Search results for: future shaping
609 A Dynamic Model for Circularity Assessment of Nutrient Recovery from Domestic Sewage
Authors: Anurag Bhambhani, Jan Peter Van Der Hoek, Zoran Kapelan
Abstract:
The food system depends on the availability of Phosphorus (P) and Nitrogen (N). Growing population, depleting Phosphorus reserves and energy-intensive industrial nitrogen fixation are threats to their future availability. Recovering P and N from domestic sewage water offers a solution. Recovered P and N can be applied to agricultural land, replacing virgin P and N. Thus, recovery from sewage water offers a solution befitting a circular economy. To ensure minimum waste and maximum resource efficiency a circularity assessment method is crucial to optimize nutrient flows and minimize losses. Material Circularity Indicator (MCI) is a useful method to quantify the circularity of materials. It was developed for materials that remain within the market and recently extended to include biotic materials that may be composted or used for energy recovery after end-of-use. However, MCI has not been used in the context of nutrient recovery. Besides, MCI is time-static, i.e., it cannot account for dynamic systems such as the terrestrial nutrient cycles. Nutrient application to agricultural land is a highly dynamic process wherein flows and stocks change with time. The rate of recycling of nutrients in nature can depend on numerous factors such as prevailing soil conditions, local hydrology, the presence of animals, etc. Therefore, a dynamic model of nutrient flows with indicators is needed for the circularity assessment. A simple substance flow model of P and N will be developed with the help of flow equations and transfer coefficients that incorporate the nutrient recovery step along with the agricultural application, the volatilization and leaching processes, plant uptake and subsequent animal and human uptake. The model is then used for calculating the proportions of linear and restorative flows (coming from reused/recycled sources). The model will simulate the adsorption process based on the quantity of adsorbent and nutrient concentration in the water. Thereafter, the application of the adsorbed nutrients to agricultural land will be simulated based on adsorbate release kinetics, local soil conditions, hydrology, vegetation, etc. Based on the model, the restorative nutrient flow (returning to the sewage plant following human consumption) will be calculated. The developed methodology will be applied to a case study of resource recovery from wastewater. In the aforementioned case study located in Italy, biochar or zeolite is to be used for recovery of P and N from domestic sewage through adsorption and thereafter, used as a slow-release fertilizer in agriculture. Using this model, information regarding the efficiency of nutrient recovery and application can be generated. This can help to optimize the recovery process and application of the nutrients. Consequently, this will help to optimize nutrient recovery and application and reduce the dependence of the food system on the virgin extraction of P and N.Keywords: circular economy, dynamic substance flow, nutrient cycles, resource recovery from water
Procedia PDF Downloads 198608 Nursing Experience in the Intensive Care of a Lung Cancer Patient with Pulmonary Embolism on Extracorporeal Membrane Oxygenation
Authors: Huang Wei-Yi
Abstract:
Objective: This article explores the intensive care nursing experience of a lung cancer patient with pulmonary embolism who was placed on ECMO. Following a sudden change in the patient’s condition and a consensus reached during a family meeting, the decision was made to withdraw life-sustaining equipment and collaborate with the palliative care team. Methods: The nursing period was from October 20 to October 27, 2023. The author monitored physiological data, observed, provided direct care, conducted interviews, performed physical assessments, and reviewed medical records. Together with the critical care team and bypass personnel, a comprehensive assessment was conducted using Gordon's Eleven Functional Health Patterns to identify the patient’s health issues, which included pain related to lung cancer and invasive devices, fear of death due to sudden deterioration, and altered tissue perfusion related to hemodynamic instability. Results: The patient was admitted with fever, back pain, and painful urination. During hospitalization, the patient experienced sudden discomfort followed by cardiac arrest, requiring multiple CPR attempts and ECMO placement. A subsequent CT angiogram revealed a pulmonary embolism. The patient's condition was further complicated by severe pain due to compression fractures, and a diagnosis of terminal lung cancer was unexpectedly confirmed, leading to emotional distress and uncertainty about future treatment. Throughout the critical care process, ECMO was removed on October 24, stabilizing the patient’s body temperature between 36.5-37°C and maintaining a mean arterial pressure of 60-80 mmHg. Pain management, including Morphine 8mg in 0.9% N/S 100ml IV drip q6h PRN and Ultracet 37.5 mg/325 mg 1# PO q6h, kept the pain level below 3. The patient was transferred to the ward on October 27 and discharged home on October 30. Conclusion: During the care period, collaboration with the medical team and palliative care professionals was crucial. Adjustments to pain medication, symptom management, and lung cancer-targeted therapy improved the patient’s physical discomfort and pain levels. By applying the unique functions of nursing and the four principles of palliative care, positive encouragement was provided. Family members, along with social workers, clergy, psychologists, and nutritionists, participated in cross-disciplinary care, alleviating anxiety and fear. The consensus to withdraw ECMO and life-sustaining equipment enabled the patient and family to receive high-quality care and maintain autonomy in decision-making. A follow-up call on November 1 confirmed that the patient was emotionally stable, pain-free, and continuing with targeted lung cancer therapy.Keywords: intensive care, lung cancer, pulmonary embolism, ECMO
Procedia PDF Downloads 30607 Evaluation of Coupled CFD-FEA Simulation for Fire Determination
Authors: Daniel Martin Fellows, Sean P. Walton, Jennifer Thompson, Oubay Hassan, Ella Quigley, Kevin Tinkham
Abstract:
Fire performance is a crucial aspect to consider when designing cladding products, and testing this performance is extremely expensive. Appropriate use of numerical simulation of fire performance has the potential to reduce the total number of fire tests required when designing a product by eliminating poor-performing design ideas early in the design phase. Due to the complexity of fire and the large spectrum of failures it can cause, multi-disciplinary models are needed to capture the complex fire behavior and its structural effects on its surroundings. Working alongside Tata Steel U.K., the authors have focused on completing a coupled CFD-FEA simulation model suited to test Polyisocyanurate (PIR) based sandwich panel products to gain confidence before costly experimental standards testing. The sandwich panels are part of a thermally insulating façade system primarily for large non-domestic buildings. The work presented in this paper compares two coupling methodologies of a replicated physical experimental standards test LPS 1181-1, carried out by Tata Steel U.K. The two coupling methodologies that are considered within this research are; one-way and two-way. A one-way coupled analysis consists of importing thermal data from the CFD solver into the FEA solver. A two-way coupling analysis consists of continuously importing the updated changes in thermal data, due to the fire's behavior, to the FEA solver throughout the simulation. Likewise, the mechanical changes will also be updated back to the CFD solver to include geometric changes within the solution. For CFD calculations, a solver called Fire Dynamic Simulator (FDS) has been chosen due to its adapted numerical scheme to focus solely on fire problems. Validation of FDS applicability has been achieved in past benchmark cases. In addition, an FEA solver called ABAQUS has been chosen to model the structural response to the fire due to its crushable foam plasticity model, which can accurately model the compressibility of PIR foam. An open-source code called FDS-2-ABAQUS is used to couple the two solvers together, using several python modules to complete the process, including failure checks. The coupling methodologies and experimental data acquired from Tata Steel U.K are compared using several variables. The comparison data includes; gas temperatures, surface temperatures, and mechanical deformation of the panels. Conclusions are drawn, noting improvements to be made on the current coupling open-source code FDS-2-ABAQUS to make it more applicable to Tata Steel U.K sandwich panel products. Future directions for reducing the computational cost of the simulation are also considered.Keywords: fire engineering, numerical coupling, sandwich panels, thermo fluids
Procedia PDF Downloads 90606 Transforming Ganges to be a Living River through Waste Water Management
Authors: P. M. Natarajan, Shambhu Kallolikar, S. Ganesh
Abstract:
By size and volume of water, Ganges River basin is the biggest among the fourteen major river basins in India. By Hindu’s faith, it is the main ‘holy river’ in this nation. But, of late, the pollution load, both domestic and industrial sources are deteriorating the surface and groundwater as well as land resources and hence the environment of the Ganges River basin is under threat. Seeing this scenario, the Indian government began to reclaim this river by two Ganges Action Plans I and II since 1986 by spending Rs. 2,747.52 crores ($457.92 million). But the result was no improvement in the water quality of the river and groundwater and environment even after almost three decades of reclamation, and hence now the New Indian Government is taking extra care to rejuvenate this river and allotted Rs. 2,037 cores ($339.50 million) in 2014 and Rs. 20,000 crores ($3,333.33 million) in 2015. The reasons for the poor water quality and stinking environment even after three decades of reclamation of the river are either no treatment/partial treatment of the sewage. Hence, now the authors are suggesting a tertiary level treatment standard of sewages of all sources and origins of the Ganges River basin and recycling the entire treated water for nondomestic uses. At 20million litres per day (MLD) capacity of each sewage treatment plant (STP), this basin needs about 2020 plants to treat the entire sewage load. Cost of the STPs is Rs. 3,43,400 million ($5,723.33 million) and the annual maintenance cost is Rs. 15,352 million ($255.87 million). The advantages of the proposed exercise are: we can produce a volume of 1,769.52 million m3 of biogas. Since biogas is energy, can be used as a fuel, for any heating purpose, such as cooking. It can also be used in a gas engine to convert the energy in the gas into electricity and heat. It is possible to generate about 3,539.04 million kilowatt electricity per annum from the biogas generated in the process of wastewater treatment in Ganges basin. The income generation from electricity works out to Rs 10,617.12million ($176.95million). This power can be used to bridge the supply and demand gap of energy in the power hungry villages where 300million people are without electricity in India even today, and to run these STPs as well. The 664.18 million tonnes of sludge generated by the treatment plants per annum can be used in agriculture as manure with suitable amendments. By arresting the pollution load the 187.42 cubic kilometer (km3) of groundwater potential of the Ganges River basin could be protected from deterioration. Since we can recycle the sewage for non-domestic purposes, about 14.75km3 of fresh water per annum can be conserved for future use. The total value of the water saving per annum is Rs.22,11,916million ($36,865.27million) and each citizen of Ganges River basin can save Rs. 4,423.83/ ($73.73) per annum and Rs. 12.12 ($0.202) per day by recycling the treated water for nondomestic uses. Further the environment of this basin could be kept clean by arresting the foul smell as well as the 3% of greenhouse gages emission from the stinking waterways and land. These are the ways to reclaim the waterways of Ganges River basin from deterioration.Keywords: Holy Ganges River, lifeline of India, wastewater treatment and management, making Ganges permanently holy
