Search results for: cone contrast sensitivity
2859 The Role of Macroeconomic Condition and Volatility in Credit Risk: An Empirical Analysis of Credit Default Swap Index Spread on Structural Models in U.S. Market during Post-Crisis Period
Authors: Xu Wang
Abstract:
This research builds linear regressions of U.S. macroeconomic condition and volatility measures in the investment grade and high yield Credit Default Swap index spreads using monthly data from March 2009 to July 2016, to study the relationship between different dimensions of macroeconomy and overall credit risk quality. The most significant contribution of this research is systematically examining individual and joint effects of macroeconomic condition and volatility on CDX spreads by including macroeconomic time series that captures different dimensions of the U.S. economy. The industrial production index growth, non-farm payroll growth, consumer price index growth, 3-month treasury rate and consumer sentiment are introduced to capture the condition of real economic activity, employment, inflation, monetary policy and risk aversion respectively. The conditional variance of the macroeconomic series is constructed using ARMA-GARCH model and is used to measure macroeconomic volatility. The linear regression model is conducted to capture relationships between monthly average CDX spreads and macroeconomic variables. The Newey–West estimator is used to control for autocorrelation and heteroskedasticity in error terms. Furthermore, the sensitivity factor analysis and standardized coefficients analysis are conducted to compare the sensitivity of CDX spreads to different macroeconomic variables and to compare relative effects of macroeconomic condition versus macroeconomic uncertainty respectively. This research shows that macroeconomic condition can have a negative effect on CDX spread while macroeconomic volatility has a positive effect on determining CDX spread. Macroeconomic condition and volatility variables can jointly explain more than 70% of the whole variation of the CDX spread. In addition, sensitivity factor analysis shows that the CDX spread is the most sensitive to Consumer Sentiment index. Finally, the standardized coefficients analysis shows that both macroeconomic condition and volatility variables are important in determining CDX spread but macroeconomic condition category of variables have more relative importance in determining CDX spread than macroeconomic volatility category of variables. This research shows that the CDX spread can reflect the individual and joint effects of macroeconomic condition and volatility, which suggests that individual investors or government should carefully regard CDX spread as a measure of overall credit risk because the CDX spread is influenced by macroeconomy. In addition, the significance of macroeconomic condition and volatility variables, such as Non-farm Payroll growth rate and Industrial Production Index growth volatility suggests that the government, should pay more attention to the overall credit quality in the market when macroecnomy is low or volatile.Keywords: autoregressive moving average model, credit spread puzzle, credit default swap spread, generalized autoregressive conditional heteroskedasticity model, macroeconomic conditions, macroeconomic uncertainty
Procedia PDF Downloads 1682858 Effect of Coaching Related Incompetency to Stand Trial on Symptom Validity Test: Robustness, Sensitivity, and Specificity
Authors: Natthawut Arin
Abstract:
In forensic contexts, competency to stand trial assessments are the most common referrals. The defendants may attempt to endorse psychopathology symptoms and feign incompetent. Coaching, which can be teaching them test-taking strategies to avoid detection of psychopathological symptoms feigning. Recently, the Symptom Validity Testings (SVTs) were created to detect feigning. Moreover, the works of the literature showed that the effects of coaching on SVTs may be more robust to the effects of coaching. Thai Symptom Validity Test (SVT-Th) was designed as SVTs which demonstrated adequate psychometric properties and ability to classify between feigners and honest responders. Thus, the current study to examine the utility as the robustness of SVT-Th in the detection of feigned psychopathology. Participants consisted of 120 were recruited from undergraduate courses in psychology, randomly assigned to one of three groups. The SVT-Th was administered to those three scenario-experimental groups: (a) Uncoached group were asked to respond honestly (n=40), (b) Symptom-coached without warning group were asked to feign psychiatric symptoms to gain incompetency to stand trial (n=40), while (c) Test-coached with warning group were asked to feign psychiatric symptoms to avoid test detection but being incompetency to stand trial (n=40). Group differences were analyzed using one-way ANOVAs. The result revealed an uncoached group (M = 4.23, SD.= 5.20) had significantly lower SVT-Th mean scores than those both coached groups (M =185.00, SD.= 72.88 and M = 132.10, SD.= 54.06, respectively). Classification rates were calculated to determine the classification accuracy. Result indicated that SVT-Th had overall classification accuracy rates of 96.67% with acceptable of 95% sensitivity and 100% specificity rates. Overall, the results of the present study indicate that the SVT-Th yielded high adequate indices of accuracy and these findings suggest that the SVT-Th is robustness against coaching.Keywords: incompetency to stand trial, coaching, robustness, classification accuracy
Procedia PDF Downloads 1402857 Evaluation of Classification Algorithms for Diagnosis of Asthma in Iranian Patients
Authors: Taha SamadSoltani, Peyman Rezaei Hachesu, Marjan GhaziSaeedi, Maryam Zolnoori
Abstract:
Introduction: Data mining defined as a process to find patterns and relationships along data in the database to build predictive models. Application of data mining extended in vast sectors such as the healthcare services. Medical data mining aims to solve real-world problems in the diagnosis and treatment of diseases. This method applies various techniques and algorithms which have different accuracy and precision. The purpose of this study was to apply knowledge discovery and data mining techniques for the diagnosis of asthma based on patient symptoms and history. Method: Data mining includes several steps and decisions should be made by the user which starts by creation of an understanding of the scope and application of previous knowledge in this area and identifying KD process from the point of view of the stakeholders and finished by acting on discovered knowledge using knowledge conducting, integrating knowledge with other systems and knowledge documenting and reporting.in this study a stepwise methodology followed to achieve a logical outcome. Results: Sensitivity, Specifity and Accuracy of KNN, SVM, Naïve bayes, NN, Classification tree and CN2 algorithms and related similar studies was evaluated and ROC curves were plotted to show the performance of the system. Conclusion: The results show that we can accurately diagnose asthma, approximately ninety percent, based on the demographical and clinical data. The study also showed that the methods based on pattern discovery and data mining have a higher sensitivity compared to expert and knowledge-based systems. On the other hand, medical guidelines and evidence-based medicine should be base of diagnostics methods, therefore recommended to machine learning algorithms used in combination with knowledge-based algorithms.Keywords: asthma, datamining, classification, machine learning
Procedia PDF Downloads 4502856 Helicobacter Pylori Detection by Invasive and Noninvasive Diagnostic Tests from Dyspepsia Patients
Authors: Muhammad Suhail Ibrahim, Ahmad Mujtaba
Abstract:
Background: The accuracy of the most frequently used tests for diagnosing Helicobacter pylori is always under consideration in clinical settings. A reliable diagnosis is crucial to confirm the success of therapy. Objective: The aim of this research was to study the isolation frequency of H. pylori from patients compatible with gastritis or gastric ulcer and to compare some feasible non-invasive and invasive methods for the diagnosis of infection. Materials and Methods: Ninety-six gastric biopsy and blood samples were obtained with various gastroduodenal symptoms after obtaining informed consent. The biopsies were analyzed and compared using the culture, microscopic examination, histopathology, Rapid urease RUT), serology, biochemical, antibiotic susceptibility test and molecular method. Results: A number of 40 (41.67%) were considered H. pylori positive in both histopathology and RUT. On the other hand, 46 patients were positive against anti IgA and IgG by ELISA. Eighteen biopsies were positive according to the culture test. This was further confirmed by endoscopic examination, urease, catalase and oxidase tests. A high percentage of resistance to polymyxin B, amoxicillin, and kanamycin was observed (100, 88.89, and 77.78%, respectively). A gene (Cag A) was also detected by using molecular technique which appeared positive in 16 patients. The sensitivity/specificity (%) of diagnostic method was 95/77 for histology, 100/83.5 for rapid urease, 85.7/90 for gram staining, 100/66.6 for IgG serology, 100/79.5 for IgA serology, 100/75.0 for PCR, 100/79.04 for combination of RUT and IgG serology and 100/92.4 for combination of RUT, gram staining and IgG serology. Conclusion: In view of the result obtained, PCR appeared to be the most reliable test. However, higher sensitivity and specificity were also recorded for other tests. So, for more accurate results, it is advisable not to rely solely on a single method for detection.Keywords: helicobacter pylori, isolation, detection, culture, urease, polymerase chain reaction, antibiotic susceptibility test, dyspeptic patients
Procedia PDF Downloads 682855 Thermoelectric Generators as Alternative Source for Electric Power
Authors: L. C. Ding, Bradley G. Orr, K. Rahauoi, S. Truza, A. Date, A. Akbarzadeh
Abstract:
The research on thermoelectric has been a blooming field of research for the latest decade, owing to large amount of heat source available to be harvested, being eco-friendly and static in operation. This paper provides the performance of thermoelectric generator (TEG) with bulk material of bismuth telluride, Bi2Te3. Later, the performance of the TEGs is evaluated by considering attaching the TEGs on a plastic (polyethylene sheet) in contrast to the common method of attaching the TEGs on the metal surface.Keywords: electric power, heat transfer, renewable energy, thermoelectric generator
Procedia PDF Downloads 2842854 Competition, Performance and Ethnicity: Explaining Corruption in Ghana and Kenya
Authors: Roxanne J. Kovacs
Abstract:
This paper shows that political corruption in Ghana and Kenya does not, as is assumed by a considerable part of the academic literature, depend on the level of party competition as such, but rather on the kinds of issues that parties compete about. Party competition in Ghana revolves around party performance, which gives political leaders a strong incentive to control corruption. In contrast, party competition in Kenya revolves around ethnic identities, which directly reduces competition based on candidate quality and therefore fosters corruption.Keywords: corruption, electoral competition, Kenya, Ghana
Procedia PDF Downloads 3362853 Role of Psychological Capital in Organizational and Personal Outcomes: An Exploratory Study of Medical Professionals in Pakistan
Authors: Shazia Almas, Jaffar Iqbal, Nazia Almas
Abstract:
In most of the South Asian countries like Pakistan medical profession is one the most valued and respectful professions yet being a medical professional requires an enormous amount of responsibilities and work overload at the same time which possibly can be in contrast with family role of a doctor. Job and family are two primary spheres of a person's life no matter whatever the profession one adopts and the type of family one is running. There is a bi-directional relationship between job and family. The type and nature of work, time schedules, working shifts in medical profession are very demanding in the countries like Pakistan where number of patients is far more higher than the number of doctors available. The work life also have significant impact on family life and vice versa. Because of the sensitivity and interdependency of these relations, today’s overarching and competing demands remain dissatisfactory. The main objective of the current research is to investigate how interpersonal relationships affect work and work affects interpersonal relationships of medical professionals. In line with identifying these facts, the current study aimed to examine the predictive role of psychological capital (self-efficacy, hope, optimism, and resilience), in organizational outcome (job satisfaction) and personal outcome (family satisfaction) amongst male and medical professionals. A total of 350 participants from public and private sector hospitals of Pakistan were recruited through simple random and stratified sampling techniques, with age ranges from 26-50 years. The questionnaire including established and certified self-report measures of Psychological Capital Questionnaire, Job Satisfaction, and Family Satisfaction were adopted to collect the data. The reliability and validity of mentioned instruments were established through Cronbach’s alpha and factor analyses (exploratory and confirmatory) respectively using Structural Equation Modeling (SEM) by AMOS. The proposed hypotheses were tested using Pearson’s Correlation and Regression analyses for predicting effect whereas, t-Test was deployed to verify the difference between male and female health professionals. The results revealed that self-efficacy and optimism predicted job satisfaction while, self-efficacy, hope, and resilience predicted family satisfaction. Moreover, the results depicted significant gender differences in job satisfaction where females were higher on job satisfaction as compared to male medical professionals but no significant differences were observed in levels of family satisfaction between both genders. The study has implications for social, organizational and work policy designers. The study also paves for more researches with positive psychological approach to promote work-family harmony.Keywords: family satisfaction, job satisfaction, medical professionals, psychological capital
Procedia PDF Downloads 2512852 Influence of Concrete Cracking in the Tensile Strength of Cast-in Headed Anchors
Authors: W. Nataniel, B. Lima, J. Manoel, M. P. Filho, H. Marcos, Oliveira Mauricio, P. Ferreira
Abstract:
Headed reinforcement bars are increasingly used for anchorage in concrete structures. Applications include connections in composite steel-concrete structures, such as beam-column joints, in several strengthening situations as well as in more traditional uses in cast-in-place and precast structural systems. This paper investigates the reduction in the ultimate tensile capacity of embedded cast-in headed anchors due to concrete cracking. A series of nine laboratory tests are carried out to evaluate the influence of cracking on the concrete breakout strength in tension. The experimental results show that cracking affects both the resistance and load-slip response of the headed bar anchors. The strengths measured in these tests are compared to theoretical resistances calculated following the recommendations presented by fib Bulletin no. 58 (2011), ETAG 001 (2010) and ACI 318 (2014). The influences of parameters such as the effective embedment depth (hef), bar diameter (ds), and the concrete compressive strength (fc) are analysed and discussed. The theoretical recommendations are shown to be over-conservative for both embedment depths and were, in general, inaccurate in comparison to the experimental trends. The ACI 318 (2014) was the design code which presented the best performance regarding to the predictions of the ultimate load, with an average of 1.42 for the ratio between the experimental and estimated strengths, standard deviation of 0.36, and coefficient of variation equal to 0.25.Keywords: cast-in headed anchors, concrete cone failure, uncracked concrete, cracked concrete
