Search results for: yield strength
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5859

Search results for: yield strength

5169 The Effect of Proprioceptive Neuromuscular Facilitation and Lumbar Stabilization Exercises on Muscle Strength and Muscle Endurance in Patients with Lumbar Disc Hernia

Authors: Mustafa Gulsen, Mitat Koz

Abstract:

The aim of this study is to investigate the effect of lumbar stabilisation and proprioceptive neuromuscular facilitation (PNF) training on muscle strength and muscle endurance. The participants were 64 between the ages of 15-69 (53.04 ± 14.59), who were graded protrusion and bulging lumbar herniation according to 'Macnab Classification'. The participants were divided into four groups as each group had 16 participants: lumbar stabilitation training, PNF training, physical therapy and control groups. Sociodemographic features were recorded. Then their muscle strength tests (by isokinetic dynamometer (Cybex 770 Norm Lumex Inc, Ronkonkoma, NY, USA) were recorded. Before and after applications; visual analogue scale (VAS), Oswestry Disability İndex were applied by a physical therapist. The participants in lumbar stabilisation group performed 45 minutes, 5 days in a week for 4 weeks strength training with a physical therapist observation. The participants in PNF group performed 5 days in a week for 4 weeks with pelvic patterns of PNF by a physiotherapist. The participants in physical therapy group underwent Hotpack, Tens and Ultrasound therapy 5 days in a week for 4 weeks. The participants in control group didn’t take any training programme. After 4 weeks, the evaluations were repeated. There were significant increases in muscle strength and muscle endurance in lumbar stabilization training group. Also in pain intensity at rest and during activity in this group and in Oswestry disability index of patients, there were significant improvements (p < 0.05). In PNF training group likewise, there were significant improvements in muscle strength, muscle endurance, pain intensity at rest and with activity and in Oswestry disability index (p < 0.05). But improvements in the Lumbar Stabilization group was better than PNF Group. We found significant differences only in pain intensity at rest and with activity and in Oswestry disability index (p < 0.05). in the patients in Physical Therapy group. We think that appropriate physiotherapy and rehabilitation program which will be prepared for patients, to protect the waist circumference of patients with low muscle strength and low muscle endurance will increase muscle strength and muscle endurance. And it is expected that will reduce pain and will provide advances toward correcting functional disability of the patients.

Keywords: disc herniation, endurance, lumbar stabilitation exercises, PNF, strength

Procedia PDF Downloads 277
5168 Effect of Si/Al Ratio on SSZ-13 Crystallization and Its Methanol-To-Olefins Catalytic Properties

Authors: Zhiqiang Xu, Hongfang Ma, Haitao Zhang, Weixin Qian, Weiyong Ying

Abstract:

SSZ-13 materials with different Si/Al ratio were prepared by varying the composition of aluminosilicate precursor solutions upon hydrothermal treatment at 150 °C. The Si/Al ratio of the initial system was systematically changed from 12.5 to infinity in order to study the limits of Al composition in precursor solutions for constructing CHA structure. The intermediates and final products were investigated by complementary techniques such as XRD, HRTEM, FESEM, and chemical analysis. NH3-TPD was used to study the Brønsted acidity of SSZ-13 samples with different Si/Al ratios. The effect of the Si/Al ratio on the precursor species, ultimate crystal size, morphology and yield was investigated. The results revealed that Al species determine the nucleation rate and the number of nuclei, which is tied to the morphology and yield of SSZ-13. The size of SSZ-13 increased and the yield decreased as the Si/Al ratio was improved. Varying Si/Al ratio of the initial system is a facile, commercially viable method of tailoring SSZ-13 crystal size and morphology. Furthermore, SSZ-13 materials with different Si/Al ratio were tested as catalysts for the methanol to olefins (MTO) reaction at 350 °C. SSZ-13 with the Si/Al ratio of 35 shows the best MTO catalytic performance.

Keywords: crystallization, MTO, Si/Al ratio, SSZ-13

Procedia PDF Downloads 284
5167 Plant Growth, Symbiotic Performance and Grain Yield of 63 Common Bean Genotypes Grown Under Field Conditions at Malkerns Eswatini

Authors: Rotondwa P. Gunununu, Mustapha Mohammed, Felix D. Dakora

Abstract:

Common bean is the most importantly high protein grain legume grown in Southern Africa for human consumption and income generation. Although common bean can associate with rhizobia to fix N₂ for bacterial use and plant growth, it is reported to be a poor nitrogen fixer when compared to other legumes. N₂ fixation can vary with legume species, genotype and rhizobial strain. Therefore, screening legume germplasm can reveal rhizobia/genotype combinations with high N₂-fixing efficiency for use by farmers. This study assessed symbiotic performance and N₂ fixation in 63 common bean genotypes under field conditions at Malkerns Station in Eswatini, using the ¹⁵N natural abundance technique. The shoots of common bean genotypes were sampled at a pod-filling stage, oven-dried (65oC for 72h), weighed, ground into a fine powder (0.50 mm sieve), and subjected to ¹⁵N/¹⁴N isotopic analysis using mass spectrometry. At maturity, plants from the inner rows were harvested for the determination of grain yield. The results revealed significantly higher modulation (p≤0.05) in genotypes MCA98 and CIM-RM01-97-8 relative to the other genotypes. Shoot N concentration was highest in genotype MCA 98, followed by KAB 10 F2.8-84, with most genotypes showing shoot N concentrations below 2%. Percent N derived from atmospheric N₂ fixation (%Ndfa) differed markedly among genotypes, with CIM-RM01-92-3 and DAB 174, respectively, recording the highest values of 66.65% and 66.22 % N derived from fixation. There were also significant differences in grain yield, with CIM-RM02-79-1 producing the highest yield (3618.75 kg/ha). These results represent an important contribution in the profiling of symbiotic functioning of common bean germplasm for improved N₂ fixation.