Procedia PDF Downloads 285605 The Impact of Social Support on Anxiety and Depression under the Context of COVID-19 Pandemic: A Scoping Review and Meta-Analysis
Authors: Meng Wu, Atif Rahman, Eng Gee, Lim, Jeong Jin Yu, Rong Yan
Abstract:
Context: The COVID-19 pandemic has had a profound impact on mental health, with increased rates of anxiety and depression observed. Social support, a critical factor in mental well-being, has also undergone significant changes during the pandemic. This study aims to explore the relationship between social support, anxiety, and depression during COVID-19, taking into account various demographic and contextual factors. Research Aim: The main objective of this study is to conduct a comprehensive systematic review and meta-analysis to examine the impact of social support on anxiety and depression during the COVID-19 pandemic. The study aims to determine the consistency of these relationships across different age groups, occupations, regions, and research paradigms. Methodology: A scoping review and meta-analytic approach were employed in this study. A search was conducted across six databases from 2020 to 2022 to identify relevant studies. The selected studies were then subjected to random effects models, with pooled correlations (r and ρ) estimated. Homogeneity was assessed using Q and I² tests. Subgroup analyses were conducted to explore variations across different demographic and contextual factors. Findings: The meta-analysis of both cross-sectional and longitudinal studies revealed significant correlations between social support, anxiety, and depression during COVID-19. The pooled correlations (ρ) indicated a negative relationship between social support and anxiety (ρ = -0.30, 95% CI = [-0.333, -0.255]) as well as depression (ρ = -0.27, 95% CI = [-0.370, -0.281]). However, further investigation is required to validate these results across different age groups, occupations, and regions. Theoretical Importance: This study emphasizes the multifaceted role of social support in mental health during the COVID-19 pandemic. It highlights the need to reevaluate and expand our understanding of social support's impact on anxiety and depression. The findings contribute to the existing literature by shedding light on the associations and complexities involved in these relationships. Data Collection and Analysis Procedures: The data collection involved an extensive search across six databases to identify relevant studies. The selected studies were then subjected to rigorous analysis using random effects models and subgroup analyses. Pooled correlations were estimated, and homogeneity was assessed using Q and I² tests. Question Addressed: This study aimed to address the question of the impact of social support on anxiety and depression during the COVID-19 pandemic. It sought to determine the consistency of these relationships across different demographic and contextual factors. Conclusion: The findings of this study highlight the significant association between social support, anxiety, and depression during the COVID-19 pandemic. However, further research is needed to validate these findings across different age groups, occupations, and regions. The study emphasizes the need for a comprehensive understanding of social support's multifaceted role in mental health and the importance of considering various contextual and demographic factors in future investigations.Keywords: social support, anxiety, depression, COVID-19, meta-analysis
Procedia PDF Downloads 63604 Modeling the International Economic Relations Development: The Prospects for Regional and Global Economic Integration
Authors: M. G. Shilina
Abstract:
The interstate economic interaction phenomenon is complex. ‘Economic integration’, as one of its types, can be explored through the prism of international law, the theories of the world economy, politics and international relations. The most objective study of the phenomenon requires a comprehensive multifactoral approach. In new geopolitical realities, the problems of coexistence and possible interconnection of various mechanisms of interstate economic interaction are actively discussed. Currently, the Eurasian continent states support the direction to economic integration. At the same time, the existing international economic law fragmentation in Eurasia is seen as the important problem. The Eurasian space is characterized by a various types of interstate relations: international agreements (multilateral and bilateral), and a large number of cooperation formats (from discussion platforms to organizations aimed at deep integration). For their harmonization, it is necessary to have a clear vision to the phased international economic relations regulation options. In the conditions of rapid development of international economic relations, the modeling (including prognostic) can be optimally used as the main scientific method for presenting the phenomenon. On the basis of this method, it is possible to form the current situation vision and the best options for further action. In order to determine the most objective version of the integration development, the combination of several approaches were used. The normative legal approach- the descriptive method of legal modeling- was taken as the basis for the analysis. A set of legal methods was supplemented by the international relations science prognostic methods. The key elements of the model are the international economic organizations and states' associations existing in the Eurasian space (the Eurasian Economic Union (EAEU), the European Union (EU), the Shanghai Cooperation Organization (SCO), Chinese project ‘One belt-one road’ (OBOR), the Commonwealth of Independent States (CIS), BRICS, etc.). A general term for the elements of the model is proposed - the interstate interaction mechanisms (IIM). The aim of building a model of current and future Eurasian economic integration is to show optimal options for joint economic development of the states and IIMs. The long-term goal of this development is the new economic and political space, so-called the ‘Great Eurasian Community’. The process of achievement this long-term goal consists of successive steps. Modeling the integration architecture and dividing the interaction into stages led us to the following conclusion: the SCO is able to transform Eurasia into a single economic space. Gradual implementation of the complex phased model, in which the SCO+ plays a key role, will allow building an effective economic integration for all its participants, to create an economically strong community. The model can have practical value for politicians, lawyers, economists and other participants involved in the economic integration process. A clear, systematic structure can serve as a basis for further governmental action.Keywords: economic integration, The Eurasian Economic Union, The European Union, The Shanghai Cooperation Organization, The Silk Road Economic Belt
Procedia PDF Downloads 152603 Linguistic and Cultural Human Rights for Indigenous Peoples in Education
Authors: David Hough
Abstract:
Indigenous peoples can generally be described as the original or first peoples of a land prior to colonization. While there is no single definition of indigenous peoples, the United Nations has developed a general understanding based on self-identification and historical continuity with pre-colonial societies. Indigenous peoples are often traditional holders of unique languages, knowledge systems and beliefs who possess valuable knowledge and practices which support sustainable management of natural resources. They often have social, economic, political systems, languages and cultures, which are distinct from dominant groups in the society or state where they live. They generally resist attempts by the dominant culture at assimilation and endeavour to maintain and reproduce their ancestral environments and systems as distinctive peoples and communities. In 2007, the United Nations General Assembly passed a declaration on the rights of indigenous peoples, known as UNDRIP. It (in addition to other international instruments such as ILO 169), sets out far-reaching guidelines, which – among other things – attempt to protect and promote indigenous languages and cultures. Paragraphs 13 and 14 of the declaration state the following regarding language, culture and education: Article 13, Paragraph 1: Indigenous peoples have the right to revitalize, use, develop and transmit for future generations their histories, languages, oral traditions, philosophies, writing systems, and literatures, and to designate and retain their own names for communities, places and persons. Article 14, Paragraph I: Indigenous peoples have the right to establish and control their educational systems and institutions providing education in their own languages, in a manner appropriate to their cultural methods of teaching and learning. These two paragraphs call for the right of self-determination in education. Paragraph 13 gives indigenous peoples the right to control the content of their teaching, while Paragraph 14 states that the teaching of this content should be based on methods of teaching and learning which are appropriate to indigenous peoples. This paper reviews an approach to furthering linguistic and cultural human rights for indigenous peoples in education, which supports UNDRIP. It has been employed in countries in Asia and the Pacific, including the Republic of the Marshall Islands, the Federated States of Micronesia, Far East Russia and Nepal. It is based on bottom-up community-based initiatives where students, teachers and local knowledge holders come together to produce classroom materials in their own languages that reflect their traditional beliefs and value systems. They may include such things as knowledge about herbal medicines and traditional healing practices, local history, numerical systems, weights and measures, astronomy and navigation, canoe building, weaving and mat making, life rituals, feasts, festivals, songs, poems, etc. Many of these materials can then be mainstreamed into math, science language arts and social studies classes.Keywords: Indigenous peoples, linguistic and cultural human rights, materials development, teacher training, traditional knowledge
Procedia PDF Downloads 250602 Hydrogen Storage Systems for Enhanced Grid Balancing Services in Wind Energy Conversion Systems
Authors: Nezmin Kayedpour, Arash E. Samani, Siavash Asiaban, Jeroen M. De Kooning, Lieven Vandevelde, Guillaume Crevecoeur
Abstract:
The growing adoption of renewable energy sources, such as wind power, in electricity generation is a significant step towards a sustainable and decarbonized future. However, the inherent intermittency and uncertainty of wind resources pose challenges to the reliable and stable operation of power grids. To address this, hydrogen storage systems have emerged as a promising and versatile technology to support grid balancing services in wind energy conversion systems. In this study, we propose a supplementary control design that enhances the performance of the hydrogen storage system by integrating wind turbine (WT) pitch and torque control systems. These control strategies aim to optimize the hydrogen production process, ensuring efficient utilization of wind energy while complying with grid requirements. The wind turbine pitch control system plays a crucial role in managing the turbine's aerodynamic performance. By adjusting the blade pitch angle, the turbine's rotational speed and power output can be regulated. Our proposed control design dynamically coordinates the pitch angle to match the wind turbine's power output with the optimal hydrogen production rate. This ensures that the electrolyzer receives a steady and optimal power supply, avoiding unnecessary strain on the system during high wind speeds and maximizing hydrogen production during low wind speeds. Moreover, the wind turbine torque control system is incorporated to facilitate efficient operation at varying wind speeds. The torque control system optimizes the energy capture from the wind while limiting mechanical stress on the turbine components. By harmonizing the torque control with hydrogen production requirements, the system maintains stable wind turbine operation, thereby enhancing the overall energy-to-hydrogen conversion efficiency. To enable grid-friendly operation, we introduce a cascaded controller that regulates the electrolyzer's electrical power-current in accordance with grid requirements. This controller ensures that the hydrogen production rate can be dynamically adjusted based on real-time grid demands, supporting grid balancing services effectively. By maintaining a close relationship between the wind turbine's power output and the electrolyzer's current, the hydrogen storage system can respond rapidly to grid fluctuations and contribute to enhanced grid stability. In this paper, we present a comprehensive analysis of the proposed supplementary control design's impact on the overall performance of the hydrogen storage system in wind energy conversion systems. Through detailed simulations and case studies, we assess the system's ability to provide grid balancing services, maximize wind energy utilization, and reduce greenhouse gas emissions.Keywords: active power control, electrolyzer, grid balancing services, wind energy conversion systems
