil, soybean oil, cinnamon oil, clove oil, and camellia oil) were selected to synthesize micro/nano-sized emulsions, and the disease control efficacy of micro/nano-sized emulsions were evaluated. Moreover, oil concentrations (0.125% - 1%) and droplet size of emulsion were studied. Results showed cinnamon-type emulsion had the best efficacy among these oils. The disease control efficacy of these emulsions increased as the oil concentration increased. Both disease incidence and disease severity were measured by detached leaf and pot experiment, respectively. For the droplet size effect, results showed that the 114 nm of droplet size synthesized by 0.25% cinnamon oil emulsion had the lowest disease incidence (6.67%) and lowest disease severity (33.33%). The release of zoospore was inhibited (5.33%), and the sporangia germination was damaged. These results suggest that cinnamon oil emulsion will be a valuable and environmentally friendly alternative to control cucumber downy mildew. The economic loss caused by plant disease could also be reduced.Keywords: downy mildew, emulsion, oil droplet size, plant protectant
Procedia PDF Downloads 1312241 Plasma Spraying of 316 Stainless Steel on Aluminum and Investigation of Coat/Substrate Interface
Authors: P. Abachi, T. W. Coyle, P. S. Musavi Gharavi
Abstract:
By applying coating onto a structural component, the corrosion and/or wear resistance requirements of the surface can be fulfilled. Since the layer adhesion of the coating influences the mechanical integrity of the coat/substrate interface during the service time, it should be examined accurately. At the present work, the tensile bonding strength of the 316 stainless steel plasma sprayed coating on aluminum substrate was determined by using tensile adhesion test, TAT, specimen. The interfacial fracture toughness was specified using four-point bend specimen containing a saw notch and modified chevron-notched short-bar (SB) specimen. The coating microstructure and fractured specimen surface were examined by using scanning electron- and optical-microscopy. The investigation of coated surface after tensile adhesion test indicates that the failure mechanism is mostly cohesive and rarely adhesive type. The calculated value of critical strain energy release rate proposes relatively good interface status. It seems that four-point bending test offers a potentially more sensitive means for evaluation of mechanical integrity of coating/substrate interfaces than is possible with the tensile test. The fracture toughness value reported for the modified chevron-notched short-bar specimen testing cannot be taken as absolute value because its calculation is based on the minimum stress intensity coefficient value which has been suggested for the fracture toughness determination of homogeneous parts in the ASTM E1304-97 standard.Keywords: bonding strength, four-point bend test, interfacial fracture toughness, modified chevron-notched short-bar specimen, plasma sprayed coating, tensile adhesion test
Procedia PDF Downloads 2632240 The impact of Climate Change and Land use/land Cover Change (LUCC) on Carbon Storage in Arid and Semi-Arid Regions of China
Authors: Xia Fang
Abstract:
Arid and semiarid areas of China (ASAC) have experienced significant land-use/cover changes (LUCC), along with intensified climate change. However, LUCC and climate changes and their individual and interactive effects on carbon stocks have not yet been fully understood in the ASAC. This study analyses the carbon stocks in the ASAC during 1980 - 2020 using the specific arid ecosystem model (AEM), and investigates the effects of LUCC and climate change on carbon stock trends. The results indicate that in the past 41 years, the ASAC carbon pool experienced an overall growth trend, with an increase of 182.03 g C/m2. Climatic factors (+291.99 g C/m2), especially the increase in precipitation, were the main drivers of the carbon pool increase. LUCC decreased the carbon pool (-112.27 g C/m2), mainly due to the decrease in grassland area (-2.77%). The climate-induced carbon sinks were distributed in northern Xinjiang, on the Ordos Plateau, and in Northeast China, while the LUCC-induced carbon sinks mainly occurred on the Ordos Plateau and the North China Plain, resulting in a net decrease in carbon sequestration in these regions according to carbon pool measurements. The study revealed that the combination of climate variability, LUCC, and increasing atmospheric CO2 concentration resulted in an increase of approximately 182.03 g C/m2, which was mainly distributed in eastern Inner Mongolia and the western Qinghai-Tibet Plateau. Our findings are essential for improving theoretical guidance to protect the ecological environment, rationally plan land use, and understand the sustainable development of arid and semiarid zones.Keywords: AEM, climate change, LUCC, carbon stocks