Keywords: nitrogen fixation, %Ndfa, ¹⁵N natural abundance, grain yield

Procedia PDF Downloads 209
5166 Effect of Waste Foundry Slag and Alccofine on Durability Properties of High Strength Concrete

Authors: Devinder Sharma, Sanjay Sharma, Ajay Goyal, Ashish Kapoor

Abstract:

The present research paper discussed the durability properties of high strength concrete (HSC) using Foundry Slag(FD) as partial substitute for fine aggregates (FA) and Alccofine (AF) in addition to portland pozzolana (PPC) cement. Specimens of Concrete M100 grade with water/binder ratio 0.239, with Foundry Slag (FD) varying from 0 to 50% and with optimum quantity of AF(15%) were casted and tested for durability properties such as Water absorption, water permeability, resistance to sulphate attack, alkali attack and nitrate attack of HSC at the age of 7, 14, 28, 56 and 90 days. Substitution of fine aggregates (FA) with up to 45% of foundry slag(FD) content and cement with 15% substitution and addition of alccofine showed an excellent resistance against durability properties at all ages but showed a decrease in these properties with 50% of FD contents. Loss of weight in concrete samples due to sulphate attack, alkali attack and nitrate attack of HSC at the age of 365 days was compared with loss in compressive strength. Correlation between loss in weight and loss in compressive strength in all the tests was found to be excellent.

Keywords: alccofine, alkali attack, foundry slag, high strength concrete, nitrate attack, water absorption, water permeability

Procedia PDF Downloads 323
5165 Alkali Activation of Fly Ash, Metakaolin and Slag Blends: Fresh and Hardened Properties

Authors: Weiliang Gong, Lissa Gomes, Lucile Raymond, Hui Xu, Werner Lutze, Ian L. Pegg

Abstract:

Alkali-activated materials, particularly geopolymers, have attracted much interest in academia. Commercial applications are on the rise, as well. Geopolymers are produced typically by a reaction of one or two aluminosilicates with an alkaline solution at room temperature. Fly ash is an important aluminosilicate source. However, using low-Ca fly ash, the byproduct of burning hard or black coal reacts and sets slowly at room temperature. The development of mechanical durability, e.g., compressive strength, is slow as well. The use of fly ashes with relatively high contents ( > 6%) of unburned carbon, i.e., high loss on ignition (LOI), is particularly disadvantageous as well. This paper will show to what extent these impediments can be mitigated by mixing the fly ash with one or two more aluminosilicate sources. The fly ash used here is generated at the Orlando power plant (Florida, USA). It is low in Ca ( < 1.5% CaO) and has a high LOI of > 6%. The additional aluminosilicate sources are metakaolin and blast furnace slag. Binary fly ash-metakaolin and ternary fly ash-metakaolin-slag geopolymers were prepared. Properties of geopolymer pastes before and after setting have been measured. Fresh mixtures of aluminosilicates with an alkaline solution were studied by Vicat needle penetration, rheology, and isothermal calorimetry up to initial setting and beyond. The hardened geopolymers were investigated by SEM/EDS and the compressive strength was measured. Initial setting (fluid to solid transition) was indicated by a rapid increase in yield stress and plastic viscosity. The rheological times of setting were always smaller than the Vicat times of setting. Both times of setting decreased with increasing replacement of fly ash with blast furnace slag in a ternary fly ash-metakaolin-slag geopolymer system. As expected, setting with only Orlando fly ash was the slowest. Replacing 20% fly ash with metakaolin shortened the set time. Replacing increasing fractions of fly ash in the binary system by blast furnace slag (up to 30%) shortened the time of setting even further. The 28-day compressive strength increased drastically from < 20 MPa to 90 MPa. The most interesting finding relates to the calorimetric measurements. The use of two or three aluminosilicates generated significantly more heat (20 to 65%) than the calculated from the weighted sum of the individual aluminosilicates. This synergetic heat contributes or may be responsible for most of the increase of compressive strength of our binary and ternary geopolymers. The synergetic heat effect may be also related to increased incorporation of calcium in sodium aluminosilicate hydrate to form a hybrid (N,C)A-S-H) gel. The time of setting will be correlated with heat release and maximum heat flow.

Keywords: alkali-activated materials, binary and ternary geopolymers, blends of fly ash, metakaolin and blast furnace slag, rheology, synergetic heats

Procedia PDF Downloads 109
5164 Recycled Plastic Fibers for Controlling the Plastic Shrinkage Cracking of Concrete

Authors: B. S. Al-Tulaian, M. J. Al-Shannag, A. M. Al-Hozaimy

Abstract:

Manufacturing of fibers from industrial or postconsumer plastic waste is an attractive approach with such benefits as concrete performance enhancement, and reduced needs for land filling. The main objective of this study is to investigate the effect of Plastic fibers obtained locally from recycled waste on plastic shrinkage cracking of concrete. The results indicate that recycled plastic RP fiber of 50 mm length is capable of controlling plastic shrinkage cracking of concrete to some extent, but are not as effective as polypropylene PP fibers when added at the same volume fraction. Furthermore, test results indicated that there was The increase in flexural strength of RP fibers and PP fibers concrete were 12.34% and 40.30%, respectively in comparison to plain concrete. RP fiber showed a substantial increase in toughness and a slight decrease in flexural strength of concrete at a fiber volume fraction of 1.00% compared to PP fibers at fiber volume fraction of 0.50%. RP fibers caused a significant increase in compressive strengths up to 13.02% compared to concrete without fiber reinforcement.

Keywords: concrete, plastic, shrinkage cracking, compressive strength, flexural strength, toughness, RF recycled fibers, polypropylene PP fibers

Procedia PDF Downloads 553
5163 Effect of Core Puncture Diameter on Bio-Char Kiln Efficiency

Authors: W. Intagun, T. Khamdaeng, P. Prom-ngarm, N. Panyoyai

Abstract:

Biochar has been used as a soil amendment since it has high porous structure and has proper nutrients and chemical properties for plants. Product yields produced from biochar kiln are dependent on process parameters and kiln types used. The objective of this research is to investigate the effect of core puncture diameter on biochar kiln efficiency, i.e., yields of biochar and produced gas. Corncobs were used as raw material to produce biochar. Briquettes from agricultural wastes were used as fuel. Each treatment was performed by changing the core puncture diameter. From the experiment, it is revealed that the yield of biochar at the core puncture diameter of 3.18 mm, 4.76 mm, and 6.35 mm was 10.62 wt. %, 24.12 wt. %, and 12.24 wt. %, of total solid yields, respectively. The yield of produced gas increased with increasing the core puncture diameter. The maximum percentage by weight of the yield of produced gas was 81.53 wt. % which was found at the core puncture diameter of 6.35 mm. The core puncture diameter was furthermore found to affect the temperature distribution inside the kiln and its thermal efficiency. In conclusion, the high efficient biochar kiln can be designed and constructed by using the proper core puncture diameter.