Procedia PDF Downloads 86601 System-Driven Design Process for Integrated Multifunctional Movable Concepts
Authors: Oliver Bertram, Leonel Akoto Chama
Abstract:
In today's civil transport aircraft, the design of flight control systems is based on the experience gained from previous aircraft configurations with a clear distinction between primary and secondary flight control functions for controlling the aircraft altitude and trajectory. Significant system improvements are now seen particularly in multifunctional moveable concepts where the flight control functions are no longer considered separate but integral. This allows new functions to be implemented in order to improve the overall aircraft performance. However, the classical design process of flight controls is sequential and insufficiently interdisciplinary. In particular, the systems discipline is involved only rudimentarily in the early phase. In many cases, the task of systems design is limited to meeting the requirements of the upstream disciplines, which may lead to integration problems later. For this reason, approaching design with an incremental development is required to reduce the risk of a complete redesign. Although the potential and the path to multifunctional moveable concepts are shown, the complete re-engineering of aircraft concepts with less classic moveable concepts is associated with a considerable risk for the design due to the lack of design methods. This represents an obstacle to major leaps in technology. This gap in state of the art is even further increased if, in the future, unconventional aircraft configurations shall be considered, where no reference data or architectures are available. This means that the use of the above-mentioned experience-based approach used for conventional configurations is limited and not applicable to the next generation of aircraft. In particular, there is a need for methods and tools for a rapid trade-off between new multifunctional flight control systems architectures. To close this gap in the state of the art, an integrated system-driven design process for multifunctional flight control systems of non-classical aircraft configurations will be presented. The overall goal of the design process is to find optimal solutions for single or combined target criteria in a fast process from the very large solution space for the flight control system. In contrast to the state of the art, all disciplines are involved for a holistic design in an integrated rather than a sequential process. To emphasize the systems discipline, this paper focuses on the methodology for designing moveable actuation systems in the context of this integrated design process of multifunctional moveables. The methodology includes different approaches for creating system architectures, component design methods as well as the necessary process outputs to evaluate the systems. An application example of a reference configuration is used to demonstrate the process and validate the results. For this, new unconventional hydraulic and electrical flight control system architectures are calculated which result from the higher requirements for multifunctional moveable concept. In addition to typical key performance indicators such as mass and required power requirements, the results regarding the feasibility and wing integration aspects of the system components are examined and discussed here. This is intended to show how the systems design can influence and drive the wing and overall aircraft design.Keywords: actuation systems, flight control surfaces, multi-functional movables, wing design process
Procedia PDF Downloads 144600 Methodological Deficiencies in Knowledge Representation Conceptual Theories of Artificial Intelligence
Authors: Nasser Salah Eldin Mohammed Salih Shebka
Abstract:
Current problematic issues in AI fields are mainly due to those of knowledge representation conceptual theories, which in turn reflected on the entire scope of cognitive sciences. Knowledge representation methods and tools are driven from theoretical concepts regarding human scientific perception of the conception, nature, and process of knowledge acquisition, knowledge engineering and knowledge generation. And although, these theoretical conceptions were themselves driven from the study of the human knowledge representation process and related theories; some essential factors were overlooked or underestimated, thus causing critical methodological deficiencies in the conceptual theories of human knowledge and knowledge representation conceptions. The evaluation criteria of human cumulative knowledge from the perspectives of nature and theoretical aspects of knowledge representation conceptions are affected greatly by the very materialistic nature of cognitive sciences. This nature caused what we define as methodological deficiencies in the nature of theoretical aspects of knowledge representation concepts in AI. These methodological deficiencies are not confined to applications of knowledge representation theories throughout AI fields, but also exceeds to cover the scientific nature of cognitive sciences. The methodological deficiencies we investigated in our work are: - The Segregation between cognitive abilities in knowledge driven models.- Insufficiency of the two-value logic used to represent knowledge particularly on machine language level in relation to the problematic issues of semantics and meaning theories. - Deficient consideration of the parameters of (existence) and (time) in the structure of knowledge. The latter requires that we present a more detailed introduction of the manner in which the meanings of Existence and Time are to be considered in the structure of knowledge. This doesn’t imply that it’s easy to apply in structures of knowledge representation systems, but outlining a deficiency caused by the absence of such essential parameters, can be considered as an attempt to redefine knowledge representation conceptual approaches, or if proven impossible; constructs a perspective on the possibility of simulating human cognition on machines. Furthermore, a redirection of the aforementioned expressions is required in order to formulate the exact meaning under discussion. This redirection of meaning alters the role of Existence and time factors to the Frame Work Environment of knowledge structure; and therefore; knowledge representation conceptual theories. Findings of our work indicate the necessity to differentiate between two comparative concepts when addressing the relation between existence and time parameters, and between that of the structure of human knowledge. The topics presented throughout the paper can also be viewed as an evaluation criterion to determine AI’s capability to achieve its ultimate objectives. Ultimately, we argue some of the implications of our findings that suggests that; although scientific progress may have not reached its peak, or that human scientific evolution has reached a point where it’s not possible to discover evolutionary facts about the human Brain and detailed descriptions of how it represents knowledge, but it simply implies that; unless these methodological deficiencies are properly addressed; the future of AI’s qualitative progress remains questionable.Keywords: cognitive sciences, knowledge representation, ontological reasoning, temporal logic
Procedia PDF Downloads 113599 Development of an Interface between BIM-model and an AI-based Control System for Building Facades with Integrated PV Technology
Authors: Moser Stephan, Lukasser Gerald, Weitlaner Robert
Abstract:
Urban structures will be used more intensively in the future through redensification or new planned districts with high building densities. Especially, to achieve positive energy balances like requested for Positive Energy Districts (PED) the single use of roofs is not sufficient for dense urban areas. However, the increasing share of window significantly reduces the facade area available for use in PV generation. Through the use of PV technology at other building components, such as external venetian blinds, onsite generation can be maximized and standard functionalities of this product can be positively extended. While offering advantages in terms of infrastructure, sustainability in the use of resources and efficiency, these systems require an increased optimization in planning and control strategies of buildings. External venetian blinds with PV technology require an intelligent control concept to meet the required demands such as maximum power generation, glare prevention, high daylight autonomy, avoidance of summer overheating but also use of passive solar gains in wintertime. Today, geometric representation of outdoor spaces and at the building level, three-dimensional geometric information is available for planning with Building Information Modeling (BIM). In a research project, a web application which is called HELLA DECART was developed to provide this data structure to extract the data required for the simulation from the BIM models and to make it usable for the calculations and coupled simulations. The investigated object is uploaded as an IFC file to this web application and includes the object as well as the neighboring buildings and possible remote shading. This tool uses a ray tracing method to determine possible glare from solar reflections of a neighboring building as well as near and far shadows per window on the object. Subsequently, an annual estimate of the sunlight per window is calculated by taking weather data into account. This optimized daylight assessment per window provides the ability to calculate an estimation of the potential power generation at the integrated PV on the venetian blind but also for the daylight and solar entry. As a next step, these results of the calculations as well as all necessary parameters for the thermal simulation can be provided. The overall aim of this workflow is to advance the coordination between the BIM model and coupled building simulation with the resulting shading and daylighting system with the artificial lighting system and maximum power generation in a control system. In the research project Powershade, an AI based control concept for PV integrated façade elements with coupled simulation results is investigated. The developed automated workflow concept in this paper is tested by using an office living lab at the HELLA company.Keywords: BIPV, building simulation, optimized control strategy, planning tool
Procedia PDF Downloads 110598 One-Stage Conversion of Adjustable Gastric Band to One-Anastomosis Gastric Bypass Versus Sleeve Gastrectomy : A Single-Center Experience With a Short and Mid-term Follow-up
Authors: Basma Hussein Abdelaziz Hassan, Kareem Kamel, Philobater Bahgat Adly Awad, Karim Fahmy
Abstract:
Background: Laparoscopic adjustable gastric band was one of the most applied and common bariatric procedures in the last 8 years. However; the failure rate was very high, reaching approximately 60% of the patients not achieving the desired weight loss. Most patients sought another revisional surgery. In which, we compared two of the most common weight loss surgeries performed nowadays: the laparoscopic sleeve gastrectomy and laparoscopic one- anastomosis gastric bypass. Objective: To compare the weight loss and postoperative outcomes among patients undergoing conversion laparoscopic one-anastomosis gastric bypass (cOAGB) and laparoscopic sleeve gastrectomy (cSG) after a failed laparoscopic adjustable gastric band (LAGB). Patients and Methods: A prospective cohort study was conducted from June 2020 to June 2022 at a single medical center, which included 77 patients undergoing single-stage conversion to (cOAGB) vs (cSG). Patients were reassessed for weight loss, comorbidities remission, and post-operative complications at 6, 12, and 18 months. Results: There were 77 patients with failed LAGB in our study. Group (I) was 43 patients who underwent cOAGB and Group (II) was 34 patients who underwent cSG. The mean age of the cOAGB group was 38.58. While in the cSG group, the mean age was 39.47 (p=0.389). Of the 77 patients, 10 (12.99%) were males and 67 (87.01%) were females. Regarding Body mass index (BMI), in the cOAGB group the mean BMI was 41.06 and in the cSG group the mean BMI was 40.5 (p=0.042). The two groups were compared postoperative in relation to EBWL%, BMI, and the co-morbidities remission within 18 months follow-up. The BMI was calculated post-operative at three visits. After 6 months of follow-up, the mean BMI in the cOAGB group was 34.34, and the cSG group was 35.47 (p=0.229). In 12-month follow-up, the mean BMI in the cOAGB group was 32.69 and the cSG group was 33.79 (p=0.2). Finally, the mean BMI after 18 months of follow-up in the cOAGB group was 30.02, and in the cSG group was 31.79 (p=0.001). Both groups had no statistically significant values at 6 and 12 months follow-up with p-values of 0.229, and 0.2 respectively. However, patients who underwent cOAGB after 18 months of follow-up achieved lower BMI than those who underwent cSG with a statistically significant p-value of 0.005. Regarding EBWL% there was a statistically significant difference between the two groups. After 6 months of follow-up, the mean EBWL% in the cOAGB group was 35.9% and the cSG group was 33.14%. In the 12-month follow-up, the EBWL % mean in the cOAGB group was 52.35 and the cSG group was 48.76 (p=0.045). Finally, the mean EBWL % after 18 months of follow-up in the cOAGB group was 62.06 ±8.68 and in the cSG group was 55.58 ±10.87 (p=0.005). Regarding comorbidities remission; Diabetes mellitus remission was found in 22 (88%) patients in the cOAGB group and 10 (71.4%) patients in the cSG group with (p= 0.225). Hypertension remission was found in 20 (80%) patients in the cOAGB group and 14 (82.4%) patients in the cSG group with (p=1). In addition, dyslipidemia remission was found in 27(87%) patients in cOAGB group and 17(70%) patients in the cSG group with (p=0.18). Finally, GERD remission was found in about 15 (88.2%) patients in the cOAGB group and 6 (60%) patients in the cSG group with (p=0.47). There are no statistically significant differences between the two groups in the post-operative data outcomes. Conclusion: This study suggests that the conversion of LAGB to either cOAGB or cSG could be feasibly performed in a single-stage operation. cOAGB had a significant difference as regards the weight loss results than cSG among the mid-term follow-up. However, there is no significant difference in the postoperative complications and the resolution of the co-morbidities. Therefore, cOAGB could provide a reliable alternative but needs to be substantiated in future long-term studies.Keywords: laparoscopic, gastric banding, one-anastomosis gastric bypass, Sleeve gastrectomy, revisional surgery, weight loss
Procedia PDF Downloads 63597 Multicultural Education in the National Context: A Study of Peoples' Friendship University of Russia
Authors: Maria V. Mishatkina
Abstract:
The modelling of dialogical environment is an essential feature of modern education. The dialogue of cultures is a foundation and an important prerequisite for a formation of a human’s main moral qualities such as an ability to understand another person, which is manifested in such values as tolerance, respect, mutual assistance and mercy. A formation of a modern expert occurs in an educational environment that is significantly different from what we had several years ago. Nowadays university education has qualitatively new characteristics. They may be observed in Peoples’ Friendship University of Russia (RUDN University), a top Russian higher education institution which unites representatives of more than 150 countries. The content of its educational strategies is not an adapted cultural experience but material between science and innovation. Besides, RUDN University’s profiles and specialization are not equal to the professional structures. People study not a profession in a strict sense but a basic scientific foundation of an activity in different socio-cultural areas (science, business and education). RUDN University also provides a considerable unit of professional education components. They are foreign languages skills, economic, political, ethnic, communication and computer culture, theory of information and basic management skills. Moreover, there is a rich social life (festive multicultural events, theme parties, journeys) and prospects concerning the inclusive approach to education (for example, a special course ‘Social Pedagogy: Issues of Tolerance’). In our research, we use such methods as analysis of modern and contemporary scientific literature, opinion poll (involving students, teachers and research workers) and comparative data analysis. We came to the conclusion that knowledge transfer of RUDN student in the activity happens through making goals, problems, issues, tasks and situations which simulate future innovative ambiguous environment that potentially prepares him/her to dialogical way of life. However, all these factors may not take effect if there is no ‘personal inspiration’ of students by communicative and dialogic values, their participation in a system of meanings and tools of learning activity that is represented by cooperation within the framework of scientific and pedagogical schools dialogue. We also found out that dominating strategies of ensuring the quality of education are those that put students in the position of the subject of their own education. Today these strategies and approaches should involve such approaches and methods as task, contextual, modelling, specialized, game-imitating and dialogical approaches, the method of practical situations, etc. Therefore, University in the modern sense is not only an educational institution, but also a generator of innovation, cooperation among nations and cultural progress. RUDN University has been performing exactly this mission for many decades.Keywords: dialogical developing situation, dialogue of cultures, readiness for dialogue, university graduate
Procedia PDF Downloads 221596 Comparison of Non-destructive Devices to Quantify the Moisture Content of Bio-Based Insulation Materials on Construction Sites
Authors: Léa Caban, Lucile Soudani, Julien Berger, Armelle Nouviaire, Emilio Bastidas-Arteaga
Abstract:
Improvement of the thermal performance of buildings is a high concern for the construction industry. With the increase in environmental issues, new types of construction materials are being developed. These include bio-based insulation materials. They capture carbon dioxide, can be produced locally, and have good thermal performance. However, their behavior with respect to moisture transfer is still facing some issues. With a high porosity, the mass transfer is more important in those materials than in mineral insulation ones. Therefore, they can be more sensitive to moisture disorders such as mold growth, condensation risks or decrease of the wall energy efficiency. For this reason, the initial moisture content on the construction site is a piece of crucial knowledge. Measuring moisture content in a laboratory is a mastered task. Diverse methods exist but the easiest and the reference one is gravimetric. A material is weighed dry and wet, and its moisture content is mathematically deduced. Non-destructive methods (NDT) are promising tools to determine in an easy and fast way the moisture content in a laboratory or on construction sites. However, the quality and reliability of the measures are influenced by several factors. Classical NDT portable devices usable on-site measure the capacity or the resistivity of materials. Water’s electrical properties are very different from those of construction materials, which is why the water content can be deduced from these measurements. However, most moisture meters are made to measure wooden materials, and some of them can be adapted for construction materials with calibration curves. Anyway, these devices are almost never calibrated for insulation materials. The main objective of this study is to determine the reliability of moisture meters in the measurement of biobased insulation materials. The determination of which one of the capacitive or resistive methods is the most accurate and which device gives the best result is made. Several biobased insulation materials are tested. Recycled cotton, two types of wood fibers of different densities (53 and 158 kg/m3) and a mix of linen, cotton, and hemp. It seems important to assess the behavior of a mineral material, so glass wool is also measured. An experimental campaign is performed in a laboratory. A gravimetric measurement of the materials is carried out for every level of moisture content. These levels are set using a climatic chamber and by setting the relative humidity level for a constant temperature. The mass-based moisture contents measured are considered as references values, and the results given by moisture meters are compared to them. A complete analysis of the uncertainty measurement is also done. These results are used to analyze the reliability of moisture meters depending on the materials and their water content. This makes it possible to determine whether the moisture meters are reliable, and which one is the most accurate. It will then be used for future measurements on construction sites to assess the initial hygrothermal state of insulation materials, on both new-build and renovation projects.Keywords: capacitance method, electrical resistance method, insulation materials, moisture transfer, non-destructive testing
Procedia PDF Downloads 127595 Thermal-Mechanical Analysis of a Bridge Deck to Determine Residual Weld Stresses
Authors: Evy Van Puymbroeck, Wim Nagy, Ken Schotte, Heng Fang, Hans De Backer
Abstract:
The knowledge of residual stresses for welded bridge components is essential to determine the effect of the residual stresses on the fatigue life behavior. The residual stresses of an orthotropic bridge deck are determined by simulating the welding process with finite element modelling. The stiffener is placed on top of the deck plate before welding. A chained thermal-mechanical analysis is set up to determine the distribution of residual stresses for the bridge deck. First, a thermal analysis is used to determine the temperatures of the orthotropic deck for different time steps during the welding process. Twin wire submerged arc welding is used to construct the orthotropic plate. A double ellipsoidal volume heat source model is used to describe the heat flow through a material for a moving heat source. The heat input is used to determine the heat flux which is applied as a thermal load during the thermal analysis. The heat flux for each element is calculated for different time steps to simulate the passage of the welding torch with the considered welding speed. This results in a time dependent heat flux that is applied as a thermal loading. Thermal material behavior is specified by assigning the properties of the material in function of the high temperatures during welding. Isotropic hardening behavior is included in the model. The thermal analysis simulates the heat introduced in the two plates of the orthotropic deck and calculates the temperatures during the welding process. After the calculation of the temperatures introduced during the welding process in the thermal analysis, a subsequent mechanical analysis is performed. For the boundary conditions of the mechanical analysis, the actual welding conditions are considered. Before welding, the stiffener is connected to the deck plate by using tack welds. These tack welds are implemented in the model. The deck plate is allowed to expand freely in an upwards direction while it rests on a firm and flat surface. This behavior is modelled by using grounded springs. Furthermore, symmetry points and lines are used to prevent the model to move freely in other directions. In the thermal analysis, a mechanical material model is used. The calculated temperatures during the thermal analysis are introduced during the mechanical analysis as a time dependent load. The connection of the elements of the two plates in the fusion zone is realized with a glued connection which is activated when the welding temperature is reached. The mechanical analysis results in a distribution of the residual stresses. The distribution of the residual stresses of the orthotropic bridge deck is compared with results from literature. Literature proposes uniform tensile yield stresses in the weld while the finite element modelling showed tensile yield stresses at a short distance from the weld root or the weld toe. The chained thermal-mechanical analysis results in a distribution of residual weld stresses for an orthotropic bridge deck. In future research, the effect of these residual stresses on the fatigue life behavior of welded bridge components can be studied.Keywords: finite element modelling, residual stresses, thermal-mechanical analysis, welding simulation