Procedia PDF Downloads 862239 Two-Stage Anaerobic Digester for Biogas Production from Sewage Sludge: A Case Study in One of Kuwait’s Wastewater Treatment Plant
Authors: Abdullah Almatouq, Abdulla Abusam, Hussain Hussain, Mishari Khajah, Hussain Abdullah, Rashed Al-Yaseen, Mariam Al-Jumaa, Farah Al-Ajeel, Mohammad Aljassam
Abstract:
Due to the high demand for energy from unsustainable resources in Kuwait, the Kuwaiti government has focused recently on using sustainable resources for energy, such as solar and wind energy. In addition, sludge which is generated as a by-product of physical, chemical, and biological processes during wastewater treatment, can be used as a substrate to generate energy through anaerobic digestion. Kuwait’s wastewater treatment plants produce more than 1.7 million m3 of sludge per year, and this volume is accumulated in the treatment plants without any treatment. Therefore, a pilot-scale (3 m3) two-stage anaerobic digester was constructed in one of the largest treatment plants in Kuwait. The reactor was operated in batch mode, and the hydraulic retention time varied between 14 – 27 days. The main of this study is to evaluate the technical feasibility of a two-stage anaerobic digester for sludge treatability and energy generation in Kuwait. The anaerobic digester achieved a total biogas production of 37 m3, and the highest value of daily biogas production was 0.4 m3/day. The methane content ranged between 50 % and 66 %, and the other gases were as follows: CO2 20 %, H2S 13 %, and 1 % O2. The generated biogas was used on-site for cooking and lighting. In some batches, low C/N was noticed, and that lead to maintaining the concentration of CH4 between 50%-55%. In conclusion, an anaerobic digester is an environmentally friendly technology that can be applied in Kuwait, and the obtained results support the scale-up of the process in all the treatment plants.Keywords: wastewater, metahne, biogas production potential, anaerobic digestion
Procedia PDF Downloads 1212238 Determination of Metalaxyl Efficacy in Controlling Phytophthora palmivora Infection of Durian Using Bioassay
Authors: Supawadee Phetkhajone, Wisuwat Songnuan
Abstract:
Metalaxyl is one of the most common and effective fungicides used to control Phytophthora palmivora infection in durian (Durio zibethinus L.). The efficacy of metalaxyl residue in durian under greenhouse condition was evaluated using bioassay. Durian seedlings were treated with 2 methods of application, spraying, and soil drenching of metalaxyl, at recommended concentration (1000 mg/L). Mock treated samples were treated with 0.1% Tween20 and water for spraying and soil drenching methods, respectively. The experiment was performed in triplicates. Leaves were detached from treated plants at 0, 1, 7, 15, 20, 30, and 60 days after application, inoculated with metalaxyl-resistant and metalaxyl-sensitive isolates of P. palmivora, and incubated in a high humidity chamber for 5 days at room temperature. Metalaxyl efficacy was determined by measuring the lesion size on metalaxyl treated and mock treated samples. The results showed that metalaxyl can control metalaxyl-sensitive isolate of P. palmivora for at least 30 days after application in both methods of application. The metalaxyl-resistant isolate was not inhibited in all treatments. Leaf samples from spraying method showed larger lesions compared to soil drench method. These results demonstrated that metalaxyl applications, especially soil drenching methods showed high efficacy to control metalaxyl-sensitive isolates of P. palmivora, although it cannot control metalaxyl-resistant isolates of P. palmivora in all treatments. These qualitative data indicate that metalaxyl may suitable to control metalaxyl-sensitive isolates of P. palmivora infection.Keywords: bioassay, degradation, durian, metalaxyl
Procedia PDF Downloads 1292237 Indoor Air Pollution of the Flexographic Printing Environment
Authors: Jelena S. Kiurski, Vesna S. Kecić, Snežana M. Aksentijević
Abstract:
The identification and evaluation of organic and inorganic pollutants were performed in a flexographic facility in Novi Sad, Serbia. Air samples were collected and analyzed in situ, during 4-hours working time at five sampling points by the mobile gas chromatograph and ozonometer at the printing of collagen casing. Experimental results showed that the concentrations of isopropyl alcohol, acetone, total volatile organic compounds and ozone varied during the sampling times. The highest average concentrations of 94.80 ppm and 102.57 ppm were achieved at 200 minutes from starting the production for isopropyl alcohol and total volatile organic compounds, respectively. The mutual dependences between target hazardous and microclimate parameters were confirmed using a multiple linear regression model with software package STATISTICA 10. Obtained multiple coefficients of determination in the case of ozone and acetone (0.507 and 0.589) with microclimate parameters indicated a moderate correlation between the observed variables. However, a strong positive correlation was obtained for isopropyl alcohol and total volatile organic compounds (0.760 and 0.852) with microclimate parameters. Higher values of parameter F than Fcritical for all examined dependences indicated the existence of statistically significant difference between the concentration levels of target pollutants and microclimates parameters. Given that, the microclimate parameters significantly affect the emission of investigated gases and the application of eco-friendly materials in production process present a necessity.Keywords: flexographic printing, indoor air, multiple regression analysis, pollution emission
Procedia PDF Downloads 1992236 Non-Medical Prescription and Other Drug Use in Relation to Mental Health and World Beliefs: A Study of College Students
Authors: Sarah P. Wuebbolt, Ashlee N. Sawyer-Mays
Abstract:
Non-medical prescription and other drug (NMPOD) use has been a significant public health issue for the last few decades, with problematic use increasing among university students more recently. The current study focused on associations between NMPOD use and mental health, well-being, and world beliefs among young adults. Young adults (N=513) completed online questionnaires assessing stress, demographic characteristics, self-esteem, NMPOD use, coping mechanisms, and anxiety. A substantial portion of participants reported using cannabis (48.5%, n=249), while smaller portions of participants reported using stimulants (26.7%, n = 137), sedatives (17.2%, n=88), opioids (10.8%, n=55), and hallucinogens (14.4%, n=74). Five hierarchical logistic regressions were performed to determine the independent relationships between mental health, well-being, and world belief factors and NMPOD use for the five classes of substances. After controlling for demographic factors (age, gender, race/ethnicity, sexual orientation, and religious affiliation), depression was associated with increased non-medical stimulant, opioid, and cannabis use; coping self-efficacy was associated with increased hallucinogen use, and attendance of worship services was associated with decreased non-medical cannabis and hallucinogen use. Results suggest that depression was strongly associated with non-medical stimulant, opioid, and cannabis use, and attendance of worship services was protective against cannabis and hallucinogen use. To the best of our knowledge, this is one of the first studies to investigate the relationships between mental health, well-being, world beliefs, and NMPOD use among young adults. The present study illuminates future targets for intervention, such as increased access to mental health diagnosis and treatment and the exploration of the roles of religion and shared community in the prevention of drug use among young adults.Keywords: cannabis, mental health, non-medical prescription and other drug use, world beliefs
Procedia PDF Downloads 702235 Total and Leachable Concentration of Trace Elements in Soil towards Human Health Risk, Related with Coal Mine in Jorong, South Kalimantan, Indonesia
Authors: Arie Pujiwati, Kengo Nakamura, Noriaki Watanabe, Takeshi Komai
Abstract:
Coal mining is well known to cause considerable environmental impacts, including trace element contamination of soil. This study aimed to assess the trace element (As, Cd, Co, Cu, Ni, Pb, Sb, and Zn) contamination of soil in the vicinity of coal mining activities, using the case study of Asam-asam River basin, South Kalimantan, Indonesia, and to assess the human health risk, incorporating total and bioavailable (water-leachable and acid-leachable) concentrations. The results show the enrichment of As and Co in soil, surpassing the background soil value. Contamination was evaluated based on the index of geo-accumulation, Igeo and the pollution index, PI. Igeo values showed that the soil was generally uncontaminated (Igeo ≤ 0), except for elevated As and Co. Mean PI for Ni and Cu indicated slight contamination. Regarding the assessment of health risks, the Hazard Index, HI showed adverse risks (HI > 1) for Ni, Co, and As. Further, Ni and As were found to pose unacceptable carcinogenic risk (risk > 1.10-5). Farming, settlement, and plantation were found to present greater risk than coal mines. These results show that coal mining activity in the study area contaminates the soils by particular elements and may pose potential human health risk in its surrounding area. This study is important for setting appropriate countermeasure actions and improving basic coal mining management in Indonesia.Keywords: coal mine, risk, trace elements, soil
