Search results for: power profiling
5799 Integration of PV Systems in Residential Buildings: A Solution for Supporting Electrical Grid in Kuwait
Authors: Nabil A. Ahmed, Nasser A. N. Mhaisen
Abstract:
The paper presents a solution to enhance the power quality and to reduce the peak load demand in Kuwait electric grid as a solution to the shortage of electricity production. Technical, environmental and economic feasibility study of utilizing integrated grid-connected photovoltaic (PV) system in residential buildings for supplying 7.1% of electrical power consumption in Kuwait is carried out using RETScreen software. A 10 KWp on-grid PV power generation system spread on the rooftop of the residential buildings is adopted and investigated and the complete system performance is simulated using PSIM software. Taking into account the international prices of electricity and natural gas, the proposed solution is investigated and tested for four different types of installation systems in terms of power generation and costs which includes horizontal installation, 25º tilted angle, single axis tracking and dual axis tracking. Results shows that the 25º tilted angle fixed mounted system is the most efficient type. The payback period as a tool of benefit analysis of the proposed system is calculated and it found to be 2.55 years.Keywords: photovoltaics, residential buildings, electrical grid, production capacity, on-grid, power generation
Procedia PDF Downloads 4945798 In₀.₁₈Al₀.₈₂N/AlN/GaN/Si Metal-Oxide-Semiconductor Heterostructure Field-Effect Transistors with Backside Metal-Trench Design
Authors: C. S Lee, W. C. Hsu, H. Y. Liu, C. J. Lin, S. C. Yao, Y. T. Shen, Y. C. Lin
Abstract:
In₀.₁₈Al₀.₈₂N/AlN/GaN metal-oxide-semiconductor heterostructure field-effect transistors (MOS-HFETs) having Al₂O₃ gate-dielectric and backside metal-trench structure are investigated. The Al₂O₃ gate oxide was formed by using a cost-effective non-vacuum ultrasonic spray pyrolysis deposition (USPD) method. In order to enhance the heat dissipation efficiency, metal trenches were etched 3-µm deep and evaporated with a 150-nm thick Ni film on the backside of the Si substrate. The present In₀.₁₈Al₀.₈₂N/AlN/GaN MOS-HFET (Schottky-gate HFET) has demonstrated improved maximum drain-source current density (IDS, max) of 1.08 (0.86) A/mm at VDS = 8 V, gate-voltage swing (GVS) of 4 (2) V, on/off-current ratio (Ion/Ioff) of 8.9 × 10⁸ (7.4 × 10⁴), subthreshold swing (SS) of 140 (244) mV/dec, two-terminal off-state gate-drain breakdown voltage (BVGD) of -191.1 (-173.8) V, turn-on voltage (Von) of 4.2 (1.2) V, and three-terminal on-state drain-source breakdown voltage (BVDS) of 155.9 (98.5) V. Enhanced power performances, including saturated output power (Pout) of 27.9 (21.5) dBm, power gain (Gₐ) of 20.3 (15.5) dB, and power-added efficiency (PAE) of 44.3% (34.8%), are obtained. Superior breakdown and RF power performances are achieved. The present In₀.₁₈Al₀.₈₂N/AlN/GaN MOS-HFET design with backside metal-trench is advantageous for high-power circuit applications.Keywords: backside metal-trench, InAlN/AlN/GaN, MOS-HFET, non-vacuum ultrasonic spray pyrolysis deposition
Procedia PDF Downloads 2545797 Sustainable Energy Supply through the Microgrid Concept: A Case Study of University of Nigeria, Nsukka
Authors: Christian Ndubisi Madu, Benjamin C. Ozumba, Ifeanyi E. Madu, Valentine E. Nnadi, Ikenna C. Ezeasor
Abstract:
The ability to generate power and achieve energy security is one of the driving forces behind the emerging ‘microgrid’ concept. Traditional power supply often operates with centralized infrastructure for generating, transmitting and distributing electricity. The inefficiency and the incessant power outages associated with the centralized power supply system in Nigeria has alienated many users who frequently turn to electric power generator sets to power their homes and offices. Such acts are unsustainable and lead to increase in the use of fossil fuels, generation of carbon dioxide emissions and other gases, and noise pollution. They also pose significant risks as they entail random purchases and storage of gasolines which are fire hazards. It is therefore important that organizations rethink their relationships to centralized power suppliers in other to improve energy accessibility and security. This study explores the energy planning processes and learning taking place at the University of Nigeria Enugu Campus as the school lead microgrid feasibility studies in its community. There is need to develop community partners to deal with the issue of energy efficiency and also to create a strategic alliance to confront political, regulatory and economic barriers to locally-based energy planning. Community-based microgrid can help to reduce the cost of adoption and diversify risks. This study offers insights into the ways in which microgrids can further democratize energy planning, procurement, and access, while simultaneously promoting efficiency and sustainability.Keywords: microgrid, energy efficiency, sustainability, energy security
Procedia PDF Downloads 3755796 Improving the Performance of Gas Turbine Power Plant by Modified Axial Turbine
Authors: Hakim T. Kadhim, Faris A. Jabbar, Aldo Rona, Audrius Bagdanaviciu
Abstract:
Computer-based optimization techniques can be employed to improve the efficiency of energy conversions processes, including reducing the aerodynamic loss in a thermal power plant turbomachine. In this paper, towards mitigating secondary flow losses, a design optimization workflow is implemented for the casing geometry of a 1.5 stage axial flow turbine that improves the turbine isentropic efficiency. The improved turbine is used in an open thermodynamic gas cycle with regeneration and cogeneration. Performance estimates are obtained by the commercial software Cycle – Tempo. Design and off design conditions are considered as well as variations in inlet air temperature. Reductions in both the natural gas specific fuel consumption and in CO2 emissions are predicted by using the gas turbine cycle fitted with the new casing design. These gains are attractive towards enhancing the competitiveness and reducing the environmental impact of thermal power plant.Keywords: axial flow turbine, computational fluid dynamics, gas turbine power plant, optimization