Procedia PDF Downloads 2062851 3D Label-Free Bioimaging of Native Tissue with Selective Plane Illumination Optical Microscopy
Authors: Jing Zhang, Yvonne Reinwald, Nick Poulson, Alicia El Haj, Chung See, Mike Somekh, Melissa Mather
Abstract:
Biomedical imaging of native tissue using light offers the potential to obtain excellent structural and functional information in a non-invasive manner with good temporal resolution. Image contrast can be derived from intrinsic absorption, fluorescence, or scatter, or through the use of extrinsic contrast. A major challenge in applying optical microscopy to in vivo tissue imaging is the effects of light attenuation which limits light penetration depth and achievable imaging resolution. Recently Selective Plane Illumination Microscopy (SPIM) has been used to map the 3D distribution of fluorophores dispersed in biological structures. In this approach, a focused sheet of light is used to illuminate the sample from the side to excite fluorophores within the sample of interest. Images are formed based on detection of fluorescence emission orthogonal to the illumination axis. By scanning the sample along the detection axis and acquiring a stack of images, 3D volumes can be obtained. The combination of rapid image acquisition speeds with the low photon dose to samples optical sectioning provides SPIM is an attractive approach for imaging biological samples in 3D. To date all implementations of SPIM rely on the use of fluorescence reporters be that endogenous or exogenous. This approach has the disadvantage that in the case of exogenous probes the specimens are altered from their native stage rendering them unsuitable for in vivo studies and in general fluorescence emission is weak and transient. Here we present for the first time to our knowledge a label-free implementation of SPIM that has downstream applications in the clinical setting. The experimental set up used in this work incorporates both label-free and fluorescent illumination arms in addition to a high specification camera that can be partitioned for simultaneous imaging of both fluorescent emission and scattered light from intrinsic sources of optical contrast in the sample being studied. This work first involved calibration of the imaging system and validation of the label-free method with well characterised fluorescent microbeads embedded in agarose gel. 3D constructs of mammalian cells cultured in agarose gel with varying cell concentrations were then imaged. A time course study to track cell proliferation in the 3D construct was also carried out and finally a native tissue sample was imaged. For each sample multiple images were obtained by scanning the sample along the axis of detection and 3D maps reconstructed. The results obtained validated label-free SPIM as a viable approach for imaging cells in a 3D gel construct and native tissue. This technique has the potential use in a near-patient environment that can provide results quickly and be implemented in an easy to use manner to provide more information with improved spatial resolution and depth penetration than current approaches.Keywords: bioimaging, optics, selective plane illumination microscopy, tissue imaging
Procedia PDF Downloads 2512850 Migrantional Entrepreneurship: Ethnography of a Journey That Changes Lives and the Territory
Authors: Francesca Alemanno
Abstract:
As a complex socio-spatial phenomenon, migration is a practice that also contains a strong imaginative component with respect to the place that, through displacement, one person wants to reach. Every migrant has undertaken his journey having in his mind an image of the displacement he was about to make, of its implications and finally, of the place or city in which he was or would have liked to land. Often, however, the imaginary that has come to build before departure does not fully correspond to the reality of landing; this discrepancy, which can be more or less wide, plays an important role in the relationship that is established with the territory and in the evolution, therefore, of the city itself. In this sense, therefore, the clash that occurs between the imagined and the real is one of the factors that can contribute to making the entry of a migrant into new territory as critical as it can be. Starting from this perspective, the experiences of people who derive from a migratory context and who, over time, manage to create a bond with the land of reception, are taken into account as stories of resistance as they are necessarily charged with a force that is capable of driving difficult and articulated processes of change. The phenomenon of migrant entrepreneurship that is taken into consideration by this abstract plays a very important role because it highlights the story of many people who have managed to build such a close bond with the new territory of arrival that they can imagine and then realize the construction of their own personal business. The margin of contrast between the imagined city and the one that will be inhabited will be observed through the narratives of those who, through the realization of his business project has acted directly on the reality in which he landed. The margin of contrast that exists between the imagined city and the one actually inhabited, together with the implications that this may have on real life, has been observed and analyzed through a period of fieldwork, practicing ethnography, through the narratives of people who find themselves living in a new city as a result of a migration path, and has been contextualized with the support of semi-structured interviews and field notes. At the theoretical level, the research is inserted into a constructionist framework, particularly suited to detect and analyze processes of change, construction of the imaginary and its own modification, being able to capture the consequent repercussions of this process on the conceptual, emotional and practical level.Keywords: entrepreneurship, imagination, migration, resistance
Procedia PDF Downloads 1542849 Simulation of the Extensional Flow Mixing of Molten Aluminium and Fly Ash Nanoparticles
Authors: O. Ualibek, C. Spitas, V. Inglezakis, G. Itskos
Abstract:
This study presents simulations of an aluminium melt containing an initially non-dispersed fly ash nanoparticle phase. Mixing is affected predominantly by means of forced extensional flow via either straight or slanted orifices. The sensitivity to various process parameters is determined. The simulated process is used for the production of cast fly ash-aluminium nanocomposites. The possibilities for rod and plate stock grading in the context of a continuous casting process implementation are discussed.Keywords: metal matrix composites, fly ash nanoparticles, aluminium 2024, agglomeration
Procedia PDF Downloads 1992848 Chemical Kinetics and Computational Fluid-Dynamics Analysis of H2/CO/CO2/CH4 Syngas Combustion and NOx Formation in a Micro-Pilot-Ignited Supercharged Dual Fuel Engine
Authors: Ulugbek Azimov, Nearchos Stylianidis, Nobuyuki Kawahara, Eiji Tomita
Abstract:
A chemical kinetics and computational fluid-dynamics (CFD) analysis was performed to evaluate the combustion of syngas derived from biomass and coke-oven solid feedstock in a micro-pilot ignited supercharged dual-fuel engine under lean conditions. For this analysis, a new reduced syngas chemical kinetics mechanism was constructed and validated by comparing the ignition delay and laminar flame speed data with those obtained from experiments and other detail chemical kinetics mechanisms available in the literature. The reaction sensitivity analysis was conducted for ignition delay at elevated pressures in order to identify important chemical reactions that govern the combustion process. The chemical kinetics of NOx formation was analyzed for H2/CO/CO2/CH4 syngas mixtures by using counter flow burner and premixed laminar flame speed reactor models. The new mechanism showed a very good agreement with experimental measurements and accurately reproduced the effect of pressure, temperature and equivalence ratio on NOx formation. In order to identify the species important for NOx formation, a sensitivity analysis was conducted for pressures 4 bar, 10 bar and 16 bar and preheat temperature 300 K. The results show that the NOx formation is driven mostly by hydrogen based species while other species, such as N2, CO2 and CH4, have also important effects on combustion. Finally, the new mechanism was used in a multidimensional CFD simulation to predict the combustion of syngas in a micro-pilot-ignited supercharged dual-fuel engine and results were compared with experiments. The mechanism showed the closest prediction of the in-cylinder pressure and the rate of heat release (ROHR).Keywords: syngas, chemical kinetics mechanism, internal combustion engine, NOx formation
Procedia PDF Downloads 4102847 Measuring E-Learning Effectiveness Using a Three-Way Comparison
Authors: Matthew Montebello
Abstract:
The way e-learning effectiveness has been notoriously measured within an academic setting is by comparing the e-learning medium to the traditional face-to-face teaching methodology. In this paper, a simple yet innovative comparison methodology is introduced, whereby the effectiveness of next generation e-learning systems are assessed in contrast not only to the face-to-face mode, but also to the classical e-learning modality. Ethical and logistical issues are also discussed, as this three-way approach to compare teaching methodologies was applied and documented in a real empirical study within a higher education institution.Keywords: e-learning effectiveness, higher education, teaching modality comparison
Procedia PDF Downloads 3882846 Transducers for Measuring Displacements of Rotating Blades in Turbomachines
Authors: Pavel Prochazka
Abstract:
The study deals with transducers for measuring vibration displacements of rotating blade tips in turbomachines. In order to prevent major accidents with extensive economic consequences, it shows an urgent need for every low-pressure steam turbine stage being equipped with modern non-contact measuring system providing information on blade loading, damage and residual lifetime under operation. The requirement of measuring vibration and static characteristics of steam turbine blades, therefore, calls for the development and operational verification of both new types of sensors and measuring principles and methods. The task is really demanding: to measure displacements of blade tips with a resolution of the order of 10 μm by speeds up to 750 m/s, humidity 100% and temperatures up to 200 °C. While in gas turbines are used primarily capacitive and optical transducers, these transducers cannot be used in steam turbines. The reason is moisture vapor, droplets of condensing water and dirt, which disable the function of sensors. Therefore, the most feasible approach was to focus on research of electromagnetic sensors featuring promising characteristics for given blade materials in a steam environment. Following types of sensors have been developed and both experimentally and theoretically studied in the Institute of Thermodynamics, Academy of Sciences of the Czech Republic: eddy-current, Hall effect, inductive and magnetoresistive. Eddy-current transducers demand a small distance of 1 to 2 mm and change properties in the harsh environment of steam turbines. Hall effect sensors have relatively low sensitivity, high values of offset, drift, and especially noise. Induction sensors do not require any supply current and have a simple construction. The magnitude of the sensors output voltage is dependent on the velocity of the measured body and concurrently on the varying magnetic induction, and they cannot be used statically. Magnetoresistive sensors are formed by magnetoresistors arranged into a Wheatstone bridge. Supplying the sensor from a current source provides better linearity. The MR sensors can be used permanently for temperatures up to 200 °C at lower values of the supply current of about 1 mA. The frequency range of 0 to 300 kHz is by an order higher comparing to the Hall effect and induction sensors. The frequency band starts at zero frequency, which is very important because the sensors can be calibrated statically. The MR sensors feature high sensitivity and low noise. The symmetry of the bridge arrangement leads to a high common mode rejection ratio and suppressing disturbances, which is important, especially in industrial applications. The MR sensors feature high sensitivity, high common mode rejection ratio, and low noise, which is important, especially in industrial applications. Magnetoresistive transducers provide a range of excellent properties indicating their priority for displacement measurements of rotating blades in turbomachines.Keywords: turbines, blade vibration, blade tip timing, non-contact sensors, magnetoresistive sensors
Procedia PDF Downloads 1302845 Light Sensitive Plasmonic Nanostructures for Photonic Applications
Authors: Istvan Csarnovics, Attila Bonyar, Miklos Veres, Laszlo Himics, Attila Csik, Judit Kaman, Julia Burunkova, Geza Szanto, Laszlo Balazs, Sandor Kokenyesi
Abstract:
In this work, the performance of gold nanoparticles were investigated for stimulation of photosensitive materials for photonic applications. It was widely used for surface plasmon resonance experiments, not in the last place because of the manifestation of optical resonances in the visible spectral region. The localized surface plasmon resonance is rather easily observed in nanometer-sized metallic structures and widely used for measurements, sensing, in semiconductor devices and even in optical data storage. Firstly, gold nanoparticles on silica glass substrate satisfy the conditions for surface plasmon resonance in the green-red spectral range, where the chalcogenide glasses have the highest sensitivity. The gold nanostructures influence and enhance the optical, structural and volume changes and promote the exciton generation in gold nanoparticles/chalcogenide layer structure. The experimental results support the importance of localized electric fields in the photo-induced transformation of chalcogenide glasses as well as suggest new approaches to improve the performance of these optical recording media. Results may be utilized for direct, micrometre- or submicron size geometrical and optical pattern formation and used also for further development of the explanations of these effects in chalcogenide glasses. Besides of that, gold nanoparticles could be added to the organic light-sensitive material. The acrylate-based materials are frequently used for optical, holographic recording of optoelectronic elements due to photo-stimulated structural transformations. The holographic recording process and photo-polymerization effect could be enhanced by the localized plasmon field of the created gold nanostructures. Finally, gold nanoparticles widely used for electrochemical and optical sensor applications. Although these NPs can be synthesized in several ways, perhaps one of the simplest methods is the thermal annealing of pre-deposited thin films on glass or silicon surfaces. With this method, the parameters of the annealing process (time, temperature) and