Procedia PDF Downloads 2642234 Investigation of Influence of Maize Stover Components and Urea Treatment on Dry Matter Digestibility and Fermentation Kinetics Using in vitro Gas Techniques
Authors: Anon Paserakung, Chaloemphon Muangyen, Suban Foiklang, Yanin Opatpatanakit
Abstract:
Improving nutritive values and digestibility of maize stover is an alternative way to increase their utilization in ruminant and reduce air pollution from open burning of maize stover in the northern Thailand. The present study, 2x3 factorial arrangements in completely randomized design was conducted to investigate the effect of maize stover components (whole and upper stover; cut above 5th node). Urea treatment at levels 0, 3, and 6% DM on dry matter digestibility and fermentation kinetics of maize stover using in vitro gas production. After 21 days of urea treatment, results illustrated that there was no interaction between maize stover components and urea treatment on 48h in vitro dry matter digestibility (IVDMD). IVDMD was unaffected by maize stover components (P > 0.05), average IVDMD was 55%. However, using whole maize stover gave higher cumulative gas and gas kinetic parameters than those of upper stover (P<0.05). Treating maize stover by ensiling with urea resulted in a significant linear increase in IVDMD (P<0.05). IVDMD increased from 42.6% to 53.9% when increased urea concentration from 0 to 3% and maximum IVDMD (65.1%) was observed when maize stover was ensiled with 6% urea. Maize stover treated with urea at levels of 0, 3, and 6% linearly increased cumulative gas production at 96h (31.1 vs 50.5 and 59.1 ml, respectively) and all gas kinetic parameters excepted the gas production from the immediately soluble fraction (P<0.50). The results indicate that maize stover treated with 6% urea enhance in vitro dry matter digestibility and fermentation kinetics. This study provides a practical approach to increasing utilization of maize stover in feeding ruminant animals.Keywords: maize stover, urea treatment, ruminant feed, gas production
Procedia PDF Downloads 2292233 Hemodynamics of a Cerebral Aneurysm under Rest and Exercise Conditions
Authors: Shivam Patel, Abdullah Y. Usmani
Abstract:
Physiological flow under rest and exercise conditions in patient-specific cerebral aneurysm models is numerically investigated. A finite-volume based code with BiCGStab as the linear equation solver is used to simulate unsteady three-dimensional flow field through the incompressible Navier-Stokes equations. Flow characteristics are first established in a healthy cerebral artery for both physiological conditions. The effect of saccular aneurysm on cerebral hemodynamics is then explored through a comparative analysis of the velocity distribution, nature of flow patterns, wall pressure and wall shear stress (WSS) against the reference configuration. The efficacy of coil embolization as a potential strategy of surgical intervention is also examined by modelling coil as a homogeneous and isotropic porous medium where the extended Darcy’s law, including Forchheimer and Brinkman terms, is applicable. The Carreau-Yasuda non-Newtonian blood model is incorporated to capture the shear thinning behavior of blood. Rest and exercise conditions correspond to normotensive and hypertensive blood pressures respectively. The results indicate that the fluid impingement on the outer wall of the arterial bend leads to abnormality in the distribution of wall pressure and WSS, which is expected to be the primary cause of the localized aneurysm. Exercise correlates with elevated flow velocity, vortex strength, wall pressure and WSS inside the aneurysm sac. With the insertion of coils in the aneurysm cavity, the flow bypasses the dilatation, leading to a decline in flow velocities and WSS. Particle residence time is observed to be lower under exercise conditions, a factor favorable for arresting plaque deposition and combating atherosclerosis.Keywords: 3D FVM, Cerebral aneurysm, hypertension, coil embolization, non-Newtonian fluid
Procedia PDF Downloads 2372232 Amino Acid Responses of Wheat Cultivars under Glasshouse Drought Accurately Predict Yield-Based Drought Tolerance in the Field
Authors: Arun K. Yadav, Adam J. Carroll, Gonzalo M. Estavillo, Greg J. Rebetzke, Barry J. Pogson
Abstract:
Water limits crop productivity, so selecting for minimal yield-gap in drier environments is critical to mitigate against climate change and land-use pressures. To date, no markers measured in glasshouses have been reported to predict field-based drought tolerance. In the field, the best measure of drought tolerance is yield-gap; but this requires multisite trials that are an order of magnitude more resource intensive and can be impacted by weather variation. We investigated the responses of relative water content (RWC), stomatal conductance (gs), chlorophyll content and metabolites in flag leaves of commercial wheat (Triticum aestivum L.) cultivars to three drought treatments in the glasshouse and field environments. We observed strong genetic associations between glasshouse-based RWC, metabolites and Yield gap-based Drought Tolerance (YDT): the ratio of yield in water-limited versus well-watered conditions across 24 field environments spanning sites and seasons. Critically, RWC response to glasshouse drought was strongly associated with both YDT (r2 = 0.85, p < 8E-6) and RWC under field drought (r2 = 0.77, p < 0.05). Multiple regression analyses revealed that 98% of genetic YDT variance was explained by drought responses of four metabolites: serine, asparagine, methionine and lysine (R2 = 0.98; p < 0.01). Fitted coefficients suggested that, for given levels of serine and asparagine, stronger methionine and lysine accumulation was associated with higher YDT. Collectively, our results demonstrate that high-throughput, targeted metabolic phenotyping of glasshouse-grown plants may be an effective tool for the selection of wheat cultivars with high YDT in the field.Keywords: drought stress, grain yield, metabolomics, stomatal conductance, wheat
Procedia PDF Downloads 2682231 Antioxidant Face Mask from Purple Sweet Potato (Ipomea Batatas) with Oleum Cytrus
Authors: Lilis Kistriyani, Dine Olisvia, Lutfa Rahmawati
Abstract:
Facial mask is an important part of every beauty treatment because it will give a smooth and gentle effect on the face. This research is done to make edible film that will be applied for face mask. The main ingredient in making this edible film is purple sweet potato powder with the addition of glycerol as plasticizer. One of the ingredients in purple sweet potato is a flavonoid compound. The purpose of this study was to determine the effect of increasing the amount of glycerol to flavonoids release and the effect on the physical properties and biological properties of edible film produced. The stages of this research are the making of edible film, then perform some analysis, among others, spectrophotometer UV-vis analysis to find out how many flavonoids can be released into facial skin, tensile strength and elongation of break analysis, biodegradability analysis, and microbiological analysis. The variation of edible film is the volume of glycerol that is 1 ml, 2 ml, 3 ml. The results of spectrophotometer UV-vis analysis showed that the most flavonoid release concentration is 20.33 ppm in the 2 ml glycerol variation. The best tensile strength value is 8,502 N, and the greatest elongation of break value is 14% in 1 ml glycerol variation. In the biodegradability test, the more volume of glycerol added the faster the edible film is degraded. The results of microbiological analysis showed that purple sweet potato extract has the ability to inhibit the growth of Propionibacterium acnes seen in the presence of inhibiting zone which is 18.9 mm.Keywords: face mask, edible film, plasticizer, flavonoid
Procedia PDF Downloads 1812230 Comparison of the Effects of Continuous Flow Microwave Pre-Treatment with Different Intensities on the Anaerobic Digestion of Sewage Sludge for Sustainable Energy Recovery from Sewage Treatment Plant
Authors: D. Hephzibah, P. Kumaran, N. M. Saifuddin
Abstract:
Anaerobic digestion is a well-known technique for sustainable energy recovery from sewage sludge. However, sewage sludge digestion is restricted due to certain factors. Pre-treatment methods have been established in various publications as a promising technique to improve the digestibility of the sewage sludge and to enhance the biogas generated which can be used for energy recovery. In this study, continuous flow microwave (MW) pre-treatment with different intensities were compared by using 5 L semi-continuous digesters at a hydraulic retention time of 27 days. We focused on the effects of MW at different intensities on the sludge solubilization, sludge digestibility, and biogas production of the untreated and MW pre-treated sludge. The MW pre-treatment demonstrated an increase in the ratio of soluble chemical oxygen demand to total chemical oxygen demand (sCOD/tCOD) and volatile fatty acid (VFA) concentration. Besides that, the total volatile solid (TVS) removal efficiency and tCOD removal efficiency also increased during the digestion of the MW pre-treated sewage sludge compared to the untreated sewage sludge. Furthermore, the biogas yield also subsequently increases due to the pre-treatment effect. A higher MW power level and irradiation time generally enhanced the biogas generation which has potential for sustainable energy recovery from sewage treatment plant. However, the net energy balance tabulation shows that the MW pre-treatment leads to negative net energy production.Keywords: anaerobic digestion, biogas, microwave pre-treatment, sewage sludge