Procedia PDF Downloads 1615795 Combined PV Cooling and Nighttime Power Generation through Smart Thermal Management of Photovoltaic–Thermoelectric Hybrid Systems
Authors: Abdulrahman M. Alajlan, Saichao Dang, Qiaoqiang Gan
Abstract:
Photovoltaic (PV) cells, while pivotal for solar energy harnessing, confront a challenge due to the presence of persistent residual heat. This thermal energy poses significant obstacles to the performance and longevity of PV cells. Mitigating this thermal issue is imperative, particularly in tropical regions where solar abundance coexists with elevated ambient temperatures. In response, a sustainable and economically viable solution has been devised, incorporating water-passive cooling within a Photovoltaic-Thermoelectric (PV-TEG) hybrid system to address PV cell overheating. The implemented system has significantly reduced the operating temperatures of PV cells, achieving a notable reduction of up to 15 °C below the temperature observed in standalone PV systems. In addition, a thermoelectric generator (TEG) integrated into the system significantly enhances power generation, particularly during nighttime operation. The developed hybrid system demonstrates its capability to generate power at a density of 0.5 Wm⁻² during nighttime, which is sufficient to concurrently power multiple light-emitting diodes, demonstrating practical applications for nighttime power generation. Key findings from this research include a consistent temperature reduction exceeding 10 °C for PV cells, translating to a 5% average enhancement in PV output power compared to standalone PV systems. Experimental demonstrations underscore nighttime power generation of 0.5 Wm⁻², with the potential to achieve 0.8 Wm⁻² through simple geometric optimizations. The optimal cooling of PV cells is determined by the volume of water in the heat storage unit, exhibiting an inverse relationship with the optimal performance for nighttime power generation. Furthermore, the TEG output effectively powers a lighting system with up to 5 LEDs during the night. This research not only proposes a practical solution for maximizing solar radiation utilization but also charts a course for future advancements in energy harvesting technologies.Keywords: photovoltaic-thermoelectric systems, nighttime power generation, PV thermal management, PV cooling
Procedia PDF Downloads 845794 Effect of Parameters for Exponential Loads on Voltage Transmission Line with Compensation
Authors: Benalia Nadia, Bensiali Nadia, Zerzouri Noura
Abstract:
This paper presents an analysis of the effects of parameters np and nq for exponential load on the transmission line voltage profile, transferred power and transmission losses for different shunt compensation size. For different values for np and nq in which active and reactive power vary with it is terminal voltages as in exponential form, variations of the load voltage for different sizes of shunt capacitors are simulated with a simple two-bus power system using Matlab SimPowerSystems Toolbox. It is observed that the compensation level is significantly affected by the voltage sensitivities of loads.Keywords: static load model, shunt compensation, transmission system, exponentiel load model
Procedia PDF Downloads 3685793 Leakage Current Analysis of FinFET Based 7T SRAM at 32nm Technology
Authors: Chhavi Saxena
Abstract:
FinFETs can be a replacement for bulk-CMOS transistors in many different designs. Its low leakage/standby power property makes FinFETs a desirable option for memory sub-systems. Memory modules are widely used in most digital and computer systems. Leakage power is very important in memory cells since most memory applications access only one or very few memory rows at a given time. As technology scales down, the importance of leakage current and power analysis for memory design is increasing. In this paper, we discover an option for low power interconnect synthesis at the 32nm node and beyond, using Fin-type Field-Effect Transistors (FinFETs) which are a promising substitute for bulk CMOS at the considered gate lengths. We consider a mechanism for improving FinFETs efficiency, called variable supply voltage schemes. In this paper, we’ve illustrated the design and implementation of FinFET based 4x4 SRAM cell array by means of one bit 7T SRAM. FinFET based 7T SRAM has been designed and analysis have been carried out for leakage current, dynamic power and delay. For the validation of our design approach, the output of FinFET SRAM array have been compared with standard CMOS SRAM and significant improvements are obtained in proposed model.Keywords: FinFET, 7T SRAM cell, leakage current, delay
Procedia PDF Downloads 4555792 Study on the Impact of Power Fluctuation, Hydrogen Utilization, and Fuel Cell Stack Orientation on the Performance Sensitivity of PEM Fuel Cell
Authors: Majid Ali, Xinfang Jin, Victor Eniola, Henning Hoene
Abstract:
The performance of proton exchange membrane (PEM) fuel cells is sensitive to several factors, including power fluctuations, hydrogen utilization, and the quality orientation of the fuel cell stack. In this study, we investigate the impact of these factors on the performance of a PEM fuel cell. We start by analyzing the power fluctuations that are typical in renewable energy systems and their effects on the 50 Watt fuel cell's performance. Next, we examine the hydrogen utilization rate (0-1000 mL/min) and its impact on the cell's efficiency and durability. Finally, we investigate the quality orientation (three different positions) of the fuel cell stack, which can significantly affect the cell's lifetime and overall performance. The basis of our analysis is the utilization of experimental results, which have been further validated by comparing them with simulations and manufacturer results. Our results indicate that power fluctuations can cause significant variations in the fuel cell's voltage and current, leading to a reduction in its performance. Moreover, we show that increasing the hydrogen utilization rate beyond a certain threshold can lead to a decrease in the fuel cell's efficiency. Finally, our analysis demonstrates that the orientation of the fuel cell stack can affect its performance and lifetime due to non-uniform distribution of reactants and products. In summary, our study highlights the importance of considering power fluctuations, hydrogen utilization, and quality orientation in designing and optimizing PEM fuel cell systems. The findings of this study can be useful for researchers and engineers working on the development of fuel cell systems for various applications, including transportation, stationary power generation, and portable devices.Keywords: fuel cell, proton exchange membrane, renewable energy, power fluctuation, experimental
Procedia PDF Downloads 1355791 Performance Improvement of a Single-Flash Geothermal Power Plant Design in Iran: Combining with Gas Turbines and CHP Systems
Authors: Morteza Sharifhasan, Davoud Hosseini, Mohammad. R. Salimpour
Abstract:
The geothermal energy is considered as a worldwide important renewable energy in recent years due to rising environmental pollution concerns. Low- and medium-grade geothermal heat (< 200 ºC) is commonly employed for space heating and in domestic hot water supply. However, there is also much interest in converting the abundant low- and medium-grade geothermal heat into electrical power. The Iranian Ministry of Power - through the Iran Renewable Energy Organization (SUNA) – is going to build the first Geothermal Power Plant (GPP) in Iran in the Sabalan area in the Northwest of Iran. This project is a 5.5 MWe single flash steam condensing power plant. The efficiency of GPPs is low due to the relatively low pressure and temperature of the saturated steam. In addition to GPPs, Gas Turbines (GTs) are also known by their relatively low efficiency. The Iran ministry of Power is trying to increase the efficiency of these GTs by adding bottoming steam cycles to the GT to form what is known as combined gas/steam cycle. One of the most effective methods for increasing the efficiency is combined heat and power (CHP). This paper investigates the feasibility of superheating the saturated steam that enters the steam turbine of the Sabalan GPP (SGPP-1) to improve the energy efficiency and power output of the GPP. This purpose is achieved by combining the GPP with two 3.5 MWe GTs. In this method, the hot gases leaving GTs are utilized through a superheater similar to that used in the heat recovery steam generator of combined gas/steam cycle. Moreover, brine separated in the separator, hot gases leaving GTs and superheater are used for the supply of domestic hot water (in this paper, the cycle combined of GTs and CHP systems is named the modified SGPP-1) . In this research, based on the Heat Balance presented in the basic design documents of the SGPP-1, mathematical/numerical model of the power plant are developed together with the mentioned GTs and CHP systems. Based on the required hot water, the amount of hot gasses needed to pass through CHP section directly can be adjusted. For example, during summer when hot water is less required, the hot gases leaving both GTs pass through the superheater and CHP systems respectively. On the contrary, in order to supply the required hot water during the winter, the hot gases of one of the GTs enter the CHP section directly, without passing through the super heater section. The results show that there is an increase in thermal efficiency up to 40% through using the modified SGPP-1. Since the gross efficiency of SGPP-1 is 9.6%, the achieved increase in thermal efficiency is significant. The power output of SGPP-1 is increased up to 40% in summer (from 5.5MW to 7.7 MW) while the GTs power output remains almost unchanged. Meanwhile, the combined-cycle power output increases from the power output of the two separate plants of 12.5 MW [5.5+ (2×3.5)] to the combined-cycle power output of 14.7 [7.7+(2×3.5)]. This output is more than 17% above the output of the two separate plants. The modified SGPP-1 is capable of producing 215 T/Hr hot water ( 90 ºC ) for domestic use in the winter months.Keywords: combined cycle, chp, efficiency, gas turbine, geothermal power plant, gas turbine, power output
Procedia PDF Downloads 3225790 Economic Analysis of Domestic Combined Heat and Power System in the UK
Authors: Thamo Sutharssan, Diogo Montalvao, Wen-Chung Wang, Yong Chen, Claudia Pisac
Abstract:
A combined heat and power (CHP) system is an efficient and clean way to generate power (electricity). Heat produced by the CHP system can be used for water and space heating. The CHP system which uses hydrogen as fuel produces zero carbon emission. Its’ efficiency can reach more than 80% whereas that of a traditional power station can only reach up to 50% because much of the thermal energy is wasted. The other advantages of CHP systems include that they can decentralize energy generation, improve energy security and sustainability, and significantly reduce the energy cost to the users. This paper presents the economic benefits of using a CHP system in the domestic environment. For this analysis, natural gas is considered as potential fuel as the hydrogen fuel cell based CHP systems are rarely used. UK government incentives for CHP systems are also considered as the added benefit. Results show that CHP requires a significant initial investment in return it can reduce the annual energy bill significantly. Results show that an investment may be paid back in 7 years. After the back period, CHP can run for about 3 years as most of the CHP manufacturers provide 10-year warranty.Keywords: combined heat and power, clean energy, hydrogen fuel cell, economic analysis of CHP, zero emission