Keywords: anila stove, bio-char, soil conditioning materials, temperature distribution

Procedia PDF Downloads 222
5162 Effect of Curing Temperature on Unconfined Compression Strength of Bagasse Ash-Calcium Carbide Residue Treated Organic Clay

Authors: John Trihatmoko, Luky Handoko

Abstract:

A series of experimental program was undertaken to study the effect of curing temperature on the unconfined compression strength of bagasse ash (BA) - calcium carbide residue (CCR) stabilized organic clay (OC). A preliminary experiment was performed to get the physical properties of OC, and to get the optimum water content (OMC), the standard compaction test was done. The stabilizing agents used in this research was (40% BA + 60% CCR) . Then to obtain the best binder proportion, unconfined compression test was undertaken for OC + 3, 6, 9, 12 and 15% of binder with 7, 14, 21, 28 and 56 days curing period. The best quantity of the binder was found on 9%. Finally, to study the effect of curing temperature, the unconfined compression test was performed on OC + 9% binder with 7, 14, 21, 28 and 56 days curing time with 20O, 25O, 30O, 40O, and 50O C curing temperature. The result indicates that unconfined compression strength (UCS) of treated OC improve according to the increase of curing temperature at the same curing time. The improvement of UCS is probably due to the degree of cementation and pozzolanic reactions.

Keywords: curing temperature, organic clay, bagasse ash, calcium carbide residue, unconfined compression strength

Procedia PDF Downloads 117
5161 The Efficiency of the Resin for Steel Concrete Adhesion

Authors: Oualid Benyamina Douma

Abstract:

Repair is always the result of the appearance of apparent disorder or aggravation of a mass. Which had hitherto been considered minor if not negligible: The work was not done according to plan. So; the examination of causes can lead to thinking about repair. While the application of the epoxy resin has become a hot topic. In this context, we conducted an experimental campaign (48 specimens are tested beakout) whose objective is based on three points: 1- Highlight the importance and influence of important parameters (compressive strength of concrete anchorage length and diameter of the steel bar) on routes (steel-concrete and steel–concrete epoxy resin) 2- Understanding the influence of the parameters mentioned above on the relationship that may exist between the peel strength and slippage. 3- Faces of cracks and failure modes. This study shows that passage of a compressive strength of 40 MPa to 62 MPa increases the adhesion between the steel bar and concrete and for specimens with or without epoxy resin. The loading force was increased form 40 to 81 kM kN, a rate if increase in loading over 100% In addition, for specimens with and without epoxy resin. increased breakout force through a specimen without a specimen with resin ranging from 20% to 32%.

Keywords: epoxy resin, peel strength, anchors, slip diameter steel rod, anchor plain concrete and concrete with moderate resistance

Procedia PDF Downloads 421
5160 Evaluation of Buckwheat Genotypes to Different Planting Geometries and Fertility Levels in Northern Transition Zone of Karnataka

Authors: U. K. Hulihalli, Shantveerayya

Abstract:

Buckwheat (Fagopyrum esculentum Moench) is an annual crop belongs to family Poligonaceae. The cultivated buckwheat species are notable for their exceptional nutritive values. It is an important source of carbohydrates, fibre, macro, and microelements such as K, Ca, Mg, Na and Mn, Zn, Se, and Cu. It also contains rutin, flavonoids, riboflavin, pyridoxine and many amino acids which have beneficial effects on human health, including lowering both blood lipid and sugar levels. Rutin, quercetin and some other polyphenols are potent carcinogens against colon and other cancers. Buckwheat has significant nutritive value and plenty of uses. Cultivation of buckwheat in Sothern part of India is very meager. Hence, a study was planned with an objective to know the performance of buckwheat genotypes to different planting geometries and fertility levels. The field experiment was conducted at Main Agriculture Research Station, University of Agriculture Sciences, Dharwad, India, during 2017 Kharif. The experiment was laid-out in split-plot design with three replications having three planting geometries as main plots, two genotypes as sub plots and three fertility levels as sub-sub plot treatments. The soil of the experimental site was vertisol. The standard procedures are followed to record the observations. The planting geometry of 30*10 cm was recorded significantly higher seed yield (893 kg/ha⁻¹), stover yield (1507 kg ha⁻¹), clusters plant⁻¹ (7.4), seeds clusters⁻¹ (7.9) and 1000 seed weight (26.1 g) as compared to 40*10 cm and 20*10 cm planting geometries. Between the genotypes, significantly higher seed yield (943 kg ha⁻¹) and harvest index (45.1) was observed with genotype IC-79147 as compared to PRB-1 genotype (687 kg ha⁻¹ and 34.2, respectively). However, the genotype PRB-1 recorded significantly higher stover yield (1344 kg ha⁻¹) as compared to genotype IC-79147 (1173 kg ha⁻¹). The genotype IC-79147 was recorded significantly higher clusters plant⁻¹ (7.1), seeds clusters⁻¹ (7.9) and 1000 seed weight (24.5 g) as compared PRB-1 (5.4, 5.8 and 22.3 g, respectively). Among the fertility levels tried, the fertility level of 60:30 NP kg ha⁻¹ recorded significantly higher seed yield (845 kg ha-1) and stover yield (1359 kg ha⁻¹) as compared to 40:20 NP kg ha-1 (808 and 1259 kg ha⁻¹ respectively) and 20:10 NP kg ha-1 (793 and 1144 kg ha⁻¹ respectively). Within the treatment combinations, IC 79147 genotype having 30*10 cm planting geometry with 60:30 NP kg ha⁻¹ recorded significantly higher seed yield (1070 kg ha⁻¹), clusters plant⁻¹ (10.3), seeds clusters⁻¹ (9.9) and 1000 seed weight (27.3 g) compared to other treatment combinations.