Procedia PDF Downloads 3232229 The Effect of Incorporating Animal Assisted Interventions with Trauma Focused Cognitive Behavioral Therapy
Authors: Kayla Renteria
Abstract:
This study explored the role animal-assisted psychotherapy (AAP) can play in treating Post-Traumatic Stress Disorder (PTSD) when incorporated into Trauma-informed cognitive behavioral therapy (TF-CBT). A review of the literature was performed to show how incorporating AAP could benefit TF-CBT since this treatment model often presents difficulties, such as client motivation and avoidance of the exposure element of the intervention. In addition, the fluidity of treatment goals during complex trauma cases was explored, as this issue arose in the case study. This study follows the course of treatment of a 12-year-old female presenting with symptoms of PTSD. Treatment consisted of traditional components of the TF-CBT model, with the added elements of AAP to address typical treatment obstacles in TF-CBT. A registered therapy dog worked with the subject in all sessions throughout her treatment. The therapy dog was incorporated into components such as relaxation and coping techniques, narrative therapy techniques, and psychoeducation on the cognitive triangle. Throughout the study, the client’s situation and clinical needs required the therapist to switch goals to focus on current safety and stability. The therapy dog provided support and neurophysiological benefits to the client through AAP during this shift in treatment. The client was assessed quantitatively using the Child PTSD Symptom Scale Self Report for DSM-5 (CPSS-SR-5) before and after therapy and qualitatively through a feedback form given after treatment. The participant showed improvement in CPSS-SR-V scores, and she reported that the incorporation of the therapy animal improved her therapy. The results of this study show how the use of AAP provided the client a solid, consistent relationship with the therapy dog that supported her through processing various types of traumas. Implications of the results of treatment and for future research are discussed.Keywords: animal-assisted therapy, trauma-focused cognitive behavioral therapy, PTSD in children, trauma treatment
Procedia PDF Downloads 2242228 Molecular Mechanism on Inflammation and Antioxidant Role of Pterocarpus Marsupiumin in Experimental Hyperglycaemia
Authors: Leelavinothan Pari , Ayyasamy Rathinam
Abstract:
Diabetes mellitus (DM) is a major and growing public health problem throughout the world. Pterocarpus marsupium (Roxb.) (Family: Fabaceae) is widely used as a traditional medicine to treat various diseases including diabetes. However, the molecular mechanism of Pterocarpus marsupium has not been investigated so far. Two fractions (2.5% and 5%) of extract from the medicinal plant, Pterocarpus marsupium (PME) were conducted in a dose dependent manner in streptozotocin (45 mg/kg b.w.) induced type 2 diabetic rats. Each fraction of PME was administered to diabetic rats intragastrically at a dose of 50, 100 and 200 mg/kg b.w for 45 days. The effective dose 200 mg/kg b.w of 5% fraction was more pronounced in reducing the levels of blood glucose (95.65 mg/dL) and glycosylated hemoglobin (HbA1c) (0.41 mg/g Hb), and increasing the plasma insulin (16.20 µU/mL) level. Moreover, PME (200 mg/kg b.w) significantly ameliorated lipid peroxidation products (thiobarbituric reactive substances, lipid hydroperoxides) enzymatic (superoxide dismutase, catalase and glutathione peroxidase) and non-enzymatic antioxidants (Vitamin C, Vitamin E and reduced glutathione) levels. The altered activities of the key enzymes of lipid metabolism along with the lipid profile in diabetic rats were significantly reverted to near normal levels by the administration of PME 5% 200 mg/kg b.w fraction. PME (200 mg/kg b.w) has the ability to reduce the inflammatory cytokines, such as TNF-α, IL-6 mRNA, as well as protein expression and apoptotic marker, such as caspase-3 enzyme in diabetic hepatic tissue. The above biochemical findings were also supported by histological studies such as improvement in pancreas and liver. Pterocarpus marsupium could effectively reduce the hyperglycemia, oxidative-stress, inflammation and hyperlipedimea in diabetic rats; hence it could be a useful drug in the management of diabetes without any side effects.Keywords: diabetes mellitus, streptozotocin, Pterocarpus marsupium, lipid peroxidation, Antioxidants, inflammatory cytokines