Procedia PDF Downloads 3855789 Optimizing the Design Parameters of Acoustic Power Transfer Model to Achieve High Power Intensity and Compact System
Authors: Ariba Siddiqui, Amber Khan
Abstract:
The need for bio-implantable devices in the field of medical sciences has been increasing day by day; however, the charging of these devices is a major issue. Batteries, a very common method of powering the implants, have a limited lifetime and bulky nature. Therefore, as a replacement of batteries, acoustic power transfer (APT) technology is being accepted as the most suitable technique to wirelessly power the medical implants in the present scenario. The basic model of APT consists of piezoelectric transducers that work on the principle of converse piezoelectric effect at the transmitting end and direct piezoelectric effect at the receiving end. This paper provides mechanistic insight into the parameters affecting the design and efficient working of acoustic power transfer systems. The optimum design considerations have been presented that will help to compress the size of the device and augment the intensity of the pressure wave. A COMSOL model of the PZT (Lead Zirconate Titanate) transducer was developed. The model was simulated and analyzed on a frequency spectrum. The simulation results displayed that the efficiency of these devices is strongly dependent on the frequency of operation, and a wrong choice of the operating frequency leads to the high absorption of acoustic field inside the tissue (medium), poor power strength, and heavy transducers, which in effect influence the overall configuration of the acoustic systems. Considering all the tradeoffs, the simulations were performed again by determining an optimum frequency (900 kHz) that resulted in the reduction of the transducer's thickness to 1.96 mm and augmented the power strength with an intensity of 432 W/m². Thus, the results obtained after the second simulation contribute to lesser attenuation, lightweight systems, high power intensity, and also comply with safety limits provided by the U.S Food and Drug Administration (FDA). It was also found that the chosen operating frequency enhances the directivity of the acoustic wave at the receiver side.Keywords: acoustic power, bio-implantable, COMSOL, Lead Zirconate Titanate, piezoelectric, transducer
Procedia PDF Downloads 1745788 Double Fourier Series Applied to Supraharmonic Determination: The Specific Cases of a Boost and an Interleaved Boost Converter Used as Active Power Factor Correctors
Authors: Erzen Muharemi, Emmanuel De Jaeger, Jos Knockaert
Abstract:
The work presented here investigates the modeling of power electronics converters in terms of their harmonic production. Specifically, it addresses high-frequency emissions in the range of 2-150 kHz, referred to as supraharmonics. This paper models a conventional converter, namely the boost converter used as an active power factor corrector (APFC). Furthermore, the modeling is extended to the case of the interleaved boost converter, which offers advantages such as halving the emissions. Finally, a comparison between the theoretical, numerical, and experimental results will be provided.Keywords: APFC, boost converter, converter modeling, double fourier series, supraharmonics
Procedia PDF Downloads 425787 Mesoporous RGO@(Co,Mn)3O4 Nanocomposite Prepared by Microwave Method and Its Electrochemical Performance
Authors: Charmaine Lamiel, Van Hoa Nguyen, Jae-Jin Shim
Abstract:
Supercapacitors are energy storage devices capable of storing more energy than conventional capacitors and have higher power density than batteries. The advantages of this method include the non-use of reducing agents and acidic medium, and no further use of a post-heat treatment unlike the conventional processes, in which calcination is generally employed after obtaining the initial product. Furthermore, it also offers a shorter reaction time at low temperatures and low power requirements, which allows low fabrication and energy cost. In this study, microwave irradiation was used for the facile and rapid synthesis of mesoporous RGO@(Co,Mn)3O4 nanosheets as an electrode material. The as-prepared electrode exhibited a high capacitance of 953 F•g^−1 at 1 A•g^−1 in a 6 M KOH electrolyte solution. Moreover, the electrode exhibited a high energy density of 76.2 Wh•kg^−1 at a power density of 720 W•kg^−1, and a high power density of 7200 W•kg^−1 at an energy density of 38 Wh•kg^−1. The successful methodology was considered to be efficient and cost-effective, thereby providing an active electrode material with very promising electrochemical performance.Keywords: cobalt-manganese oxide, electrochemical, graphene, microwave synthesis, supercapacitor
Procedia PDF Downloads 2135786 Off Design Modelling of 650MW Combined Cycle Gas Turbine Power Plant Integrated with a Retrofitted Inlet Fogging System
Authors: Osarobo Omorogieva Ighodaro, Josephus Otejere
Abstract:
This paper contains the modelling and simulation of GT13E2 combined cycle gas turbine with the aid of the software EBSILON PROFESSIONAL. The design mode was modeled using guaranteed performance data from the power plant, in the off design, temperature variation of ambient air and fogging (spray water at inlet to compressor) was simulated. The fogging was simulated under two different modes; constant fuel consumption and constant turbine exhaust temperature .The model results were validated using actual operating data by applying error percentage analysis. The validation results obtained ranged from -0.0038% to 0% in design condition while the results varied from -0.9202% to 10.24% The model shows that fogging decreases compressor inlet temperature which in turn decreases the power required to drive the compressor hence improving the simple cycle efficiency and hence increasing power generated.Keywords: inlet fogging, off design, combined cycle, modelling