the pre-deposited thin film thickness influence and define the resulting size and distribution of the NPs on the surface. Localized surface plasmon resonance (LSPR) is a very sensitive optical phenomenon and can be utilized for a large variety of sensing purposes (chemical sensors, gas sensors, biosensors, etc.). Surface-enhanced Raman spectroscopy (SERS) is an analytical method which can significantly increase the yield of Raman scattering of target molecules adsorbed on the surface of metallic nanoparticles. The sensitivity of LSPR and SERS based devices is strongly depending on the used material and also on the size and geometry of the metallic nanoparticles. By controlling these parameters the plasmon absorption band can be tuned and the sensitivity can be optimized. The technological parameters of the generated gold nanoparticles were investigated and influence on the SERS and on the LSPR sensitivity was established. The LSPR sensitivity were simulated for gold nanocubes and nanospheres with MNPBEM Matlab toolbox. It was found that the enhancement factor (which characterize the increase in the peak shift for multi-particle arrangements compared to single-particle models) depends on the size of the nanoparticles and on the distance between the particles. This work was supported by GINOP- 2.3.2-15-2016-00041 project, which is co-financed by the European Union and European Social Fund. Istvan Csarnovics is grateful for the support through the New National Excellence Program of the Ministry of Human Capacities, supported by the ÚNKP-17-4 Attila Bonyár and Miklós Veres are grateful for the support of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.Keywords: light sensitive nanocomposites, metallic nanoparticles, photonic application, plasmonic nanostructures
Procedia PDF Downloads 3072844 Fast Prototyping of Precise, Flexible, Multiplexed, Printed Electrochemical Enzyme-Linked Immunosorbent Assay System for Point-of-Care Biomarker Quantification
Authors: Zahrasadat Hosseini, Jie Yuan
Abstract:
Point-of-care (POC) diagnostic devices based on lab-on-a-chip (LOC) technology have the potential to revolutionize medical diagnostics. However, the development of an ideal microfluidic system based on LOC technology for diagnostics purposes requires overcoming several obstacles, such as improving sensitivity, selectivity, portability, cost-effectiveness, and prototyping methods. While numerous studies have introduced technologies and systems that advance these criteria, existing systems still have limitations. Electrochemical enzyme-linked immunosorbent assay (e-ELISA) in a LOC device offers numerous advantages, including enhanced sensitivity, decreased turnaround time, minimized sample and analyte consumption, reduced cost, disposability, and suitability for miniaturization, integration, and multiplexing. In this study, we present a novel design and fabrication method for a microfluidic diagnostic platform that integrates screen-printed electrochemical carbon/silver chloride electrodes on flexible printed circuit boards with flexible, multilayer, polydimethylsiloxane (PDMS) microfluidic networks to accurately manipulate and pre-immobilize analytes for performing electrochemical enzyme-linked immunosorbent assay (e-ELISA) for multiplexed quantification of blood serum biomarkers. We further demonstrate fast, cost-effective prototyping, as well as accurate and reliable detection performance of this device for quantification of interleukin-6-spiked samples through electrochemical analytics methods. We anticipate that our invention represents a significant step towards the development of user-friendly, portable, medical-grade, POC diagnostic devices.Keywords: lab-on-a-chip, point-of-care diagnostics, electrochemical ELISA, biomarker quantification, fast prototyping
Procedia PDF Downloads 842843 Fast Prototyping of Precise, Flexible, Multiplexed, Printed Electrochemical Enzyme-Linked Immunosorbent Assay Platform for Point-of-Care Biomarker Quantification
Authors: Zahrasadat Hosseini, Jie Yuan
Abstract:
Point-of-care (POC) diagnostic devices based on lab-on-a-chip (LOC) technology have the potential to revolutionize medical diagnostics. However, the development of an ideal microfluidic system based on LOC technology for diagnostics purposes requires overcoming several obstacles, such as improving sensitivity, selectivity, portability, cost-effectiveness, and prototyping methods. While numerous studies have introduced technologies and systems that advance these criteria, existing systems still have limitations. Electrochemical enzyme-linked immunosorbent assay (e-ELISA) in a LOC device offers numerous advantages, including enhanced sensitivity, decreased turnaround time, minimized sample and analyte consumption, reduced cost, disposability, and suitability for miniaturization, integration, and multiplexing. In this study, we present a novel design and fabrication method for a microfluidic diagnostic platform that integrates screen-printed electrochemical carbon/silver chloride electrodes on flexible printed circuit boards with flexible, multilayer, polydimethylsiloxane (PDMS) microfluidic networks to accurately manipulate and pre-immobilize analytes for performing electrochemical enzyme-linked immunosorbent assay (e-ELISA) for multiplexed quantification of blood serum biomarkers. We further demonstrate fast, cost-effective prototyping, as well as accurate and reliable detection performance of this device for quantification of interleukin-6-spiked samples through electrochemical analytics methods. We anticipate that our invention represents a significant step towards the development of user-friendly, portable, medical-grade POC diagnostic devices.Keywords: lab-on-a-chip, point-of-care diagnostics, electrochemical ELISA, biomarker quantification, fast prototyping
Procedia PDF Downloads 882842 Scour Damaged Detection of Bridge Piers Using Vibration Analysis - Numerical Study of a Bridge
Authors: Solaine Hachem, Frédéric Bourquin, Dominique Siegert
Abstract:
The brutal collapse of bridges is mainly due to scour. Indeed, the soil erosion in the riverbed around a pier modifies the embedding conditions of the structure, reduces its overall stiffness and threatens its stability. Hence, finding an efficient technique that allows early scour detection becomes mandatory. Vibration analysis is an indirect method for scour detection that relies on real-time monitoring of the bridge. It tends to indicate the presence of a scour based on its consequences on the stability of the structure and its dynamic response. Most of the research in this field has focused on the dynamic behavior of a single pile and has examined the depth of the scour. In this paper, a bridge is fully modeled with all piles and spans and the scour is represented by a reduction in the foundation's stiffnesses. This work aims to identify the vibration modes sensitive to the rigidity’s loss in the foundations so that their variations can be considered as a scour indicator: the decrease in soil-structure interaction rigidity leads to a decrease in the natural frequencies’ values. By using the first-order perturbation method, the expression of sensitivity, which depends only on the selected vibration modes, is established to determine the deficiency of foundations stiffnesses. The solutions are obtained by using the singular value decomposition method for the regularization of the inverse problem. The propagation of uncertainties is also calculated to verify the efficiency of the inverse problem method. Numerical simulations describing different scenarios of scour are investigated on a simplified model of a real composite steel-concrete bridge located in France. The results of the modal analysis show that the modes corresponding to in-plane and out-of-plane piers vibrations are sensitive to the loss of foundation stiffness. While the deck bending modes are not affected by this damage.Keywords: bridge’s piers, inverse problems, modal sensitivity, scour detection, vibration analysis