Procedia PDF Downloads 3792227 The Effects of Various Storage Scenarios on the Viability of Rooibos Tea Characteristically Used for Research
Authors: Daniella L. Pereira, Emeliana G. Imperial, Ingrid Webster, Ian Wiid, Hans Strijdom, Nireshni Chellan, Sanet H. Kotzé
Abstract:
Rooibos (Aspalathus linearis) is a shrub-like bush native to the Western Cape of South Africa and commonly consumed as a herbal tea. Interest on the anti-oxidant capabilities of the tea have risen based on anecdotal evidence. Rooibos contains polyphenols that contribute to the overall antioxidant capacity of the tea. These polyphenols have been reported to attenuate the effects of oxidative stress in biological systems. The bioavailability of these compounds is compromised when exposed to light, pH fluctuations, and oxidation. It is crucial to evaluate whether the polyphenols in a typical rooibos solution remain constant over time when administered to rats in a research environment. This study aimed to determine the effects of various storage scenarios on the phenolic composition of rooibos tea commonly administered to rodents in experimental studies. A standardised aqueous solution of rooibos tea was filtered and divided into three samples namely fresh, refrigerated, and frozen. Samples were stored in air tight, light excluding bottles. Refrigerated samples were stored at 4°C for seven days. Frozen samples were stored for fourteen days at -20°C. Each sample consisted of two subgroups labeled day 1 and day 7. Teas marked day 7 of each group were kept in air tight, light protected bottles at room temperature for an additional week. All samples (n=6) were freeze-dried and underwent polyphenol characterization using liquid chromatography-mass spectrometry. The phenolic composition remained constant throughout all groups. This indicates that rooibos tea can be safely stored at the above conditions without compromising the phenolic viability of the tea typically used for research purposes.Keywords: Aspalathus linearis, experimental studies, polyphenols, storage
Procedia PDF Downloads 2302226 Anti-Melanogenesis and Anti-Inflammatory Effects of Opuntia humifusa
Authors: Yonghwa Lee, Yoon Suk Kim, Yongsub Yi
Abstract:
This study was to confirm the effects of anti-melanogenesis and anti-inflammatory effects from Opuntia humifusa fruit and stem extracts. A potent anti-oxidant activity was shown from the leaf extract at IC50 value of 38.33±1.07 μg/mL and fruit extract at IC50 value of 40.23±2.21 μg/mL by 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. Also, phenolic contents were confirmed total phenolic assay by high performance liquid chromatography (HPLC). Fraction of taxifolin from leaf extract was identified using HPLC and gas chromatography/mass spectrometry. The extracts of Opuntia humifusa fruit and stem were confirmed about toxicity effect in B16 F1 by cell viability. Melanin contents were decreased. Opuntia humifusa fruit and stem extracts had a positive effect of melanin synthesis inhibition for skin whitening. In investigating the anti-inflammatory activities of Opuntia humifusa, the results of cell viability indicated that taxifolin did not show cytotoxicity on RAW264.7 cells at 500 μM of concentration. The results show that taxifolin inhibited lipopolysaccharide (LPS)-induced production of Nitrite oxide (NO). In addition, taxifolin indicated the inhibition of lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF) -α and interleukin (IL) -6 productions by cytokine assay and cyclooxygenase (COX)-2 expression by western blot analysis, meaning that taxifolin had a significant anti-inflammatory effect. Our results suggested that taxifolin from Opuntia humifusa has anti-melanogenesis and anti-inflammatory activities.Keywords: anti-melanogenesis, anti-inflammatory, Opuntia humifusa, taxifolin
Procedia PDF Downloads 3172225 PitMod: The Lorax Pit Lake Hydrodynamic and Water Quality Model
Authors: Silvano Salvador, Maryam Zarrinderakht, Alan Martin
Abstract:
Open pits, which are the result of mining, are filled by water over time until the water reaches the elevation of the local water table and generates mine pit lakes. There are several specific regulations about the water quality of pit lakes, and mining operations should keep the quality of groundwater above pre-defined standards. Therefore, an accurate, acceptable numerical model predicting pit lakes’ water balance and water quality is needed in advance of mine excavation. We carry on analyzing and developing the model introduced by Crusius, Dunbar, et al. (2002) for pit lakes. This model, called “PitMod”, simulates the physical and geochemical evolution of pit lakes over time scales ranging from a few months up to a century or more. Here, a lake is approximated as