Procedia PDF Downloads 395785 Power Relation, Symbolic Rules and the Position of Belis in the Habitus of the East Nusa Tenggara Society’s Customary Marriage
Authors: Siti Rodliyah, Andrik Purwasito, Bani Sudardi, Abdullah Wakit
Abstract:
This study employs sociological-ethnographic basic method and the cultural studies paradigm as the approach in understanding the habitus within the customary marriage of the East Nusa Tenggara society who require belis as a bride-price. The conceptual basis underlying the application of habitus theory and symbolic power in East Nusa Tenggara (NTT) society refers to the Bourdieu’s framework. This study is a result of participatory observation on habitus of a marital system using belis observed by the NTT society as a cognitive structure which connects individuals to the social activities of the customary marriage and makes it unquestionable habits. Knowledge of the social world under the pretext of prosperity for the recipients (family) of a bride-price can be a political instrument for the sustainability of power relations. The ritual-mythical system in the society has never been fully present as a neutral habit. The habitus reflected in the marital relationship among the NTT society enables the men to obtain and exercise their power relations. The sustainability of power relations can be seen from the representation of the social status of a girl and the properties attached to her. This is what gave birth to a symbolic rule, in which the social rules about bride-price or belis eventually will serve the interests of those who occupy a dominant position in the social structure, namely the rich men.Keywords: belis, habitus, East Nusa Tenggara, marital system, power, symbolic
Procedia PDF Downloads 2445784 Control Algorithm Design of Single-Phase Inverter For ZnO Breakdown Characteristics Tests
Authors: Kashif Habib, Zeeshan Ayyub
Abstract:
ZnO voltage dependent resistor was widely used as components of the electrical system for over-voltage protection. It has a wide application prospect in superconducting energy-removal, generator de-excitation, overvoltage protection of electrical & electronics equipment. At present, the research for the application of ZnO voltage dependent resistor stop, it uses just in the field of its nonlinear voltage current characteristic and overvoltage protection areas. There is no further study over the over-voltage breakdown characteristics, such as the combustion phenomena and the measure of the voltage/current when it breakdown, and the affect to its surrounding equipment. It is also a blind spot in its application. So, when we do the feature test of ZnO voltage dependent resistor, we need to design a reasonable test power supply, making the terminal voltage keep for sine wave, simulating the real use of PF voltage in power supply conditions. We put forward the solutions of using inverter to generate a controllable power. The paper mainly focuses on the breakdown characteristic test power supply of nonlinear ZnO voltage dependent resistor. According to the current mature switching power supply technology, we proposed power control system using the inverter as the core. The power mainly realize the sin-voltage output on the condition of three-phase PF-AC input, and 3 control modes (RMS, Peak, Average) of the current output. We choose TMS320F2812M as the control part of the hardware platform. It is used to convert the power from three-phase to a controlled single-phase sin-voltage through a rectifier, filter, and inverter. Design controller produce SPWM, to get the controlled voltage source via appropriate multi-loop control strategy, while execute data acquisition and display, system protection, start logic control, etc. The TMS320F2812M is able to complete the multi-loop control quickly and can be a good completion of the inverter output control.Keywords: ZnO, multi-loop control, SPWM, non-linear load
Procedia PDF Downloads 3255783 Settlement Network Supplying Energy
Authors: Balázs Kulcsár
Abstract:
Few people now doubt the future of the global energy transition. The only question is whether the pace of renewables' penetration will be sufficient to compete with the rate of warming. Dynamic changes are also taking place in the Hungarian electricity system. In addition to nuclear power, which provides the basic electricity supply, the most dynamic is solar power, which is largely small-scale and residential. The emergence of solar power is outlining the emergence of energy production and supply fabric of municipalities. This creates the potential for over-producing municipalities to supply the electricity needs of neighboring settlements with lower production beyond renewables. By taking advantage of this energy sharing, electricity supply based on pure renewables can be achieved more quickly.Keywords: renewable energy, energy geography, self-sufficiency, energy transition
Procedia PDF Downloads 1815782 Simulation and Optimization of Hybrid Energy System Autonomous PV-Diesel-Wind Power with Battery Storage for Relay Antenna Telecommunication
Authors: Tahri Toufik, Bouchachia Mohamed, Braikia Oussama
Abstract:
The objective of this work is the design and optimization of a hybrid PV-Diesel-Wind power system with storage in order to power a relay antenna telecommunication isolated in Chlef region. The aim of the simulation of this hybrid system by the HOMER software is to determine the size and the number of each element of the system and to determine the optimal technical and economic configuration using monthly average values per year for a fixed charge antenna relay telecommunication of 22kWh/d.Keywords: HOMER, hybrid, PV-diesel-wind system, relay antenna telecommunication