Procedia PDF Downloads 1102841 Standard Protocol Selection for Acquisition of Breast Thermogram in Perspective of Early Breast Cancer Detection
Authors: Mrinal Kanti Bhowmik, Usha Rani Gogoi Jr., Anjan Kumar Ghosh, Debotosh Bhattacharjee
Abstract:
In the last few decades, breast thermography has achieved an average sensitivity and specificity of 90% for breast tumor detection. Breast thermography is a non-invasive, cost-effective, painless and radiation-free breast imaging modality which makes a significant contribution to the evaluation and diagnosis of patients, suspected of having breast cancer. An abnormal breast thermogram may indicate significant biological risk for the existence or the development of breast tumors. Breast thermography can detect a breast tumor, when the tumor is in its early stage or when the tumor is in a dense breast. The infrared breast thermography is very sensitive to environmental changes for which acquisition of breast thermography should be performed under strictly controlled conditions by undergoing some standard protocols. Several factors like air, temperature, humidity, etc. are there to be considered for characterizing thermal images as an imperative tool for detecting breast cancer. A detailed study of various breast thermogram acquisition protocols adopted by different researchers in their research work is provided here in this paper. After going through a rigorous study of different breast thermogram acquisition protocols, a new standard breast thermography acquisition setup is proposed here in this paper for proper and accurate capturing of the breast thermograms. The proposed breast thermogram acquisition setup is being built in the Radiology Department, Agartala Government Medical College (AGMC), Govt. of Tripura, Tripura, India. The breast thermograms are captured using FLIR T650sc thermal camera with the thermal sensitivity of 20 mK at 30 degree C. The paper is an attempt to highlight the importance of different critical parameters of breast thermography like different thermography views, patient preparation protocols, acquisition room requirements, acquisition system requirements, etc. This paper makes an important contribution by providing a detailed survey and a new efficient approach on breast thermogram capturing.Keywords: acquisition protocol, breast cancer, breast thermography, infrared thermography
Procedia PDF Downloads 3992840 Effects of Interfacial Modification Techniques on the Mechanical Properties of Natural Particle Based Polymer Composites
Authors: Bahar Basturk, Secil Celik Erbas, Sevket Can Sarikaya
Abstract:
Composites combining the particulates and polymer components have attracted great interest in various application areas such as packaging, furniture, electronics and automotive industries. For strengthening the plastic matrices, the utilization of natural fillers instead of traditional reinforcement materials has received increased attention. The properties of natural filler based polymer composites (NFPC) may be improved by applying proper surface modification techniques to the powder phase of the structures. In this study, acorn powder-epoxy and pine corn powder-epoxy composites containing up to 45% weight percent particulates were prepared by casting method. Alkali treatment and acetylation techniques were carried out to the natural particulates for investigating their influences under mechanical forces. The effects of filler type and content on the tensile properties of the composites were compared with neat epoxy. According to the quasi-static tensile tests, the pine cone based composites showed slightly higher rigidity and strength properties compared to the acorn reinforced samples. Furthermore, the structures independent of powder type and surface modification technique, showed higher tensile properties with increasing the particle content.Keywords: natural fillers, polymer composites, surface modifications, tensile properties
Procedia PDF Downloads 4692839 Modeling Karachi Dengue Outbreak and Exploration of Climate Structure
Authors: Syed Afrozuddin Ahmed, Junaid Saghir Siddiqi, Sabah Quaiser
Abstract:
Various studies have reported that global warming causes unstable climate and many serious impact to physical environment and public health. The increasing incidence of dengue incidence is now a priority health issue and become a health burden of Pakistan. In this study it has been investigated that spatial pattern of environment causes the emergence or increasing rate of dengue fever incidence that effects the population and its health. The climatic or environmental structure data and the Dengue Fever (DF) data was processed by coding, editing, tabulating, recoding, restructuring in terms of re-tabulating was carried out, and finally applying different statistical methods, techniques, and procedures for the evaluation. Five climatic variables which we have studied are precipitation (P), Maximum temperature (Mx), Minimum temperature (Mn), Humidity (H) and Wind speed (W) collected from 1980-2012. The dengue cases in Karachi from 2010 to 2012 are reported on weekly basis. Principal component analysis is applied to explore the climatic variables and/or the climatic (structure) which may influence in the increase or decrease in the number of dengue fever cases in Karachi. PC1 for all the period is General atmospheric condition. PC2 for dengue period is contrast between precipitation and wind speed. PC3 is the weighted difference between maximum temperature and wind speed. PC4 for dengue period contrast between maximum and wind speed. Negative binomial and Poisson regression model are used to correlate the dengue fever incidence to climatic variable and principal component score. Relative humidity is estimated to positively influence on the chances of dengue occurrence by 1.71% times. Maximum temperature positively influence on the chances dengue occurrence by 19.48% times. Minimum temperature affects positively on the chances of dengue occurrence by 11.51% times. Wind speed is effecting negatively on the weekly occurrence of dengue fever by 7.41% times.Keywords: principal component analysis, dengue fever, negative binomial regression model, poisson regression model
Procedia PDF Downloads 4472838 Predictive Value of Hepatitis B Core-Related Antigen (HBcrAg) during Natural History of Hepatitis B Virus Infection
Authors: Yanhua Zhao, Yu Gou, Shu Feng, Dongdong Li, Chuanmin Tao
Abstract:
The natural history of HBV infection could experience immune tolerant (IT), immune clearance (IC), HBeAg-negative inactive/quienscent carrier (ENQ), and HBeAg-negative hepatitis (ENH). As current biomarkers for discriminating these four phases have some weaknesses, additional serological indicators are needed. Hepatits B core-related antigen (HBcrAg) encoded with precore/core gene contains denatured HBeAg, HBV core antigen (HBcAg) and a 22KDa precore protein (p22cr), which was demonstrated to have a close association with natural history of hepatitis B infection, but no specific cutoff values and diagnostic parameters to evaluate the diagnostic efficacy. This study aimed to clarify the distribution of HBcrAg levels and evaluate its diagnostic performance during the natural history of infection from a Western Chinese perspective. 294 samples collected from treatment-naïve chronic hepatitis B (CHB) patients in different phases (IT=64; IC=72; ENQ=100, and ENH=58). We detected the HBcrAg values and analyzed the relationship between HBcrAg and HBV DNA. HBsAg and other clinical parameters were quantitatively tested. HBcrAg levels of four phases were 9.30 log U/mL, 8.80 log U/mL, 3.00 log U/mL, and 5.10 logU/mL, respectively (p < 0.0001). Receiver operating characteristic curve analysis demonstrated that the area under curves (AUCs) of HBcrAg and quantitative HBsAg at cutoff values of 9.25 log U/mL and 4.355 log IU/mL for distinguishing IT from IC phases were 0.704 and 0.694, with sensitivity 76.39% and 59.72%, specificity 53.13% and 79.69%, respectively. AUCs of HBcrAg and quantitative HBsAg at cutoff values of 4.15 log U/mlmL and 2.395 log IU/mlmL for discriminating between ENQ and ENH phases were 0.931 and 0.653, with sensitivity 87.93% and 84%, specificity 91.38% and 39%, respectively. Therefore, HBcrAg levels varied significantly among four natural phases of HBV infection. It had higher predictive performance than quantitative HBsAg for distinguishing between ENQ-patients and ENH-patients and similar performance with HBsAg for the discrimination between IT and IC phases, which indicated that HBcrAg could be a potential serological marker for CHB.Keywords: chronic hepatitis B, hepatitis B core-related antigen, hepatitis B surface antigens, hepatitis B virus