Keywords: buckwheat, planting geometry, genotypes, fertility levels

Procedia PDF Downloads 165
5159 Economic Analysis, Growth and Yield of Grafting Tomato Varieties for Solanum torvum as a Rootstock

Authors: Evy Latifah, Eko Widaryanto, M. Dawam Maghfoer, Arifin

Abstract:

Tomato (Lycopersicon esculentum Mill.) is potential vegetables to develop, because it has high economic value and has the potential to be exported. There is a decrease in tomato productivity due to unfavorable growth conditions such as bacterial wilt, fusarium wilt, high humidity, high temperature and inappropriate production technology. Grafting technology is one alternative technology. In addition to being able to control the disease in the soil, grafting is also able to increase the growth and yield of production. Besides, it is also necessary to know the economic benefits if using grafting technology. A promising eggplant rootstock for tomato grafting is Solanum torvum. S. torvum is selected as a rootstock with high compatibility. The purpose of this research is to know the effect of grafting several varieties of tomatoes with Solanum torvum as a rootstock. The experiment was conducted in Agricultural Extension Center Pare. Experimental Garden of Pare Kediri sub-district from July to early December 2016. The materials used were tomato Cervo varieties, Karina, Timoty, and Solanum torvum. Economic analysis, growth, and yield including plant height, number of leaves, percentage of disease and tomato production were used as performance measures. The study showed that grafting tomato Timoty scion with Solanum torvum as rootstock had higher production. Financially, grafting tomato Timoty and Cervo scion had higher profit about. 28,6% and 16,3% compared to Timoty and Cervo variety treatment without grafting.

Keywords: grafting technology, economic analysis, growth, yield of tomato, Solanum torvum

Procedia PDF Downloads 222
5158 The Effect of Geometrical Ratio and Nanoparticle Reinforcement on the Properties of Al-based Nanocomposite Hollow Sphere Structures

Authors: Mostafa Amirjan

Abstract:

In the present study, the properties of Al-Al2O3 nanocomposite hollow sphere structures were investigated. For this reason, the Al-based nanocomposite hollow spheres with different amounts of nano alumina reinforcement (0-10wt %) and different ratio of thickness to diameter (t/D: 0.06-0.3) were prepared via a powder metallurgy method. Then, the effect of mentioned parameters was studied on physical and quasi static mechanical properties of their related prepared structures (open/closed cell) such as density, hardness, strength and energy absorption. It was found that as the t/D ratio increases the relative density, compressive strength and energy absorption increase. The highest values of strength and energy absorption were obtained from the specimen with 5 wt. % of nanoparticle reinforcement, t/D of 0.3 (t=1 mm, D=400µm) as 22.88 MPa and 13.24 MJ/m3, respectively. The moderate specific strength of prepared composites in the present study showed the good consistency with the properties of others low carbon steel composite with similar structure.

Keywords: hollow sphere structure foam, nanocomposite, thickness and diameter (t/D ), powder metallurgy

Procedia PDF Downloads 445
5157 Properties of Preplaced Aggregate Concrete with Modified Binder

Authors: Kunal Krishna Das, Eddie S. S. Lam

Abstract:

Preplaced Aggregate Concrete (PAC) is produced by first placing the coarse aggregate into the formwork, followed by injection of grout to fill in the voids in between the coarse aggregates. In this study, tests were carried out to determine the effects of supplementary cementitious materials on the properties of PAC. Cement was partially replaced by ground granulated blast furnace slag (GGBS) and silica fume (SF) at different proportions. Grout properties were determined by the flow cone test and compressive strength test. Grout proportion was optimized statistically. It was applied to form PAC. Hardened properties of PAC, comprising compressive strength, splitting tensile strength, chloride-ion penetration and drying shrinkage, were evaluated. GGBS enhanced the flowability of the grout, whereas SF enhanced the strength of PAC. Both GGBS and SF improved the resistance to chloride-ion penetration with the drawback of increased drying shrinkage. Nevertheless, drying shrinkage was within the range to be classified as low shrinkage concrete.

Keywords: factorial design, ground granulated blast furnace slag, preplaced aggregate concrete, silica fume

Procedia PDF Downloads 127
5156 Effect of Organic and Inorganic Fertilizers on the Growth and Yield of Physic Nut (Jatropha curcas)

Authors: Oliver Echezona Ngwu

Abstract:

The research was conducted in 2011 cropping season at the Teaching and Research farm of the Faculty of Agriculture and Natural Resources Management, Enugu State University of Science and Technology, Enugu, Nigeria to study the effect of organic and inorganic fertilizers on the growth and yield of physic Nut (Jatropha curcas). There were five treatments namely, control, (no application of treatment), NPK 20:10:10, NPK 15:15;15, poultry droppings and goat dung. The treatments were laid out in a Randomized complete Block Design (RCBD) with five replications. The total land area used was 228m2 (19x12m) while the plot size was 3mx2 (6m2). The growth parameters measured were plant height, number of leaves, and leaf area, index (LAI). The results obtained showed that there were significant differences at P=0.05 among the different treatments in 30, to and 90 DAP. Based on the results T4 (poultry droppings) had higher effect at P=0.05 at 30, 60, 90 DAP than the other treatments when compared and is hereby recommended as the best type of fertilizer for the optimum growth and production of physic Nut (Jatropha Curcas) in South Eastern Nigeria.

Keywords: organic, inorganic fertilizers, growth, yield, Jatropha curcas

Procedia PDF Downloads 275
5155 Design of Composite Joints from Carbon Fibre for Automotive Parts

Authors: G. Hemath Kumar, H. Mohit, K. Karthick

Abstract:

One of the most important issues in the composite technology is the repairing of parts of aircraft structures which is manufactured from composite materials. In such applications and also for joining various composite parts together, they are fastened together either using adhesives or mechanical fasteners. The tensile strength of these joints was carried out using Universal Testing Machine (UTM). A parametric study was also conducted to compare the performance of the hybrid joint with varying adherent thickness, adhesive thickness and overlap length. The composition of the material is combination of epoxy resin and carbon fibre under the method of reinforcement. To utilize the full potential of composite materials as structural elements, the strength and stress distribution of these joints must be understood. The study of tensile strength in the members involved under various design conditions and various joints were took place.