one-dimensional, horizontally averaged vertical layers. PitMod calculates the time-dependent vertical distribution of physical and geochemical pit lake properties, like temperature, salinity, conductivity, pH, trace metals, and dissolved oxygen, within each model layer. This model considers the effect of pit morphology, climate data, multiple surface and subsurface (groundwater) inflows/outflows, precipitation/evaporation, surface ice formation/melting, vertical mixing due to surface wind stress, convection, background turbulence and equilibrium geochemistry using PHREEQC and linking that to the geochemical reactions. PitMod, which is used and validated in over 50 mines projects since 2002, incorporates physical processes like those found in other lake models such as DYRESM (Imerito 2007). However, unlike DYRESM PitMod also includes geochemical processes, pit wall runoff, and other effects. In addition, PitMod is actively under development and can be customized as required for a particular site.Keywords: pit lakes, mining, modeling, hydrology
Procedia PDF Downloads 1682224 Human Xanthine Oxidase Inhibitory Effect, in vivo Antioxidant Activity of Globularia alypum L. Extracts
Authors: N. Boussoualim, H. Trabsa, I. Krache, S. Aouachria, S. Boumerfeg, L. Arrar, A. Baghiani
Abstract:
The aim of this study consisted in evaluating the antioxidant in vivo properties, anti-hemolytic and XOR inhibitory effect of Globularia alypum L. (GA) extracts. GA was submitted to extraction and fractionation to give crude (CrE), chloroformique (ChE), ethyle acetate (EAE) and aqueos (AqE) extracts. Total polyphenols contents of GA extracts were determined; EAE is the most rich in polyphenols (157,74±5,27 mg GAE/mg of extract). GA Extracts inhibited XO in a concentration-dependent manner, the EAE showed the highest inhibitory properties on the XOR activity (IC50=0,083±0,001 mg/ml), followed by CrE and ChE. The antioxidant activities of the CrE, EAE, and AqE were tested by an in vivo assay in mice, the plasma ability to inhibit DPPH radical was measured, The CrE was found to exhibit the greatest scavenger activity with 48.41±2.763%, followed by AqE and EAE (40.54±7.51% and 41.79±1.654%, respectively). Total antioxidant capacity of red blood cells was measured, from the kinetics of hemolysis obtained. The calculated HT50 reveal an extension of time for half hemolysis in all treated groups compared with the control group. CrE increase significantly HT50 (112,8±2,427). The hemolysis is lagged, indicating that endogenous antioxidants in the erythrocytes can trap radicals to protect them against free-radical-induced hemolysis. Antimicrobial activities of the extracts were determined by the disc diffusion method. Test microorganisms were; 4 Gram positive, 7 gram negative bacteria, most active extracts were EAE and CrE. We deduce a great relationship between the effect on the extracts antibacterial effect and their contents in flavonoid.Keywords: Globularia alypum, Xanthine oxidoreductase, in vivo-antioxidant activity, hemolysis, polyphenol
Procedia PDF Downloads 3392223 Simulation and Assessment of Carbon Dioxide Separation by Piperazine Blended Solutions Using E-NRTL and Peng-Robinson Models: Study of Regeneration Heat Duty
Authors: Arash Esmaeili, Zhibang Liu, Yang Xiang, Jimmy Yun, Lei Shao
Abstract:
A high-pressure carbon dioxide (CO₂) absorption from a specific off-gas in a conventional column has been evaluated for the environmental concerns by the Aspen HYSYS simulator using a wide range of single absorbents and piperazine (PZ) blended solutions to estimate the outlet CO₂ concentration, CO₂ loading, reboiler power supply, and regeneration heat duty to choose the most efficient solution in terms of CO₂ removal and required heat duty. The property package, which is compatible with all applied solutions for the simulation in this study, estimates the properties based on the electrolyte non-random two-liquid (E-NRTL) model for electrolyte thermodynamics and Peng-Robinson equation of state for vapor phase and liquid hydrocarbon phase properties. The results of the simulation indicate that piperazine, in addition to the mixture of piperazine and monoethanolamine (MEA), demands the highest regeneration heat duty compared with other studied single and blended amine solutions, respectively. The blended amine solutions with the lowest PZ concentrations (5wt% and 10wt%) were considered and compared to reduce the cost of the process, among which the blended solution of 10wt%PZ+35wt%MDEA (methyldiethanolamine) was found as the most appropriate solution in terms of CO₂ content in the outlet gas, rich-CO₂ loading, and regeneration heat duty.Keywords: absorption, amine solutions, aspen HYSYS, CO₂ loading, piperazine, regeneration heat duty
Procedia PDF Downloads 194