Procedia PDF Downloads 4212837 Diagnostic Properties of Exercise or Pharmacological Stress Myocardial Perfusion Scintigraphy in Per-Vessel Basis: A Clinical Validation Study
Authors: Ahmadreza Bagheri, Seyyed S. Eftekhari, Shervin Rashidinia
Abstract:
Background: Various stress tests have been proposed yet to assess patients with suspected coronary artery disease. However, their diagnostic properties in terms of sensitivity, specificity, and accuracy are variable and their applicability remained somewhat vague. The aim of this study is to validate per-vessel diagnostic properties of 3 types of stress myocardial perfusion scintigraphy in gated SPECT (Single-Photon Emission Computed Tomography) using either exercise or pharmacological stress testing with dipyridamole or dobutamine. Materials and Methods: Hospital records of 314 patients who referred to Imam Khomeini hospital of Tehran between September 2015 and January 2017 were completely reviewed in this study. All patients underwent coronary angiography within 3 months after stress myocardial perfusion scan. Eventually, the results were analyzed in per-vessel basis to find the proper modality for each involved vessel or scanned site. Results: The mean age of patients was 62.15 ± 4.94 years (30-85) and 35.03% were women. The overall sensitivity, specificity, and accuracy were calculated as 56.59%, 54.24%, and 55.09%, respectively. These values were 56.43% and 53.25%, 54.46% and 47.36%, 56.75% and 54.83% for dipyridamole and exercise, respectively. Ischemia of the anterior wall through exercise stress testing has the highest diagnostic accuracy in detecting LAD (Left Anterior Descending artery) involvement. Inferior wall hypokinesia and anterolateral wall ischemia during exercise stress testing have the highest diagnostic accuracy in detecting RCA (Right Coronary Artery) and LCX artery (Left Circumflex Artery) stenosis, respectively. Conclusion: Stress myocardial perfusion scan should be carried out on the basis of the findings of the preliminary investigations on suspicion of a specific coronary artery or involved myocardial wall.Keywords: dipyridamole, dobutamine, single-photon emission computed tomography, stress myocardial perfusion scintigraphy
Procedia PDF Downloads 1562836 Standardization of a Methodology for Quantification of Antimicrobials Used for the Treatment of Multi-Resistant Bacteria Using Two Types of Biosensors and Production of Anti-Antimicrobial Antibodies
Authors: Garzon V., Bustos R., Salvador J. P., Marco M. P., Pinacho D. G.
Abstract:
Bacterial resistance to antimicrobial treatment has increased significantly in recent years, making it a public health problem. Large numbers of bacteria are resistant to all or nearly all known antimicrobials, creating the need for the development of new types of antimicrobials or the use of “last line” antimicrobial drug therapies for the treatment of multi-resistant bacteria. Some of the chemical groups of antimicrobials most used for the treatment of infections caused by multiresistant bacteria in the clinic are Glycopeptide (Vancomycin), Polymyxin (Colistin), Lipopeptide (Daptomycin) and Carbapenem (Meropenem). Molecules that require therapeutic drug monitoring (TDM). Due to the above, a methodology based on nanobiotechnology based on an optical and electrochemical biosensor is being developed, which allows the evaluation of the plasmatic levels of some antimicrobials such as glycopeptide, polymyxin, lipopeptide and carbapenem quickly, at a low cost, with a high specificity and sensitivity and that can be implemented in the future in public and private health hospitals. For this, the project was divided into five steps i) Design of specific anti-drug antibodies, produced in rabbits for each of the types of antimicrobials, evaluating the results by means of an immunoassay analysis (ELISA); ii) quantification by means of an electrochemical biosensor that allows quantification with high sensitivity and selectivity of the reference antimicrobials; iii) Comparison of antimicrobial quantification with an optical type biosensor; iv) Validation of the methodologies used with biosensor by means of an immunoassay. Finding as a result that it is possible to quantify antibiotics by means of the optical and electrochemical biosensor at concentrations on average of 1,000ng/mL, the antibodies being sensitive and specific for each of the antibiotic molecules, results that were compared with immunoassays and HPLC chromatography. Thus, contributing to the safe use of these drugs commonly used in clinical practice and new antimicrobial drugs.Keywords: antibiotics, electrochemical biosensor, optical biosensor, therapeutic drug monitoring
Procedia PDF Downloads 852835 Paradigm Shift of Leadership: Leaders in Information Technology
Authors: Mustafa Hyder, Khalid Mahmood Iraqi, Sameen Mustafa
Abstract:
They say if the leader limps, all the others will start limping too. Therefore, a very dynamic leadership at all levels within the IT Community is critical to the success of an organization. This paper is an attempt to study the relationship between Information Technology (IT) with leadership and assesses its relevancy in today's fast-paced hi-tech globalized environment. The paper strives to look into the essential qualities and knowledge as needed by today's IT leader, in contrast to essential characteristics common to all the leaders-past, present, and future.Keywords: leadership, autocratic leaders, characteristics of IT leaders, skills of IT professionals, IT leadership
Procedia PDF Downloads 3552834 Geometric Optimization of Catalytic Converter
Authors: P. Makendran, M. Pragadeesh, N. Narash, N. Manikandan, A. Rajasri, V. Sanal Kumar
Abstract:
The growing severity of government-obligatory emissions legislation has required continuous improvement in catalysts performance and the associated reactor systems. IC engines emit a lot of harmful gases into the atmosphere. These gases are toxic in nature and a catalytic converter is used to convert these toxic gases into less harmful gases. The catalytic converter converts these gases by Oxidation and reduction reaction. Stoichiometric engines usually use the three-way catalyst (TWC) for simultaneously destroying all of the emissions. CO and NO react to form CO2 and N2 over one catalyst, and the remaining CO and HC are oxidized in a subsequent one. Literature review reveals that typically precious metals are used as a catalyst. The actual reactor is composed of a washcoated honeycomb-style substrate, with the catalyst being contained in the washcoat. The main disadvantage of a catalytic converter is that it exerts a back pressure to the exhaust gases while entering into them. The objective of this paper is to optimize the back pressure developed by the catalytic converter through geometric optimization of catalystic converter. This can be achieved by designing a catalyst with a optimum cone angle and a more surface area of the catalyst substrate. Additionally, the arrangement of the pores in the catalyst substrate can be changed. The numerical studies have been carried out using k-omega turbulence model with varying inlet angle of the catalytic converter and the length of the catalyst substrate. We observed that the geometry optimization is a meaningful objective for the lucrative design optimization of a catalytic converter for industrial applications.Keywords: catalytic converter, emission control, reactor systems, substrate for emission control