Keywords: carbon fiber, FRP composite, MMC, automotive

Procedia PDF Downloads 399
5154 The Effects of a Circuit Training Program on Muscle Strength, Agility, Anaerobic Performance and Cardiovascular Endurance

Authors: Wirat Sonchan, Pratoom Moungmee, Anek Sootmongkol

Abstract:

This study aimed to examine the effects of a circuit training program on muscle strength, agility, anaerobic performance and cardiovascular endurance. The study involved 24 freshmen (age 18.87+0.68 yr.) male students of the Faculty of Sport Science, Burapha University. They sample study were randomly divided into two groups: Circuit Training group (CT; n=12) and a Control group (C; n=12). Baseline data on height, weight, muscle strength (hand grip dynamometer and leg strength dynamometer), agility (agility T-Test), and anaerobic performance (Running-based Anaerobic Sprint Test) and cardiovascular endurance (20 m Endurance Shuttle Run Test) were collected. The circuit training program included one circuit of eight stations of 30/60 seconds of work/rest interval with two cycles in Week 1-4, and 60/90 seconds of work/rest interval with three cycles in Week 5-8, performed three times per week. Data were analyzed using paired t-tests and independent sample t-test. Statistically significance level was set at 0.05. The results show that after 8 weeks of a training program, muscle strength, agility, anaerobic capacity and cardiovascular endurance increased significantly in the CT Group (p < 0.05), while significant increase was not observed in the C Group (p < 0.05). The results of this study suggest that the circuit training program improved muscle strength, agility, anaerobic capacity and cardiovascular endurance of the study subjects. This program may be used as a guideline for selecting a set of exercise to improve physical fitness.

Keywords: circuit training, physical fitness, cardiovascular endurance, anaerobic performance

Procedia PDF Downloads 489
5153 Synergistic Effect of Plant Growth Promoting Bacteria and Arbuscular Mycorrhizal Fungi to Enhance Wheat Grain Yield, Biofortification and Soil Health: A Field Study

Authors: Radheshyam Yadav, Ramakrishna Wusirika

Abstract:

Plant Growth Promoting Bacteria (PGPB) and Arbuscular Mycorrhizal (AM) Fungi are ubiquitous in soil and often very critical for crop yield and agriculture sustainability, and this has motivated the agricultural practices to support and promote PGPB and AM Fungi in agriculture. PGPB can be involved in a range of processes that affect Nitrogen (N) and Phosphorus (P) transformations in soil and thus influence nutrient availability and uptake to the plants. A field study with two wheat cultivars, HD-3086, and HD-2967 was performed in Malwa region, Bathinda of Punjab, India, to evaluate the effect of native and non-native PGPB alone and in combination with AM fungi as an inoculant on wheat grain yield, nutrient uptake and soil health parameters (dehydrogenase, urease, β‐glucosidase). Our results showed that despite an early insignificant increase in shoot length, plants treated with PGPB (Bacillus sp.) and AM Fungi led to a significant increase in shoot growth at maturity, aboveground biomass, nitrogen (45% - 40%) and phosphorus (40% - 34%) content in wheat grains relative to untreated control plants. Similarly, enhanced grain yield and nutrients uptake i.e. copper (27.15% - 36.25%) iron (43% - 53%) and zinc (44% - 47%) was recorded in PGPB and AM Fungi treated plants relative to untreated control. Overall, inoculation with native PGPB alone and in combination with AM Fungi provided benefits to enhance grain yield, wheat biofortification, and improved soil fertility, despite this effect varied depending on different PGPB isolates and wheat cultivars. These field study results provide evidence of the benefits of agricultural practices involving native PGPB and AM Fungi to the plants. These native strains and AM Fungi increased accumulations of copper, iron, and zinc in wheat grains, enhanced grain yield, and soil fertility.

Keywords: AM Fungi, biofortification, PGPB, soil microbial enzymes

Procedia PDF Downloads 319
5152 Simulation of Nonlinear Behavior of Reinforced Concrete Slabs Using Rigid Body-Spring Discrete Element Method

Authors: Felix Jr. Garde, Eric Augustus Tingatinga

Abstract:

Most analysis procedures of reinforced concrete (RC) slabs are based on elastic theory. When subjected to large forces, however, slabs deform beyond elastic range and the study of their behavior and performance require nonlinear analysis. This paper presents a numerical model to simulate nonlinear behavior of RC slabs using rigid body-spring discrete element method. The proposed slab model composed of rigid plate elements and nonlinear springs is based on the yield line theory which assumes that the nonlinear behavior of the RC slab subjected to transverse loads is contained in plastic or yield-lines. In this model, the displacement of the slab is completely described by the rigid elements and the deformation energy is concentrated in the flexural springs uniformly distributed at the potential yield lines. The spring parameters are determined from comparison of transverse displacements and stresses developed in the slab obtained using FEM and the proposed model with assumed homogeneous material. Numerical models of typical RC slabs with varying geometry, reinforcement, support conditions, and loading conditions, show reasonable agreement with available experimental data. The model was also shown to be useful in investigating dynamic behavior of slabs.

Keywords: RC slab, nonlinear behavior, yield line theory, rigid body-spring discrete element method

Procedia PDF Downloads 315
5151 Effect of Nano-SiO2 Solution on the Strength Characteristics of Kaolinite

Authors: Reza Ziaie Moayed, Hamidreza Rahmani

Abstract:

Today, with developments in science and technology, there is an excessive potential for the use of nanomaterials in various fields of geotechnical project such as soil stabilization. This study investigates the effect of Nano-SiO2 solution on the unconfined compression strength and Young's elastic modulus of Kaolinite. For this purpose, nano-SiO2 was mixed with kaolinite in five different contents: 1, 2, 3, 4 and 5% by weight of the dry soil and a series of the unconfined compression test with curing time of one-day was selected as laboratory test. Analyses of the tests results show that stabilization of kaolinite with Nano-SiO2 solution can improve effectively the unconfined compression strength of modified soil up to 1.43 times compared to  the pure soil.