Procedia PDF Downloads 5175781 Improved Performance of AlGaN/GaN HEMTs Using N₂/NH₃ Pretreatment before Passivation
Authors: Yifan Gao
Abstract:
Owing to the high breakdown field, high saturation drift velocity, 2DEG with high density and mobility and so on, AlGaN/GaN HEMTs have been widely used in high-frequency and high-power applications. To acquire a higher power often means higher breakdown voltage and higher drain current. Surface leakage current is usually the key issue affecting the breakdown voltage and power performance. In this work, we have performed in-situ N₂/NH₃ pretreatment before the passivation to suppress the surface leakage and achieve device performance enhancement. The AlGaN/GaN HEMT used in this work was grown on a 3-in. SiC substrate, whose epitaxial structure consists of a 3.5-nm GaN cap layer, a 25-nm Al₀.₂₅GaN barrier layer, a 1-nm AlN layer, a 400-nm i-GaN layer and a buffer layer. In order to analyze the mechanism for the N-based pretreatment, the details are measured by XPS analysis. It is found that the intensity of Ga-O bonds is decreasing and the intensity of Ga-N bonds is increasing, which means with the supplement of N, the dangling bonds on the surface are indeed reduced with the forming of Ga-N bonds, reducing the surface states. The surface states have a great influence on the leakage current, and improved surface states represent a better off-state of the device. After the N-based pretreatment, the breakdown voltage of the device with Lₛ𝒹=6 μm increased from 93V to 170V, which increased by 82.8%. Moreover, for HEMTs with Lₛ𝒹 of 6-μm, we can obtain a peak output power (Pout) of 12.79W/mm, power added efficiency (PAE) of 49.84% and a linear gain of 20.2 dB at 60V under 3.6GHz. Comparing the result with the reference 6-μm device, Pout is increased by 16.5%. Meanwhile, PAE and the linear gain also have a slight increase. The experimental results indicate that using N₂/NH₃ pretreatment before passivation is an attractive approach to achieving power performance enhancement.Keywords: AlGaN/GaN HEMT, N-based pretreatment, output power, passivation
Procedia PDF Downloads 3175780 Utilizing Waste Heat from Thermal Power Plants to Generate Power by Modelling an Atmospheric Vortex Engine
Authors: Mohammed Nabeel Khan, C. Perisamy
Abstract:
Convective vortices are normal highlights of air that ingest lower-entropy-energy at higher temperatures than they dismiss higher-entropy-energy to space. By means of the thermodynamic proficiency, it has been anticipated that the force of convective vortices relies upon the profundity of the convective layer. The atmospheric vortex engine is proposed as a gadget for delivering mechanical energy by methods for artificially produced vortex. The task of the engine is in view of the certainties that the environment is warmed from the base and cooled from the top. By generation of the artificial vortex, it is planned to take out the physical solar updraft tower and decrease the capital of the solar chimney power plants. The study shows the essentials of the atmospheric vortex engine, furthermore, audits the cutting edge in subject. Moreover, the study talks about a thought on using the solar energy as heat source to work the framework. All in all, the framework is attainable and promising for electrical power production.Keywords: AVE, atmospheric vortex engine, atmosphere, updraft, vortex
Procedia PDF Downloads 1615779 Combined Fuzzy and Predictive Controller for Unity Power Factor Converter
Authors: Abdelhalim Kessal
Abstract:
This paper treats a design of combined control of a single phase power factor correction (PFC). The strategy of the proposed control is based on two parts, the first, for the outer loop (DC output regulated voltage), and the second govern the input current of the converter in order to achieve a sinusoidal form in phase with the grid voltage. Two kinds of regulators are used, Fuzzy controller for the outer loop and predictive controller for the inner loop. The controllers are verified and discussed through simulation under MATLAB/Simulink platform. Also an experimental confirmation is applied. Results present a high dynamic performance under various parameters changes.Keywords: boost converter, harmonic distortion, Fuzzy, predictive, unity power factor
Procedia PDF Downloads 4925778 Wind Turbine Powered Car Uses 3 Single Big C-Section Blades
Authors: K. Youssef, Ç. Hüseyin
Abstract:
The blades of a wind turbine have the most important job of any wind turbine component; they must capture the wind and convert it into usable mechanical energy. The objective of this work is to determine the mechanical power of single big C-section of vertical wind turbine for wind car in a two-dimensional model. The wind car has a vertical axis with 3 single big C-section blades mounted at an angle of 120°. Moreover, the three single big C-section blades are directly connected to wheels by using various kinds of links. Gears are used to convert the wind energy to mechanical energy to overcome the load exercised on the main shaft under low speed. This work allowed a comparison of drag characteristics and the mechanical power between the single big C-section blades with the previous work on 3 C-section and 3 double C-section blades for wind car. As a result obtained from the flow chart the torque and power curves of each case study are illustrated and compared with each other. In particular, drag force and torque acting on each types of blade was taken at an airflow speed of 4 m/s, and an angular velocity of 13.056 rad/s.Keywords: blade, vertical wind turbine, drag characteristics, mechanical power
Procedia PDF Downloads 5205777 Make Up Flash: Web Application for the Improvement of Physical Appearance in Images Based on Recognition Methods
Authors: Stefania Arguelles Reyes, Octavio José Salcedo Parra, Alberto Acosta López
Abstract:
This paper presents a web application for the improvement of images through recognition. The web application is based on the analysis of picture-based recognition methods that allow an improvement on the physical appearance of people posting in social networks. The basis relies on the study of tools that can correct or improve some features of the face, with the help of a wide collection of user images taken as reference to build a facial profile. Automatic facial profiling can be achieved with a deeper study of the Object Detection Library. It was possible to improve the initial images with the help of MATLAB and its filtering functions. The user can have a direct interaction with the program and manually adjust his preferences.Keywords: Matlab, make up, recognition methods, web application
Procedia PDF Downloads 1445776 Evaluation of Genetic Fidelity and Phytochemical Profiling of Micropropagated Plants of Cephalantheropsis obcordata: An Endangered Medicinal Orchid
Authors: Gargi Prasad, Ashiho A. Mao, Deepu Vijayan, S. Mandal
Abstract:
The main objective of the present study was to optimize and develop an efficient protocol for in vitro propagation of a medicinally important orchid Cephalantheropsis obcordata (Lindl.) Ormerod along with genetic stability analysis of regenerated plants. This plant has been traditionally used in Chinese folk medicine and the decoction of whole plant is known to possess anticancer activity. Nodal segments used as explants were inoculated on Murashige and Skoog (MS) medium supplemented with various concentrations of isopentenyl adenine (2iP). The rooted plants were successfully acclimatized in the greenhouse with 100% survival rate. Inter-simple sequence repeats (ISSR) markers were used to assess the genetic fidelity of in vitro raised plants and the mother plant. It was revealed that monomorphic bands showing the absence of polymorphism in all in vitro raised plantlets analyzed, confirming the genetic uniformity among the regenerants. Phytochemical analysis was done to compare the antioxidant activities and HPLC fingerprinting assay of 80% aqueous ethanol extract of the leaves and stem of in vitro and in vivo grown C. obcordata. The extracts of the plants were examined for their antioxidant activities by using free radical 1, 1-diphenyl-2-picryl hydrazyl (DPPH) scavenging method, 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging ability, reducing power capacity, estimation of total phenolic content, flavonoid content and flavonol content. A simplified method for the detection of ascorbic acid, phenolic acids and flavonoids content was also developed by using reversed phase high-performance liquid chromatography (HPLC). This is the first report on the micropropagation, genetic integrity study and quantitative phytochemical analysis of in vitro regenerated plants of C. obcordata.Keywords: Cephalantheropsis obcordata, genetic fidelity, ISSR markers, HPLC
Procedia PDF Downloads 1565775 Wind Power Assessment for Turkey and Evaluation by APLUS Code
Authors: Ibrahim H. Kilic, A. B. Tugrul
Abstract:
Energy is a fundamental component in economic development and energy consumption is an index of prosperity and the standard of living. The consumption of energy per capita has increased significantly over the last decades, as the standard of living has improved. Turkey’s geographical location has several advantages for extensive use of wind power. Among the renewable sources, Turkey has very high wind energy potential. Information such as installation capacity of wind power plants in installation, under construction and license stages in the country are reported in detail. Some suggestions are presented in order to increase the wind power installation capacity of Turkey. Turkey’s economic and social development has led to a massive increase in demand for electricity over the last decades. Since the Turkey has no major oil or gas reserves, it is highly dependent on energy imports and is exposed to energy insecurity in the future. But Turkey does have huge potential for renewable energy utilization. There has been a huge growth in the construction of wind power plants and small hydropower plants in recent years. To meet the growing energy demand, the Turkish Government has adopted incentives for investments in renewable energy production. Wind energy investments evaluated the impact of feed-in tariffs (FIT) based on three scenarios that are optimistic, realistic and pessimistic with APLUS software that is developed for rational evaluation for energy market. Results of the three scenarios are evaluated in the view of electricity market for Turkey.Keywords: APLUS, energy policy, renewable energy, wind power, Turkey
Procedia PDF Downloads 3035774 The Impact of the Constitution of Myanmar on the Political Power of Aung San Suu Kyi and the Rohingya Conflict
Authors: Nur R. Daut
Abstract:
The objective of this paper is to offer an insight on how political power inequality has contributed and exacerbated the political violence towards the Rohingya ethnic group in Myanmar. In particular, this paper attempts to illustrate how power inequality in the country has prevented Myanmar’s leader Aung San Suu Kyi from taking effective measures on the issue. The research centers on the question of why Aung San Suu Kyi has been seen as not doing enough to stop the persecution of the Rohingya ethnic group ever since she was appointed the State Counsellor to the Myanmar government. As a Nobel Peace Prize laureate, Suu Kyi’s lack of action on the matter has come under severe criticism by the international community. Many have seen this as Suu Kyi’s failure to establish democracy and allowing mass killing to spread in the country. The real question that many perhaps should be asking, however, is how much power Suu Kyi actually holds within the government which is still heavily controlled by the military or Tatmadaw. This paper argues that Suu Kyi’s role within the government is limited which hinders constructive and effective