Procedia PDF Downloads 9072833 GPU Based Real-Time Floating Object Detection System
Authors: Jie Yang, Jian-Min Meng
Abstract:
A GPU-based floating object detection scheme is presented in this paper which is designed for floating mine detection tasks. This system uses contrast and motion information to eliminate as many false positives as possible while avoiding false negatives. The GPU computation platform is deployed to allow detecting objects in real-time. From the experimental results, it is shown that with certain configuration, the GPU-based scheme can speed up the computation up to one thousand times compared to the CPU-based scheme.Keywords: object detection, GPU, motion estimation, parallel processing
Procedia PDF Downloads 4752832 An Evidence-Based Laboratory Medicine (EBLM) Test to Help Doctors in the Assessment of the Pancreatic Endocrine Function
Authors: Sergio J. Calleja, Adria Roca, José D. Santotoribio
Abstract:
Pancreatic endocrine diseases include pathologies like insulin resistance (IR), prediabetes, and type 2 diabetes mellitus (DM2). Some of them are highly prevalent in the U.S.—40% of U.S. adults have IR, 38% of U.S. adults have prediabetes, and 12% of U.S. adults have DM2—, as reported by the National Center for Biotechnology Information (NCBI). Building upon this imperative, the objective of the present study was to develop a non-invasive test for the assessment of the patient’s pancreatic endocrine function and to evaluate its accuracy in detecting various pancreatic endocrine diseases, such as IR, prediabetes, and DM2. This approach to a routine blood and urine test is based around serum and urine biomarkers. It is made by the combination of several independent public algorithms, such as the Adult Treatment Panel III (ATP-III), triglycerides and glucose (TyG) index, homeostasis model assessment-insulin resistance (HOMA-IR), HOMA-2, and the quantitative insulin-sensitivity check index (QUICKI). Additionally, it incorporates essential measurements such as the creatinine clearance, estimated glomerular filtration rate (eGFR), urine albumin-to-creatinine ratio (ACR), and urinalysis, which are helpful to achieve a full image of the patient’s pancreatic endocrine disease. To evaluate the estimated accuracy of this test, an iterative process was performed by a machine learning (ML) algorithm, with a training set of 9,391 patients. The sensitivity achieved was 97.98% and the specificity was 99.13%. Consequently, the area under the receiver operating characteristic (AUROC) curve, the positive predictive value (PPV), and the negative predictive value (NPV) were 92.48%, 99.12%, and 98.00%, respectively. The algorithm was validated with a randomized controlled trial (RCT) with a target sample size (n) of 314 patients. However, 50 patients were initially excluded from the study, because they had ongoing clinically diagnosed pathologies, symptoms or signs, so the n dropped to 264 patients. Then, 110 patients were excluded because they didn’t show up at the clinical facility for any of the follow-up visits—this is a critical point to improve for the upcoming RCT, since the cost of each patient is very high and for this RCT almost a third of the patients already tested were lost—, so the new n consisted of 154 patients. After that, 2 patients were excluded, because some of their laboratory parameters and/or clinical information were wrong or incorrect. Thus, a final n of 152 patients was achieved. In this validation set, the results obtained were: 100.00% sensitivity, 100.00% specificity, 100.00% AUROC, 100.00% PPV, and 100.00% NPV. These results suggest that this approach to a routine blood and urine test holds promise in providing timely and accurate diagnoses of pancreatic endocrine diseases, particularly among individuals aged 40 and above. Given the current epidemiological state of these type of diseases, these findings underscore the significance of early detection. Furthermore, they advocate for further exploration, prompting the intention to conduct a clinical trial involving 26,000 participants (from March 2025 to December 2026).Keywords: algorithm, diabetes, laboratory medicine, non-invasive
Procedia PDF Downloads 362831 The Impact of CYP2C9 Gene Polymorphisms on Warfarin Dosing
Authors: Weaam Aldeeban, Majd Aljamali, Lama A. Youssef
Abstract:
Background & Objective: Warfarin is considered a problematic drug due to its narrow therapeutic window and wide inter-individual response variations, which are attributed to demographic, environmental, and genetic factors, particularly single nucleotide polymorphism (SNPs) in the genes encoding VKORC1 and CYP2C9 involved in warfarin's mechanism of action and metabolism, respectively. CYP2C9*2rs1799853 and CYP2C9*3rs1057910 alleles are linked to reduced enzyme activity, as carriers of either or both alleles are classified as moderate or slow metabolizers, and therefore exhibit higher sensitivity of warfarin compared with wild type (CYP2C9*1*1). Our study aimed to assess the frequency of *1, *2, and *3 alleles in the CYP2C9 gene in a cohort of Syrian patients receiving a maintenance dose of warfarin for different indications, the impact of genotypes on warfarin dosing, and the frequency of adverse effects (i.e., bleedings). Subjects & Methods: This retrospective cohort study encompassed 94 patients treated with warfarin. Patients’ genotypes were identified by sequencing the polymerase chain reaction (PCR) specific products of the gene encoding CYP2C9, and the effects on warfarin therapeutic outcomes were investigated. Results: Sequencing revealed that 43.6% of the study population has the *2 and/or *3 SNPs. The mean weekly maintenance dose of warfarin was 37.42 ± 15.5 mg for patients with the wild-type allele (CYP2C9*1*1), whereas patients with one or both variants (*2 and/or *3) demanded a significantly lower dose (28.59 ±11.58 mg) of warfarin, (P= 0.015). A higher percentage (40.7%) of patients with allele *2 and/or *3 experienced hemorrhagic accidents compared with only 17.9% of patients with the wild type *1*1, (P = 0.04). Conclusions: Our study proves an association between *2 and *3 genotypes and higher sensitivity to warfarin and a tendency to bleed, which necessitates lowering the dose. These findings emphasize the significance of CYP2C9 genotyping prior to commencing warfarin therapy in order to achieve optimal and faster dose control and to ensure effectiveness and safety.Keywords: warfarin, CYP2C9, polymorphisms, Syrian, hemorrhage
Procedia PDF Downloads 1472830 Adsorbed Probe Molecules on Surface for Analyzing the Properties of Cu/SnO2 Supported Catalysts
Authors: Neha Thakur, Pravin S. More
Abstract:
The interaction of CO, H2 and LPG with Cu-dosed SnO2 catalysts was studied by means of Fourier transform infrared spectroscopy (FTIR). With increasing Cu loading, pronounced and progressive red shifts of the C–O stretching frequency associated with molecular CO adsorbed on the Cu/SnO2 component were observed. This decrease in n(CO) correlates with enhancement of CO dissociation at higher temperatures on Cu promoted SnO2 catalysts under conditions, where clean Cu is almost ineffective. In the conclusion, the capability of our technique is discussed, and a technique for enhancing the sensitivity in our technique is proposed.Keywords: FTIR, spectroscopic, dissociation, n(CO)
Procedia PDF Downloads 305