Keywords: kaolinite, Nano-SiO2, stabilization, unconfined compression test, Young's modulus

Procedia PDF Downloads 382
5150 Study on Compressive Strength and Setting Time of Fly Ash Concrete after Slump Recovery Using Superplasticizer

Authors: Chaiyakrit Raoupatham, Ram Hari Dhakal, Chalermchai Wanichlamlert

Abstract:

Fresh concrete that is on bound to be rejected due to belated use either from delay construction process or unflavored traffic cause delay on concrete delivering can recover the slump and use once again by introduce second dose of superplasticizer(naphthalene based type F) into system. By adding superplasticizer as solution for recover unusable slump loss concrete may affects other concrete properties. Therefore, this paper was observed setting time and compressive strength of concrete after being re-dose with chemical admixture type F (superplasticizer, naphthalene based) for slump recovery. The concrete used in this study was fly ash concrete with fly ash replacement of 0%, 30% and 50% respectively. Concrete mix designed for test specimen was prepared with paste content (ratio of volume of cement to volume of void in the aggregate) of 1.2 and 1.3, water-to-binder ratio (w/b) range of 0.3 to 0.58, initial dose of superplasticizer (SP) range from 0.5 to 1.6%. The setting time of concrete were tested both before and after re-dosed with different amount of second dose and time of dosing. The research was concluded that addition of second dose of superplasticizer would increase both initial and final setting times accordingly to dosage of addition. As for fly ash concrete, the prolongation effect was higher as the replacement of fly ash is increase. The prolongation effect can reach up to maximum about 4 hours. In case of compressive strength, the re-dosed concrete has strength fluctuation within acceptable range of ±10%.

Keywords: compressive strength, fly ash concrete, second dose of superplasticizer, setting times

Procedia PDF Downloads 271
5149 Studying the Beginnings of Strategic Behavior

Authors: Taher Abofol, Yaakov Kareev, Judith Avrahami, Peter M. Todd

Abstract:

Are children sensitive to their relative strength in competitions against others? Performance on tasks that require cooperation or coordination (e.g. the Ultimatum Game) indicates that early precursors of adult-like notions of fairness and reciprocity, as well as altruistic behavior, are evident at an early age. However, not much is known regarding developmental changes in interactive decision-making, especially in competitive interactions. Thus, it is important to study the developmental aspects of strategic behavior in these situations. The present research focused on cognitive-developmental changes in a competitive interaction. Specifically, it aimed at revealing how children engage in strategic interactions that involve the allocation of limited resources over a number of fields of competition, by manipulating relative strength. Relative strength refers to situations in which player strength changes midway through the game: the stronger player becomes the weaker one, while the weaker player becomes the stronger one. An experiment was conducted to find out if the behavior of children of different age groups differs in the following three aspects: 1. Perception of relative strength. 2. Ability to learn while gaining experience. 3. Ability to adapt to change in relative strength. The task was composed of a resource allocation game. After the players allocated their resources (privately and simultaneously), a competition field was randomly chosen for each player. The player who allocated more resources to the field chosen was declared the winner of that round. The resources available to the two competitors were unequal (or equal, for control). The theoretical solution for this game is that the weaker player should give up on a certain number of fields, depending on the stronger opponent’s relative strength, in order to be able to compete with the opponent on equal footing in the remaining fields. Participants were of three age groups, first-graders (N = 36, mean age = 6), fourth-graders (N = 36, mean age = 10), and eleventh-graders (N = 72, mean age = 16). The games took place between players of the same age and lasted for 16 rounds. There were two experimental conditions – a control condition, in which players were of equal strength, and an experimental condition, in which players differed in strength. In the experimental condition, players' strength was changed midway through the session. Results indicated that players in all age groups were sensitive to their relative strength, and played in line with the theoretical solution: the weaker players gave up on more fields than the stronger ones. This understanding, as well as the consequent difference in allocation between weak and strong players, was more pronounced among older participants. Experience led only to minimal behavioral change. Finally, the children from the two older groups, particularly the eleventh graders adapted quickly to the midway switch in relative strength. In contrast, the first-graders hardly changed their behavior with the change in their relative strength, indicating a limited ability to adapt. These findings highlight young children’s ability to consider their relative strength in strategic interactions and its boundaries.

Keywords: children, competition, decision making, developmental changes, strategic behavior

Procedia PDF Downloads 306
5148 Review: Wavelet New Tool for Path Loss Prediction

Authors: Danladi Ali, Abdullahi Mukaila

Abstract:

In this work, GSM signal strength (power) was monitored in an indoor environment. Samples of the GSM signal strength was measured on mobile equipment (ME). One-dimensional multilevel wavelet is used to predict the fading phenomenon of the GSM signal measured and neural network clustering to determine the average power received in the study area. The wavelet prediction revealed that the GSM signal is attenuated due to the fast fading phenomenon which fades about 7 times faster than the radio wavelength while the neural network clustering determined that -75dBm appeared more frequently followed by -85dBm. The work revealed that significant part of the signal measured is dominated by weak signal and the signal followed more of Rayleigh than Gaussian distribution. This confirmed the wavelet prediction.

Keywords: decomposition, clustering, propagation, model, wavelet, signal strength and spectral efficiency

Procedia PDF Downloads 441
5147 Influence of Variable Calcium Content on Mechanical Properties of Geopolymer Synthesized at Different Temperature and Moisture Conditions

Authors: Suraj D. Khadka, Priyantha W. Jayawickrama

Abstract:

In search of a sustainable construction material, geopolymer has been investigated for past decades to evaluate its advantage over conventional products. Synthesis of geopolymer requires a source of aluminosilicate mixed with sodium hydroxide and sodium silicate at different proportions to maintain a Si/Al molar ratio of 1-3 and Na/Al molar ratio of unity. A comprehensive geopolymer study was performed with Metakaolin and Class C Fly ash as primary aluminosilicate sources. Synthesized geopolymer was analyzed for time-dependent viscosity, setting period and strength at varying initial moisture content, curing temperature and humidity. Different concentration of Ca(OH)₂ and CaSO₄.2H₂O were added to vary the amount of calcium contained in synthesized geopolymer. Influence of calcium content in unconfined compressive strength behavior of geopolymer were analyzed. Finally, Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS) was performed to investigate the hardened product. It was observed that fly ash based geopolymer had shortened setting time and faster increase in viscosity as compared to geopolymer synthesized from metakaolin. This was primarily attributed to higher calcium content resulting in formation of calcium silicate hydrates (CSH). SEM-EDS was performed to verify the presence of CSH phases. Spectral analysis of geopolymer prepared by addition of Ca(OH)₂ and CaSO₄.2H₂O indicated higher CSH phases at higher concentration. It was observed that lower concentration of added calcium favored strength gain in geopolymer. However, at higher calcium concentration, decrease in strength was observed. Strength variation was also observed with humidity at initial curing condition. At 100% humidity, geopolymer with added calcium presented higher strength compared to samples cured at ambient humidity condition (40%). Reduction in strength in these samples at lower humidity was primarily attributed to reduction in moisture content in specimen due to the formation of CSH phases and loss of moisture through evaporation. For low calcium content geopolymers, with increase in temperature, gain in strength was observed with maximum strength observed at 200 ˚C. However, samples with higher calcium content demonstrated severe cracking resulting in low strength at elevated temperatures.

Keywords: calcium silicate hydrates, geopolymer, humidity, Scanning Electron Microscopy-Energy Dispersive Spectroscopy, unconfined compressive strength

Procedia PDF Downloads 118
5146 Role of Dispersion of Multiwalled Carbon Nanotubes on Compressive Strength of Cement Paste

Authors: Jyoti Bharj, Sarabjit Singh, Subhash Chander, Rabinder Singh

Abstract:

The outstanding mechanical properties of Carbon Nanotubes (CNTs) have generated great interest for their potential as reinforcements in high performance cementitious composites. The main challenge in research is the proper dispersion of carbon nanotubes in the cement matrix. The present work discusses the role of dispersion of Multiwall Carbon Nanotubes (MWCNTs) on the compressive strength characteristics of hydrated Portland IS 1489 cement paste. Cement-MWCNT composites with different mixing techniques were prepared by adding 0.2% (by weight) of MWCNTs to Portland IS 1489 cement. Rectangle specimens of size approximately 40mm × 40mm ×160mm were prepared and curing of samples was done for 7, 14, 28, and 35 days. An appreciable increase in compressive strength with both techniques; mixture of MWCNTs with cement in powder form and mixture of MWCNTs with cement in hydrated form 7 to 28 days of curing time for all the samples was observed.

Keywords: carbon nanotubes, Portland cement, composite, compressive strength

Procedia PDF Downloads 412
5145 Performance Evaluation of Hemispherical Basin Type Solar Still

Authors: Husham Mahmood Ahmed

Abstract:

For so many reasons, fresh water scarcity is one of major problems facing the world and in particularly in the third world in the Northern Africa, the Middle East, the Southwest of Asia, and many other desert areas. Solar distillation offers one of the most promising solutions of renewable energy to this aggravated situation. The main obstacle hindering the spread of the use of solar technology for fresh water production is its low efficiency. Therefore, enhancing the solar stills performances by studying the parameters affecting their productivity and implementing new ideas and a different design are the main goals of the investigators in recent years. The present research is experimental work that tests a new design of solar still with a hemispherical top cover for water desalination with and without external reflectors under the climate of the Kingdom of Bahrain during the autumn season. The hemispherical cover has a base diameter of 1m and a depth of 0.4m, die cast from a 6 mm thick Lexan plastic sheet. The net effective area was 0.785 m2. It has been found that the average daily production rate obtained from the hemispherical top cover solar still is 3.610 liter/day. This yield is 11.1% higher than the yield of a conventional simple type single slope solar still having 20ᴼ slope glass cover and a larger effective area of 1 m2 obtained in previous research under similar climatic conditions. It has also been found that adding 1.2m long by 0.15 curved reflectors increased the yield of the hemispherical solar still by 5.5 %, while the 1.2 long by 0.3m curved reflector increased the yield by about 8%.

Keywords: hemispherical solar still, solar desalination, solar energy, the Northern Africa

Procedia PDF Downloads 390
5144 Structural Properties of RC Beam with Progression of Corrosion Induced Delamination Cracking

Authors: Anupam Saxena, Achin Agrawal, Rishabh Shukla, S. Mandal

Abstract:

It is quite important that the properties of structural elements do not change significantly before and after cracking, and if they do, it adversely affects the structure. Corrosion in rebars causes cracking in concrete which can lead to the change in properties of beam. In the present study, two RC beams with same flexural strength but with different reinforcement arrangements are considered and modelling of cracks of RC beams has been done at different degrees of corrosion in the case of delamination using boundary conditions of Three Point Bending Test. Finite Element Analysis (FEA) has been done at different degree of corrosion to observe the variation of different parameters like modal frequency, Elasticity and Flexural strength in case of delamination. Also, the comparison between two different RC arrangements is made to conclude which one of them is more suitable.

Keywords: delamination, elasticity, FEA, flexural strength, modal frequency, RC beam

Procedia PDF Downloads 417
5143 Effect of Climate Change and Water Sources: Sustainability of Rural Water Sanitation and Hygiene of Tanahun District

Authors: Bharat Sapkota

Abstract:

Nepal is the one of the victim country of climate change. Decreasing snow line, sometimes higher and sometime non-rain fall are common phenomena in hill area. Natural flood disaster and drought is also common every year in certain place of the country. So this paper analyze the effect of climate and natural water sources for sustainability of water sanitation and hygiene of Tanahun district. It is one of the Rural Water Supply and Sanitation Project Western Nepal Phase-II (RWSSP-WN Phase-II) project district out of 14 project districts of western and mid-western Nepal. RWSSP-WN II is a bilateral development cooperation of governments of Nepal and Finland. Big investment is still going on in water sanitation and hygiene sector but sustainability is still a challenge throughout the country. So RWSSP-WN has started the strengthen of the capacity of local Governments to deliver services in water supply, sanitation and hygiene and its sustainability through the implementation of cross cutting approach of climate change and disaster risk reduction. The study shows that the average yield in 685 natural point sources were around 0.045 l/s in 2014 but it was twice as high in 2004 i.e. 0.09 l/s. The maximum measured yield in 2014 was 1.87 l/s, whereas, the maximum yield was 3 l/s in 2004. Likewise, spring source mean and maximum yield measured in 2014 were 0.16 l/s and 3.33 l/s respectively, whereas, mean and maximum yields in 2004 were 0.204 l/s and 3 l/s respectively. Small streams average yield measured in 2014 was 0.32 l/s with the maximum of around 4.99 l/s. In 2004, mean and maximum yields of streams were 0.485 l/s and 5 l/s respectively. The overall climate between years 2002 to 2013 and measured yield data between 2004 and 2014 shows climate as one of the causes of water source decline. The temperature is rising with pace of 0.041°C per year and rainfall is decreased by 16.8 mm/year. The Khosla’s empirical formula shows decrease of 1.7 cm/year in runoff. At present sustainability of water, sanitation and hygiene is more challenge due to sources decreasing in the district. Sanitation and hygiene total behavior change and watershed conservation as well as design and implementation of recharge pound construction are the way forward of sustainability of water, sanitation and hygiene.

Keywords: water sanitation, hygiene, sustainability, climate change

Procedia PDF Downloads 328
5142 Effect of Polymer Molecular Structures on Properties of Dental Cement Restoratives

Authors: Dong Xie, Jun Zhao, Yiming Weng

Abstract:

One of the challenges in dental cement biomaterials is how to make a restorative with mechanical strengths and wear resistance that are comparable to contemporary dental resin composites. Currently none of the dental cement restoratives has been used in high stress-bearing sites due to their low mechanical strengths and poor wear-resistance. The objective of this study was to synthesize and characterize the poly(alkenoic acid)s with different molecular structures, use these polymers to formulate a dental cement restorative, and study the effect of molecular structures on reaction kinetics, viscosity, and mechanical strengths of the formed polymers and cement restoratives. In this study, poly(alkenoic acid)s with different molecular structures were synthesized. The purified polymers were formulated with commercial Fuji II LC glass fillers to form the experimental cement restoratives. The reaction kinetics was studied via 1HNMR spectroscopy. The formed restoratives were evaluated using compressive strength, diametral tensile strength, flexural strength, hardness and wear-resistance tests. Specimens were conditioned in distilled water at 37 oC for 24 h prior to testing. Fuji II LC restorative was used as control. The results show that the higher the arm number and initiator concentration, the faster the reaction was. It was also found that the higher the arm number and branching that the polymer had, the lower the viscosity of the polymer in water and the lower the mechanical strengths of the formed restorative. The experimental restoratives were 31-53% in compressive strength, 37-55% in compressive modulus, 80-126% in diametral tensile strength, 76-94% in flexural strength, 4-21% in fracture toughness and 53-96% in hardness higher than Fuji II LC. For wear test, the experimental restoratives were only 5.4-13% of abrasive and 6.4-12% of attritional wear depths of Fuji II LC in each wear cycle. The aging study also showed that all the experimental restoratives increased their strength continuously during 30 days, unlike Fuji II LC. It is concluded that polymer molecular structures have significant and positive impact on mechanical properties of dental cement restoratives.

Keywords: dental materials, polymers, strength, biomaterials

Procedia PDF Downloads 434
5141 Effects of 8-Week Bee Bread Supplementation on Isokinetic Muscular Strength and Power in Young Athletes

Authors: Fadzel Wong Chee Ping, Chee Keong Chen, Foong Kiew Ooi, Mahaneem Mohamed

Abstract:

Introduction: To date, information on the effects of bee bread supplementation on isokinetic muscular performance are lacking. Therefore, this study was carried out to investigate the effects of 8-week bee bread supplementation on isokinetic muscular strength and power in young athletes. Methodology: Twelve male athletes (age: 24.0±1.8 years; BMI: 22.3 ± 1.3 kg.m-2; VO2max: 52.0 ± 2.8 mL.kg-1.min-1) were recruited in this randomised double blind, placebo-controlled crossover study. Participants consumed either bee bread at a dosage of 20 g.d-1 or placebo for 8 weeks. An isokinetic dynamometer was used to measure participants’ lower limb muscular strength and power prior (pre-test) and post (post-test) 8 weeks of experimental period. Testing angular velocities were set at 180o.s-1 and 300o.s-1 to determine knee flexion and extension muscular peak torque (an indicator of muscular strength) and average power of the participants. Statistical analyses were performed using ANOVA with repeated measures. Results: Isokinetic knee extension peak torque and average power at 180o.s-1, and isokinetic knee flexion peak torque and average power at 180o.s-1 were significantly (p<0.05) higher at post-test compared to pre-test with bee bread supplementation. However, significant differences were not observed in the measured parameters between pre- and post-test with placebo supplementation. Conclusion: Supplementation of bee bread for 8 weeks at a dosage of 20 g daily increased some of the measured isokinetic muscular strength and power parameters in young athletes.

Keywords: bee bread, isokinetic, power, strength

Procedia PDF Downloads 251
5140 Effect of Powder Shape on Physical Properties of Porous Coatings

Authors: M. Moayeri, A. Kaflou

Abstract:

Decreasing the size of heat exchangers in industries is favorable due to a reduction in the initial costs and maintenance. This can be achieved generally by increasing the heat transfer coefficient, which can be done by increasing tube surface by passive methods named “porous coat”. Since these coatings are often in contact with the fluid, mechanical strength of coatings should be considered as main concept beside permeability and porosity in design, especially in high velocity services. Powder shape affected mechanical property more than other factors. So in this study, the Copper powder with three different shapes (spherical, dendritic and irregular) was coated on Cu-Ni base metal with thickness of ~300µm in a reduction atmosphere (5% H2-N2) and programmable furnace. The morphology and physical properties of coatings, such as porosity, permeability and mechanical strength were investigated. Results show although irregular particle have maximum porosity and permeability but strength level close to spherical powder, in addition, mentioned particle has low production cost, so for creating porous coats in high velocity services these powder recommended.

Keywords: porous coat, permeability, mechanical strength, porosity

Procedia PDF Downloads 349