measures to be taken on the Rohingya issue. Political power in this research is being measured by 3 factors: control over events such as burning of Rohingya villages, control over resources such as land ownership and media and control over actors such the Tatmadaw, police force and civil society who are greatly needed to ease and resolve the conflict. In order to illustrate which individuals or institution have control over all the 3 above factors, this paper will first study the constitution of Myanmar. The constitution will also be able to show the asymmetrical power relations as it will provide evidence as to how much political power Suu Kyi holds within the government in comparison to other political actors and institutions. Suu Kyi’s role as a state counsellor akin to a prime minister is a newly created position as the current constitution of Myanmar bars anyone with a foreign spouse from holding the post of a president in the country. This is already an indication of the inequality of political power between Suu Kyi and the military. Apart from studying the constitution of Myanmar, Suu Kyi’s speeches and various interviews are also studied in order to answer the research question. Unfortunately, Suu Kyi’s limited political power also involves the Buddhist monks in Myanmar who have held significant influence throughout the history of the country. This factor further prevents Suu Kyi from preserving the sanctity of human rights in Myanmar.Keywords: Aung San Suu Kyi, constitution of Myanmar, inequality, political power, political violence, Rohingya, Tatmadaw
Procedia PDF Downloads 1165773 Numerical Study of 5kW Vertical Axis Wind Turbine Using DOE Method
Authors: Yan-Ting Lin, Wei-Nian Su
Abstract:
The purpose of this paper is to demonstrate the design of 5kW vertical axis wind turbine (VAWT) using DOE method. The NACA0015 airfoil was implemented for the design and 3D simulation. The critical design parameters are chord length, tip speed ratio (TSR), aspect ratio (AR) and pitch angle in this investigation. The RNG k-ε turbulent model and the sliding mesh method are adopted in the CFD simulation. The results show that the model with zero pitch, 0.3 m in chord length, TSR of 3, and AR of 10 demonstrated the optimum aerodynamic power under the uniform 10m/s inlet velocity. The aerodynamic power is 3.61kW and 3.89kW under TSR of 3 and 4 respectively. The aerodynamic power decreased dramatically while TSR increased to 5.Keywords: vertical axis wind turbine, CFD, DOE, VAWT
Procedia PDF Downloads 4405772 Simulink Library for Reference Current Generation in Active DC Traction Substations
Authors: Mihaela Popescu, Alexandru Bitoleanu
Abstract:
This paper is focused on the reference current calculation in the compensation mode of the active DC traction substations. The so-called p-q theory of the instantaneous reactive power is used as theoretical foundation. The compensation goal of total compensation is taken into consideration for the operation under both sinusoidal and nonsinusoidal voltage conditions, through the two objectives of unity power factor and perfect harmonic cancelation. Four blocks of reference current generation implement the conceived algorithms and they are included in a specific Simulink library, which is useful in a DSP dSPACE-based platform working under Matlab/Simulink. The simulation results validate the correctness of the implementation and fulfillment of the compensation tasks.Keywords: active power filter, DC traction, p-q theory, Simulink library
Procedia PDF Downloads 6745771 Genetic Variation of Autosomal STR Loci from Unrelated Individual in Iraq
Authors: H. Imad, Q. Cheah, J. Mohammad, O. Aamera
Abstract:
The aim of this study is twofold. One is to determine the genetic structure of Iraq population and the second objective of the study was to evaluate the importance of these loci for forensic genetic purposes. FTA® Technology (FTA™ paper DNA extraction) utilized to extract DNA. Twenty STR loci and Amelogenin including D3S1358, D13S317, PentaE, D16S539, D18S51, D2S1338, CSF1PO, Penta D, THO1, vWA, D21S11, D7S820, TPOX, D8S1179, FGA, D2S1338, D5S818, D6S1043, D12S391, D19S433, and Amelogenin amplified by using power plex21® kit. PCR products detected by genetic analyzer 3730xL then data analyzed by PowerStatsV1.2. Based on the allelic frequencies, several statistical parameters of genetic and forensic efficiency have been estimated. This includes the homozygosity and heterozygosity, effective number of alleles (n), the polymorphism information content (PIC), the power of discrimination (DP), and the power of exclusion (PE). The power of discrimination values for all tested loci was from 75% to 96% therefore, those loci can be safely used to establish a DNA-based database for Iraq population.Keywords: autosomal STR, genetic variation, Middle and South of Iraq, statistical parameters
Procedia PDF Downloads 3855770 Electrical Energy Harvesting Using Thermo Electric Generator for Rural Communities in India
Authors: N. Nandan A. M. Nagaraj, L. Sanjeev Kumar
Abstract:
In the rapidly growing population, the requirement of electrical power is increasing day by day. In order to meet the needs, we need to generate the power using alternate method. In this paper, a presentable approach is developed by analysis and can be implemented by utilizing heat energy, which is generated in numerous ways in some of the rural areas in India. The thermoelectric generator unit will be developed by combing with control circuits and converts, which is used to light the LED lamps. The temperature difference which is available in the kitchens, especially the exhaust pipes/chimneys of wooden fire stoves, where more heat is dissipated into the atmosphere, can be utilized for electrical power generation. Hence, the temperature rise of surroundings atmosphere can be reduced.Keywords: thermo electric generator, LED, converts, temperature
Procedia PDF Downloads 142