Procedia PDF Downloads 172594 Exploring Drivers and Barriers to Environmental Supply Chain Management in the Pharmaceutical Industry of Ghana
Authors: Gifty Kumadey, Albert Tchey Agbenyegah
Abstract:
(i) Overview and research goal(s): This study aims to address research gaps in the Ghanaian pharmaceutical industry by examining the impact of environmental supply chain management (ESCM) practices on environmental and operational performance. Previous studies have provided inconclusive evidence on the relationship between ESCM practices and environmental and operational performance. The research aims to provide a clearer understanding of the impact of ESCM practices on environmental and operational performance in the context of the Ghanaian pharmaceutical industry. Limited research has been conducted on ESCM practices in developing countries, particularly in Africa. The study aims to bridge this gap by examining the drivers and barriers specific to the pharmaceutical industry in Ghana. The research aims to analyze the impact of ESCM practices on the achievement of Sustainable Development Goals (SDGs) in the Ghanaian pharmaceutical industry, focusing on SDGs 3, 12, 13, and 17. It also explores the potential for partnerships and collaborations to advance ESCM practices in the pharmaceutical industry. The research hypotheses suggest that pressure from stakeholder positively influences the adoption of ESCM practices in the Ghanaian pharmaceutical industry. By addressing these goals, the study aims to contribute to sustainable development initiatives and offer practical recommendations to enhance ESCM A practices in the industry. (ii) Research methods and data: This study uses a quantitative research design to examine the drivers and barriers to environmental supply chain management in the pharmaceutical industry in Accra.The sample size is approximately 150 employees, with senior and middle-level managers from pharmaceutical industry of Ghana. A purposive sampling technique is used to select participants with relevant knowledge and experience in environmental supply chain management. Data will be collected using a structured questionnaire using Likert scale responses. Descriptive statistics will be used to analyze the data and provide insights into current practices and their impact on environmental and operational performance. (iii) Preliminary results and conclusions: Main contributions: Identifying drivers/barriers to ESCM in Ghana's pharmaceutical industry, evaluating current ESCM practices, examining impact on performance, providing practical insights, contributing to knowledge on ESCM in Ghanaian context. The research contributes to SDGs 3, 9, and 12 by promoting sustainable practices and responsible consumption in the industry. The study found that government rules and regulations are the most critical drivers for ESCM adoption, with senior managers playing a significant role. However, employee and competitor pressures have a lesser impact. The industry has made progress in implementing certain ESCM practices, but there is room for improvement in areas like green distribution and reverse logistics. The study emphasizes the importance of government support, management engagement, and comprehensive implementation of ESCM practices in the industry. Future research should focus on overcoming barriers and challenges to effective ESCM implementation.Keywords: environmental supply chain, sustainable development goal, ghana pharmaceutical industry, government regulations
Procedia PDF Downloads 94593 Screens Design and Application for Sustainable Buildings
Authors: Fida Isam Abdulhafiz
Abstract:
Traditional vernacular architecture in the United Arab Emirates constituted namely of adobe houses with a limited number of openings in their facades. The thick mud and rubble walls and wooden window screens protected its inhabitants from the harsh desert climate and provided them with privacy and fulfilled their comfort zone needs to an extent. However, with the rise of the immediate post petroleum era reinforced concrete villas with glass and steel technology has replaced traditional vernacular dwellings. And more load was put on the mechanical cooling systems to ensure the satisfaction of today’s more demanding doweling inhabitants. However, In the early 21at century professionals started to pay more attention to the carbon footprint caused by the built constructions. In addition, many studies and innovative approaches are now dedicated to lower the impact of the existing operating buildings on their surrounding environments. The UAE government agencies started to regulate that aim to revive sustainable and environmental design through Local and international building codes and urban design policies such as Estidama and LEED. The focus in this paper is on the reduction of the emissions resulting from the use of energy sources in the cooling and heating systems, and that would be through using innovative screen designs and façade solutions to provide a green footprint and aesthetic architectural icons. Screens are one of the popular innovative techniques that can be added in the design process or used in existing building as a renovation techniques to develop a passive green buildings. Preparing future architects to understand the importance of environmental design was attempted through physical modelling of window screens as an educational means to combine theory with a hands on teaching approach. Designing screens proved to be a popular technique that helped them understand the importance of sustainable design and passive cooling. After creating models of prototype screens, several tests were conducted to calculate the amount of Sun, light and wind that goes through the screens affecting the heat load and light entering the building. Theory further explored concepts of green buildings and material that produce low carbon emissions. This paper highlights the importance of hands on experience for student architects and how physical modelling helped rise eco awareness in Design studio. The paper will study different types of façade screens and shading devices developed by Architecture students and explains the production of diverse patterns for traditional screens by student architects based on sustainable design concept that works properly with the climate requirements in the Middle East region.Keywords: building’s screens modeling, façade design, sustainable architecture, sustainable dwellings, sustainable education
Procedia PDF Downloads 300592 Application of Unstructured Mesh Modeling in Evolving SGE of an Airport at the Confluence of Multiple Rivers in a Macro Tidal Region
Authors: A. A. Purohit, M. M. Vaidya, M. D. Kudale
Abstract:
Among the various developing countries in the world like China, Malaysia, Korea etc., India is also developing its infrastructures in the form of Road/Rail/Airports and Waterborne facilities at an exponential rate. Mumbai, the financial epicenter of India is overcrowded and to relieve the pressure of congestion, Navi Mumbai suburb is being developed on the east bank of Thane creek near Mumbai. The government due to limited space at existing Mumbai Airports (domestic and international) to cater for the future demand of airborne traffic, proposes to build a new international airport near Panvel at Navi Mumbai. Considering the precedence of extreme rainfall on 26th July 2005 and nearby townships being in a low-lying area, wherein new airport is proposed, it is inevitable to study this complex confluence area from a hydrodynamic consideration under both tidal and extreme events (predicted discharge hydrographs), to avoid inundation of the surrounding due to the proposed airport reclamation (1160 hectares) and to determine the safe grade elevation (SGE). The model studies conducted using the application of unstructured mesh to simulate the Panvel estuarine area (93 km2), calibration, validation of a model for hydraulic field measurements and determine the maxima water levels around the airport for various extreme hydrodynamic events, namely the simultaneous occurrence of highest tide from the Arabian Sea and peak flood discharges (Probable Maximum Precipitation and 26th July 2005) from five rivers, the Gadhi, Kalundri, Taloja, Kasadi and Ulwe, meeting at the proposed airport area revealed that: (a) The Ulwe River flowing beneath the proposed airport needs to be diverted. The 120m wide proposed Ulwe diversion channel having a wider base width of 200 m at SH-54 Bridge on the Ulwe River along with the removal of the existing bund in Moha Creek is inevitable to keep the SGE of the airport to a minimum. (b) The clear waterway of 80 m at SH-54 Bridge (Ulwe River) and 120 m at Amra Marg Bridge near Moha Creek is also essential for the Ulwe diversion and (c) The river bank protection works on the right bank of Gadhi River between the NH-4B and SH-54 bridges as well as upstream of the Ulwe River diversion channel are essential to avoid inundation of low lying areas. The maxima water levels predicted around the airport keeps SGE to a minimum of 11m with respect to Chart datum of Ulwe Bundar and thus development is not only technologically-economically feasible but also sustainable. The unstructured mesh modeling is a promising tool to simulate complex extreme hydrodynamic events and provides a reliable solution to evolve optimal SGE of airport.Keywords: airport, hydrodynamics, safe grade elevation, tides
Procedia PDF Downloads 262591 Understanding the Experiences of School Teachers and Administrators Involved in a Multi-Sectoral Approach to the Creation of a Physical Literacy Enriched Community
Authors: M. Louise Humbert, Karen E. Chad, Natalie E. Houser, Marta E. Erlandson
Abstract:
Physical literacy is the motivation, confidence, physical competence, knowledge, and understanding to value and takes responsibility for engagement in physical activities for life. In recent years, physical literacy has emerged as a determinant of health, promoting a positive lifelong physical activity trajectory. Physical literacy’s holistic approach and emphasis on the intrinsic valuation of movement provide an encouraging avenue for intervention among children to develop competent and confident movers. Although there is research on physical literacy interventions, no evidence exists on the outcomes of multi-sectoral interventions involving a combination of home, school, and community contexts. Since children interact with and in a wide range of contexts (home, school, community) daily, interventions designed to address a combination of these contexts are critical to the development of physical literacy. Working with school administrators and teachers, sports and recreation leaders, and community members, our team of university and community researchers conducted and evaluated one of the first multi-contextual and multi-sectoral physical literacy interventions in Canada. Schools played a critical role in this multi-sector intervention, and in this project, teachers and administrators focused their actions on developing physical literacy in students 10 to 14 years of age through the instruction of physical literacy-focused physical education lessons. Little is known about the experiences of educators when they work alongside an array of community representatives to develop physical literacy in school-aged children. Given the uniqueness of this intervention, we sought to answer the question, ‘What were the experiences of school-based educators involved in a multi-sectoral partnership focused on creating a physical literacy enriched community intervention?’ A thematic analysis approach was used to analyze data collected from interviews with educators and administrators, informal conversations, documents, and observations at workshops and meetings. Results indicated that schools and educators played the largest role in this multi-sector intervention. Educators initially reported a limited understanding of physical literacy and expressed a need for resources linked to the physical education curriculum. Some anxiety was expressed by the teachers as their students were measured, and educators noted they wanted to increase their understanding and become more involved in the assessment of physical literacy. Teachers reported that the intervention’s focus on physical literacy positively impacted the scheduling and their instruction of physical education. Administrators shared their desire for school and division-level actions targeting physical literacy development like the current focus on numeracy and literacy, treaty education, and safe schools. As this was one of the first multi-contextual and multi-sectoral physical literacy interventions, it was important to document creation and delivery experiences to encourage future growth in the area and develop suggested best practices.Keywords: physical literacy, multi sector intervention, physical education, teachers
Procedia PDF Downloads 103590 The Impact of Gestational Weight Gain on Subclinical Atherosclerosis, Placental Circulation and Neonatal Complications
Authors: Marina Shargorodsky
Abstract:
Aim: Gestational weight gain (GWG) has been related to altering future weight-gain curves and increased risks of obesity later in life. Obesity may contribute to vascular atherosclerotic changes as well as excess cardiovascular morbidity and mortality observed in these patients. Noninvasive arterial testing, such as ultrasonographic measurement of carotid IMT, is considered a surrogate for systemic atherosclerotic disease burden and is predictive of cardiovascular events in asymptomatic individuals as well as recurrent events in patients with known cardiovascular disease. Currently, there is no consistent evidence regarding the vascular impact of excessive GWG. The present study was designed to investigate the impact of GWG on early atherosclerotic changes during late pregnancy, using intima-media thickness, as well as placental vascular circulation and inflammatory lesions and pregnancy outcomes. Methods: The study group consisted of 59 pregnant women who gave birth and underwent a placental histopathological examination at the Department of Obstetrics and Gynecology, Edith Wolfson Medical Center, Israel, in 2019. According to the IOM guidelines the study group has been divided into two groups: Group 1 included 32 women with pregnancy weight gain within recommended range; Group 2 included 27 women with excessive weight gain during pregnancy. The IMT was measured from non-diseased intimal and medial wall layers of the carotid artery on both sides, visualized by high-resolution 7.5 MHz ultrasound (Apogee CX Color, ATL). Placental histology subdivided placental findings to lesions consistent with maternal vascular and fetal vascular malperfusion according to the criteria of the Society for Pediatric Pathology, subdividing placental findings to lesions consistent with maternal vascular and fetal vascular malperfusion, as well as the inflammatory response of maternal and fetal origin. Results: IMT levels differed between groups and were significantly higher in Group 1 compared to Group 2 (0.7+/-0.1 vs 0.6+/-0/1, p=0.028). Multiple linear regression analysis of IMT included variables based on their associations in univariate analyses with a backward approach. Included in the model were pre-gestational BMI, HDL cholesterol and fasting glucose. The model was significant (p=0.001) and correctly classified 64.7% of study patients. In this model, pre-pregnancy BMI remained a significant independent predictor of subclinical atherosclerosis assessed by IMT (OR 4.314, 95% CI 0.0599-0.674, p=0.044). Among placental lesions related to fetal vascular malperfusion, villous changes consistent with fetal thrombo-occlusive disease (FTOD) were significantly higher in Group 1 than in Group 2, p=0.034). In Conclusion, the present study demonstrated that excessive weight gain during pregnancy is associated with an adverse effect on early stages of subclinical atherosclerosis, placental vascular circulation and neonatal complications. The precise mechanism for these vascular changes, as well as the overall clinical impact of weight control during pregnancy on IMT, placental vascular circulation as well as pregnancy outcomes, deserves further investigation.Keywords: obesity, pregnancy, complications, weight gain
Procedia PDF Downloads 54589 Ammonia Bunkering Spill Scenarios: Modelling Plume’s Behaviour and Potential to Trigger Harmful Algal Blooms in the Singapore Straits
Authors: Bryan Low
Abstract:
In the coming decades, the global maritime industry will face a most formidable environmental challenge -achieving net zero carbon emissions by 2050. To meet this target, the Maritime Port Authority of Singapore (MPA) has worked to establish green shipping and digital corridors with ports of several other countries around the world where ships will use low-carbon alternative fuels such as ammonia for power generation. While this paradigm shift to the bunkering of greener fuels is encouraging, fuels like ammonia will also introduce a new and unique type of environmental risk in the unlikely scenario of a spill. While numerous modelling studies have been conducted for oil spills and their associated environmental impact on coastal and marine ecosystems, ammonia spills are comparatively less well understood. For example, there is a knowledge gap regarding how the complex hydrodynamic conditions of the Singapore Straits may influence the dispersion of a hypothetical ammonia plume, which has different physical and chemical properties compared to an oil slick. Chemically, ammonia can be absorbed by phytoplankton, thus altering the balance of the marine nitrogen cycle. Biologically, ammonia generally serves the role of a nutrient in coastal ecosystems at lower concentrations. However, at higher concentrations, it has been found to be toxic to many local species. It may also have the potential to trigger eutrophication and harmful algal blooms (HABs) in coastal waters, depending on local hydrodynamic conditions. Thus, the key objective of this research paper is to support the development of a model-based forecasting system that can predict ammonia plume behaviour in coastal waters, given prevailing hydrodynamic conditions and their environmental impact. This will be essential as ammonia bunkering becomes more commonplace in Singapore’s ports and around the world. Specifically, this system must be able to assess the HAB-triggering potential of an ammonia plume, as well as its lethal and sub-lethal toxic effects on local species. This will allow the relevant authorities to better plan risk mitigation measures or choose a time window with the ideal hydrodynamic conditions to conduct ammonia bunkering operations with minimal risk. In this paper, we present the first part of such a forecasting system: a jointly coupled hydrodynamic-water quality model that can capture how advection-diffusion processes driven by ocean currents influence plume behaviour and how the plume interacts with the marine nitrogen cycle. The model is then applied to various ammonia spill scenarios where the results are discussed in the context of current ammonia toxicity guidelines, impact on local ecosystems, and mitigation measures for future bunkering operations conducted in the Singapore Straits.Keywords: ammonia bunkering, forecasting, harmful algal blooms, hydrodynamics, marine nitrogen cycle, oceanography, water quality modeling
Procedia PDF Downloads 83588 Application of the State of the Art of Hydraulic Models to Manage Coastal Problems, Case Study: The Egyptian Mediterranean Coast Model
Authors: Al. I. Diwedar, Moheb Iskander, Mohamed Yossef, Ahmed ElKut, Noha Fouad, Radwa Fathy, Mustafa M. Almaghraby, Amira Samir, Ahmed Romya, Nourhan Hassan, Asmaa Abo Zed, Bas Reijmerink, Julien Groenenboom
Abstract:
Coastal problems are stressing the coastal environment due to its complexity. The dynamic interaction between the sea and the land results in serious problems that threaten coastal areas worldwide, in addition to human interventions and activities. This makes the coastal environment highly vulnerable to natural processes like flooding, erosion, and the impact of human activities as pollution. Protecting and preserving this vulnerable coastal zone with its valuable ecosystems calls for addressing the coastal problems. This, in the end, will support the sustainability of the coastal communities and maintain the current and future generations. Consequently applying suitable management strategies and sustainable development that consider the unique characteristics of the coastal system is a must. The coastal management philosophy aims to solve the conflicts of interest between human development activities and this dynamic nature. Modeling emerges as a successful tool that provides support to decision-makers, engineers, and researchers for better management practices. Modeling tools proved that it is accurate and reliable in prediction. With its capability to integrate data from various sources such as bathymetric surveys, satellite images, and meteorological data, it offers the possibility for engineers and scientists to understand this complex dynamic system and get in-depth into the interaction between both the natural and human-induced factors. This enables decision-makers to make informed choices and develop effective strategies for sustainable development and risk mitigation of the coastal zone. The application of modeling tools supports the evaluation of various scenarios by affording the possibility to simulate and forecast different coastal processes from the hydrodynamic and wave actions and the resulting flooding and erosion. The state-of-the-art application of modeling tools in coastal management allows for better understanding and predicting coastal processes, optimizing infrastructure planning and design, supporting ecosystem-based approaches, assessing climate change impacts, managing hazards, and finally facilitating stakeholder engagement. This paper emphasizes the role of hydraulic models in enhancing the management of coastal problems by discussing the diverse applications of modeling in coastal management. It highlights the modelling role in understanding complex coastal processes, and predicting outcomes. The importance of informing decision-makers with modeling results which gives technical and scientific support to achieve sustainable coastal development and protection.Keywords: coastal problems, coastal management, hydraulic model, numerical model, physical model
Procedia PDF Downloads 30587 Treatment and Diagnostic Imaging Methods of Fetal Heart Function in Radiology
Authors: Mahdi Farajzadeh Ajirlou
Abstract:
Prior evidence of normal cardiac anatomy is desirable to relieve the anxiety of cases with a family history of congenital heart disease or to offer the option of early gestation termination or close follow-up should a cardiac anomaly be proved. Fetal heart discovery plays an important part in the opinion of the fetus, and it can reflect the fetal heart function of the fetus, which is regulated by the central nervous system. Acquisition of ventricular volume and inflow data would be useful to quantify more valve regurgitation and ventricular function to determine the degree of cardiovascular concession in fetal conditions at threat for hydrops fetalis. This study discusses imaging the fetal heart with transvaginal ultrasound, Doppler ultrasound, three-dimensional ultrasound (3DUS) and four-dimensional (4D) ultrasound, spatiotemporal image correlation (STIC), glamorous resonance imaging and cardiac catheterization. Doppler ultrasound (DUS) image is a kind of real- time image with a better imaging effect on blood vessels and soft tissues. DUS imaging can observe the shape of the fetus, but it cannot show whether the fetus is hypoxic or distressed. Spatiotemporal image correlation (STIC) enables the acquisition of a volume of data concomitant with the beating heart. The automated volume accession is made possible by the array in the transducer performing a slow single reach, recording a single 3D data set conforming to numerous 2D frames one behind the other. The volume accession can be done in a stationary 3D, either online 4D (direct volume scan, live 3D ultrasound or a so-called 4D (3D/ 4D)), or either spatiotemporal image correlation-STIC (off-line 4D, which is a circular volume check-up). Fetal cardiovascular MRI would appear to be an ideal approach to the noninvasive disquisition of the impact of abnormal cardiovascular hemodynamics on antenatal brain growth and development. Still, there are practical limitations to the use of conventional MRI for fetal cardiovascular assessment, including the small size and high heart rate of the mortal fetus, the lack of conventional cardiac gating styles to attend data accession, and the implicit corruption of MRI data due to motherly respiration and unpredictable fetal movements. Fetal cardiac MRI has the implicit to complement ultrasound in detecting cardiovascular deformations and extracardiac lesions. Fetal cardiac intervention (FCI), minimally invasive catheter interventions, is a new and evolving fashion that allows for in-utero treatment of a subset of severe forms of congenital heart deficiency. In special cases, it may be possible to modify the natural history of congenital heart disorders. It's entirely possible that future generations will ‘repair’ congenital heart deficiency in utero using nanotechnologies or remote computer-guided micro-robots that work in the cellular layer.Keywords: fetal, cardiac MRI, ultrasound, 3D, 4D, heart disease, invasive, noninvasive, catheter
Procedia PDF Downloads 43586 Experiences of Students in a Cultural Competence Learning Project in Hong Kong- Themes from Qualitative Analysis
Authors: Diana Kwok
Abstract:
Introduction: There is a rising concern on the educational needs of school guidance teachers, counselors, and sex educators to work effectively with students from multicultural groups, such as racial minorities, gender minorities, sexual minorities, and disability groups etc., and to respect cultural diversities. A specialized training model, the multicultural framework based on contact theory is recognized as necessary training model for professional training programs. Methodology: While the major focus of this project is on improving teaching and learning in teacher training courses within the department of Special Education and Counselling, it specifically aims to enhance the cultural competence of 102 participants enrolled in counseling and sexuality education courses by integrating the following teaching and learning strategies: 1) Panel presentation; 2) Case studies; 3) Experiential learning. Data sources from the participants consisted of the following: (a) questionnaires (MCKAS and ATLG) administered in classes; (b) weekly reflective journals, and c) focus group interviews with panel members. The focus group interviews with panel members were documented. Qualitatively, the weekly reflections were content analyzed. The presentation in this specific conference put focus on themes we found from qualitative content analysis of weekly reflective journals from 102 participants. Findings: Content analysis had found the following preliminary emergent themes: Theme I) Cultural knowledge and challenges to personal limitation. Students had gained a new perspective that specific cultural knowledge involved unique values and worldview. Awareness of limitation of counsellors is very important after actively acquiring the cultural knowledge. Theme 2 - Observation, engagement and active learning. Through the sharing and case studies, as well as visits to the communities, students recognized that observation and listening to the needs of cultural group members were the essential steps before taking any intervention steps. Theme 3 - Curiosity and desire for further inter-group dialogue. All students expressed their desire, curiosity, and motivation to have further inter-group dialogue in their future work settings. Theme 4: Experience with teaching and learning strategies. Students shared their perspectives on how teaching and learning strategies had facilitated their acquisition of cultural competence. Results of this analysis suggests that diverse teaching and learning strategies based on contact perspective had stimulated their curiosity to re-examine their values and motivated them to acquire cultural knowledge relevant to the cultural groups. Acknowledgment: The teaching and learning project was funded by the Teaching and Development Grant, Hong Kong Institute of Education (Project Number T0142).Keywords: cultural competence, Chinese teacher students, teaching and learning, contacts
Procedia PDF Downloads 241585 The Hidden Mechanism beyond Ginger (Zingiber officinale Rosc.) Potent in vivo and in vitro Anti-Inflammatory Activity
Authors: Shahira M. Ezzat, Marwa I. Ezzat, Mona M. Okba, Esther T. Menze, Ashraf B. Abdel-Naim, Shahnas O. Mohamed
Abstract:
Background: In order to decrease the burden of the high cost of synthetic drugs, it is important to focus on phytopharmaceuticals. The aim of our study was to search for the mechanism of ginger (Zingiber officinale Roscoe) anti-inflammatory potential and to correlate it to its biophytochemicals. Methods: Various extracts viz. water, 50%, 70%, 80%, and 90% ethanol were prepared from ginger rhizomes. Fractionation of the aqueous extract (AE) was accomplished using Diaion HP-20. In vitro anti-inflammatory activity of the different extracts and isolated compounds was evaluated by protein denaturation inhibition, membrane stabilization, protease inhibition, and anti-lipoxygenase assays. In vivo anti-inflammatory activity of AE was estimated by assessment of rat paw oedema after carrageenan injection. Prostaglandin E2 (PGE2), certain inflammation markers (TNF-α, IL-6, IL-1α, IL-1β, INFr, MCP-1MIP, RANTES, and Nox) levels and MPO activity in the paw edema exudates were measured. Total antioxidant capacity (TAC) was also determined. Histopathological alterations of paw tissues were scored. Results: All the tested extracts showed significant (p < 0.1) anti-inflammatory activities. The highest percentage of heat induced albumin denaturation (66%) was exhibited by the 50% ethanol (250 μg/ml). The 70 and 90% ethanol extracts (500 μg/ml) were more potent as membrane stabilizers (34.5 and 37%, respectively) than diclofenac (33%). The 80 and 90% ethanol extracts (500 μg/ml) showed maximum protease inhibition (56%). The strongest anti-lipoxygenase activity was observed for the AE. It showed more significant lipoxygenase inhibition activity than that of diclofenac (58% and 52%, respectively) at the same concentration (125 μg/ml). Fractionation of AE yielded four main fractions (Fr I-IV) which showed significant in vitro anti-inflammatory. Purification of Fr-III and IV led to the isolation of 6-poradol (G1), 6-shogaol (G2); methyl 6- gingerol (G3), 5-gingerol (G4), 6-gingerol (G5), 8-gingerol (G6), 10-gingerol (G7), and 1-dehydro-6-gingerol (G8). G2 (62.5 ug/ml), G1 (250 ug/ml), and G8 (250 ug/ml) exhibited potent anti-inflammatory activity in all studied assays, while G4 and G5 exhibited moderate activity. In vivo administration of AE ameliorated rat paw oedema in a dose-dependent manner. AE (at 200 mg/kg) showed significant reduction (60%) of PGE2 production. The AE at different doses (at 25-200 mg/kg) showed significant reduction in inflammatory markers except for IL-1α. AE (at 25 mg/kg) is superior to indomethacin in reduction of IL-1β. Treatment of animals with the AE (100, 200 mg/kg) or indomethacin (10 mg/kg) showed significant reduction in TNF-α, IL-6, MCP-1, and RANTES levels, and MPO activity by about (31, 57 and 32% ) (65, 60 and 57%) (27, 41 and 28%) (23, 32 and 23%) (66, 67 and 67%) respectively. AE at 100 and 200 mg/kg was equipotent to indomethacin in reduction of NOₓ level and in increasing the TAC. Histopathological examination revealed very few inflammatory cells infiltration and oedema after administration of AE (200 mg/kg) prior to carrageenan. Conclusion: Ginger anti-inflammatory activity is mediated by inhibiting macrophage and neutrophils activation as well as negatively affecting monocyte and leukocyte migration. Moreover, it produced dose-dependent decrease in pro-inflammatory cytokines and chemokines and replenished the total antioxidant capacity. We strongly recommend future investigations of ginger in the potential signal transduction pathways.Keywords: anti-lipoxygenase activity, inflammatory markers, 1-dehydro-6-gingerol, 6-shogaol
Procedia PDF Downloads 254584 The Impact of the Covid-19 Crisis on the Information Behavior in the B2B Buying Process
Authors: Stehr Melanie
Abstract:
The availability of apposite information is essential for the decision-making process of organizational buyers. Due to the constraints of the Covid-19 crisis, information channels that emphasize face-to-face contact (e.g. sales visits, trade shows) have been unavailable, and usage of digitally-driven information channels (e.g. videoconferencing, platforms) has skyrocketed. This paper explores the question in which areas the pandemic induced shift in the use of information channels could be sustainable and in which areas it is a temporary phenomenon. While information and buying behavior in B2C purchases has been regularly studied in the last decade, the last fundamental model of organizational buying behavior in B2B was introduced by Johnston and Lewin (1996) in times before the advent of the internet. Subsequently, research efforts in B2B marketing shifted from organizational buyers and their decision and information behavior to the business relationships between sellers and buyers. This study builds on the extensive literature on situational factors influencing organizational buying and information behavior and uses the economics of information theory as a theoretical framework. The research focuses on the German woodworking industry, which before the Covid-19 crisis was characterized by a rather low level of digitization of information channels. By focusing on an industry with traditional communication structures, a shift in information behavior induced by an exogenous shock is considered a ripe research setting. The study is exploratory in nature. The primary data source is 40 in-depth interviews based on the repertory-grid method. Thus, 120 typical buying situations in the woodworking industry and the information and channels relevant to them are identified. The results are combined into clusters, each of which shows similar information behavior in the procurement process. In the next step, the clusters are analyzed in terms of the post and pre-Covid-19 crisis’ behavior identifying stable and dynamic information behavior aspects. Initial results show that, for example, clusters representing search goods with low risk and complexity suggest a sustainable rise in the use of digitally-driven information channels. However, in clusters containing trust goods with high significance and novelty, an increased return to face-to-face information channels can be expected after the Covid-19 crisis. The results are interesting from both a scientific and a practical point of view. This study is one of the first to apply the economics of information theory to organizational buyers and their decision and information behavior in the digital information age. Especially the focus on the dynamic aspects of information behavior after an exogenous shock might contribute new impulses to theoretical debates related to the economics of information theory. For practitioners - especially suppliers’ marketing managers and intermediaries such as publishers or trade show organizers from the woodworking industry - the study shows wide-ranging starting points for a future-oriented segmentation of their marketing program by highlighting the dynamic and stable preferences of elaborated clusters in the choice of their information channels.Keywords: B2B buying process, crisis, economics of information theory, information channel
Procedia PDF Downloads 184583 Estimating Industrial Pollution Load in Phnom Penh by Industrial Pollution Projection System
Authors: Vibol San, Vin Spoann
Abstract:
Manufacturing plays an important role in job creation around the world. In 2013, it is estimated that there were more than half a billion jobs in manufacturing. In Cambodia in 2015, the primary industry occupies 26.18% of the total economy, while agriculture is contributing 29% and the service sector 39.43%. The number of industrial factories, which are dominated by garment and textiles, has increased since 1994, mainly in Phnom Penh city. Approximately 56% out of total 1302 firms are operated in the Capital city in Cambodia. Industrialization to achieve the economic growth and social development is directly responsible for environmental degradation, threatening the ecosystem and human health issues. About 96% of total firms in Phnom Penh city are the most and moderately polluting firms, which have contributed to environmental concerns. Despite an increasing array of laws, strategies and action plans in Cambodia, the Ministry of Environment has encountered some constraints in conducting the monitoring work, including lack of human and financial resources, lack of research documents, the limited analytical knowledge, and lack of technical references. Therefore, the necessary information on industrial pollution to set strategies, priorities and action plans on environmental protection issues is absent in Cambodia. In the absence of this data, effective environmental protection cannot be implemented. The objective of this study is to estimate industrial pollution load by employing the Industrial Pollution Projection System (IPPS), a rapid environmental management tool for assessment of pollution load, to produce a scientific rational basis for preparing future policy direction to reduce industrial pollution in Phnom Penh city. Due to lack of industrial pollution data in Phnom Penh, industrial emissions to the air, water and land as well as the sum of emissions to all mediums (air, water, land) are estimated using employment economic variable in IPPS. Due to the high number of employees, the total environmental load generated in Phnom Penh city is estimated to be 476.980.93 tons in 2014, which is the highest industrial pollution compared to other locations in Cambodia. The result clearly indicates that Phnom Penh city is the highest emitter of all pollutants in comparison with environmental pollutants released by other provinces. The total emission of industrial pollutants in Phnom Penh shares 55.79% of total industrial pollution load in Cambodia. Phnom Penh city generates 189,121.68 ton of VOC, 165,410.58 ton of toxic chemicals to air, 38,523.33 ton of toxic chemicals to land and 28,967.86 ton of SO2 in 2014. The results of the estimation show that Textile and Apparel sector is the highest generators of toxic chemicals into land and air, and toxic metals into land, air and water, while Basic Metal sector is the highest contributor of toxic chemicals to water. Textile and Apparel sector alone emits 436,015.84 ton of total industrial pollution loads. The results suggest that reduction in industrial pollution could be achieved by focusing on the most polluting sectors.Keywords: most polluting area, polluting industry, pollution load, pollution intensity
Procedia PDF Downloads 260582 MTT Assay-Guided Isolation of a Cytotoxic Lead from Hedyotis umbellata and Its Mechanism of Action against Non-Small Cell Lung Cancer A549 Cells
Authors: Kirti Hira, A. Sajeli Begum, S. Mahibalan, Poorna Chandra Rao
Abstract:
Introduction: Cancer is one of the leading causes of death worldwide. Although existing therapy effectively kills cancer cells, they do affect normal growing cells leading to many undesirable side effects. Hence there is need to develop effective as well as safe drug molecules to combat cancer, which is possible through phyto-research. The currently available plant-derived blockbuster drugs are the example for this. In view of this, an investigation was done to identify cytotoxic lead molecules from Hedyotis umbellata (Family Rubiaceae), a widely distributed weed in India. Materials and Methods: The methanolic extract of the whole plant of H. umbellata (MHU), prepared through Soxhlet extraction method was further fractionated with diethyl ether and n-butanol, successively. MHU, ether fraction (EMHU) and butanol fraction (BMHU) were lyophilized and were tested for the cytotoxic effect using 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay against non-small cell lung cancer (NSCLC) A549 cell lines. The potentially active EMHU was subjected to chromatographic purification using normal-phase silica columns, in order to isolate the responsible bioactive compounds. The isolated pure compounds were tested for their cytotoxic effect by MTT assay against A549 cells. Compound-3, which was found to be most active, was characterized using IR, 1H- and 13C-NMR and MS analysis. The study was further extended to decipher the mechanism of action of cytotoxicity of compound-3 against A549 cells through various in vitro cellular models. Cell cycle analysis was done using flow cytometry following PI (Propidium Iodide) staining. Protein analysis was done using Western blot technique. Results: Among MHU, EMHU, and BMHU, the non-polar fraction EMHU demonstrated a significant dose-dependent cytotoxic effect with IC50 of 67.7μg/ml. Chromatography of EMHU yielded seven compounds. MTT assay of isolated compounds explored compound-3 as potentially active one, which inhibited the growth of A549 cells with IC50value of 14.2μM. Further, compound-3 was identified as cedrelopsin, a coumarin derivative having molecular weight of 260. Results of in vitro mechanistic studies explained that cedrelopsin induced cell cycle arrest at G2/M phase and down-regulated the expression of G2/M regulatory proteins such as cyclin B1, cdc2, and cdc25C, dose dependently. This is the first report that explores the cytotoxic mechanism of cedrelopsin. Conclusion: Thus a potential small lead molecule, cedrelopsin isolated from H. umbellata, showing antiproliferative effect mediated by G2/M arrest in A549 cells was discovered. The effect of cedrelopsin against other cancer cell lines followed by in vivo studies can be performed in future to develop a new drug candidate.Keywords: A549, cedrelopsin, G2/M phase, Hedyotis umbellata
Procedia PDF Downloads 176581 European Commission Radioactivity Environmental Monitoring Database REMdb: A Law (Art. 36 Euratom Treaty) Transformed in Environmental Science Opportunities
Authors: M. Marín-Ferrer, M. A. Hernández, T. Tollefsen, S. Vanzo, E. Nweke, P. V. Tognoli, M. De Cort
Abstract:
Under the terms of Article 36 of the Euratom Treaty, European Union Member States (MSs) shall periodically communicate to the European Commission (EC) information on environmental radioactivity levels. Compilations of the information received have been published by the EC as a series of reports beginning in the early 1960s. The environmental radioactivity results received from the MSs have been introduced into the Radioactivity Environmental Monitoring database (REMdb) of the Institute for Transuranium Elements of the EC Joint Research Centre (JRC) sited in Ispra (Italy) as part of its Directorate General for Energy (DG ENER) support programme. The REMdb brings to the scientific community dealing with environmental radioactivity topics endless of research opportunities to exploit the near 200 millions of records received from MSs containing information of radioactivity levels in milk, water, air and mixed diet. The REM action was created shortly after Chernobyl crisis to support the EC in its responsibilities in providing qualified information to the European Parliament and the MSs on the levels of radioactive contamination of the various compartments of the environment (air, water, soil). Hence, the main line of REM’s activities concerns the improvement of procedures for the collection of environmental radioactivity concentrations for routine and emergency conditions, as well as making this information available to the general public. In this way, REM ensures the availability of tools for the inter-communication and access of users from the Member States and the other European countries to this information. Specific attention is given to further integrate the new MSs with the existing information exchange systems and to assist Candidate Countries in fulfilling these obligations in view of their membership of the EU. Article 36 of the EURATOM treaty requires the competent authorities of each MS to provide regularly the environmental radioactivity monitoring data resulting from their Article 35 obligations to the EC in order to keep EC informed on the levels of radioactivity in the environment (air, water, milk and mixed diet) which could affect population. The REMdb has mainly two objectives: to keep a historical record of the radiological accidents for further scientific study, and to collect the environmental radioactivity data gathered through the national environmental monitoring programs of the MSs to prepare the comprehensive annual monitoring reports (MR). The JRC continues his activity of collecting, assembling, analyzing and providing this information to public and MSs even during emergency situations. In addition, there is a growing concern with the general public about the radioactivity levels in the terrestrial and marine environment, as well about the potential risk of future nuclear accidents. To this context, a clear and transparent communication with the public is needed. EURDEP (European Radiological Data Exchange Platform) is both a standard format for radiological data and a network for the exchange of automatic monitoring data. The latest release of the format is version 2.0, which is in use since the beginning of 2002.Keywords: environmental radioactivity, Euratom, monitoring report, REMdb
Procedia PDF Downloads 444580 Therapeutic Potential of GSTM2-2 C-Terminal Domain and Its Mutants, F157A and Y160A on the Treatment of Cardiac Arrhythmias: Effect on Ca2+ Transients in Neonatal Ventricular Cardiomyocytes
Authors: R. P. Hewawasam, A. F. Dulhunty
Abstract:
The ryanodine receptor (RyR) is an intracellular ion channel that releases Ca2+ from the sarcoplasmic reticulum and is essential for the excitation-contraction coupling and contraction in striated muscle. Human muscle specific glutathione transferase M2-2 (GSTM2-2) is a highly specific inhibitor of cardiac ryanodine receptor (RyR2) activity. Single channel-lipid bilayer studies and Ca2+ release assays performed using the C-terminal half of the GSTM2-2 and its mutants F157A and Y160A confirmed the ability of the C terminal domain of GSTM2-2 to specifically inhibit the cardiac ryanodine receptor activity. Objective of the present study is to determine the effect of C terminal domain of GSTM2-2 (GSTM2-2C) and the mutants, F157A and Y160A on the Ca2+ transients of neonatal ventricular cardiomyocytes. Primary cardiomyocytes were cultured from neonatal rats. They were treated with GSTM2-2C and the two mutants F157A and Y160A at 15µM and incubated for 2 hours. Then the cells were led with Fluo-4AM, fluorescent Ca2+ indicator, and the field stimulated (1 Hz, 3V and 2ms) cells were excited using the 488 nm argon laser. Contractility of the cells were measured and the Ca2+ transients in the stained cells were imaged using Leica SP5 confocal microscope. Peak amplitude of the Ca2+ transient, rise time and decay time from the peak were measured for each transient. In contrast to GSTM2C which significantly reduced the % shortening (42.8%) in the field stimulated cells, F157A and Y160A failed to reduce the % shortening.Analysis revealed that the average amplitude of the Ca2+ transient was significantly reduced (P<0.001) in cells treated with the wild type GSTM2-2C compared to that of untreated cells. Cells treated with the mutants F157A and Y160A didn’t change the Ca2+ transient significantly compared to the control. A significant increase in the rise time (P< 0.001) and a significant reduction in the decay time (P< 0.001) were observed in cardiomyocytes treated with GSTM2-2C compared to the control but not with F157A and Y160A. These results are consistent with the observation that GSTM2-2C reduced the Ca2+ release from the cardiac SR significantly whereas the mutants, F157A and Y160A didn’t show any effect compared to the control. GSTM2-2C has an isoform-specific effect on the cardiac ryanodine receptor activity and also it inhibits RyR2 channel activity only during diastole. Selective inhibition of RyR2 by GSTM2-2C has significant clinical potential in the treatment of cardiac arrhythmias and heart failure. Since GSTM2-2C-terminal construct has no GST enzyme activity, its introduction to the cardiomyocyte would not exert any unwanted side effects that may alter its enzymatic action. The present study further confirms that GSTM2-2C is capable of decreasing the Ca2+ release from the cardiac SR during diastole. These results raise the future possibility of using GSTM2-2C as a template for therapeutics that can depress RyR2 function when the channel is hyperactive in cardiac arrhythmias and heart failure.Keywords: arrhythmia, cardiac muscle, cardiac ryanodine receptor, GSTM2-2
Procedia PDF Downloads 284