Search results for: atmospheric vortex engine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1587

Search results for: atmospheric vortex engine

897 Turbulence Modeling of Source and Sink Flows

Authors: Israt Jahan Eshita

Abstract:

Flows developed between two parallel disks have many engineering applications. Two types of non-swirling flows can be generated in such a domain. One is purely source flow in disc type domain (outward flow). Other is purely sink flow in disc type domain (inward flow). This situation often appears in some turbo machinery components such as air bearings, heat exchanger, radial diffuser, vortex gyroscope, disc valves, and viscosity meters. The main goal of this paper is to show the mesh convergence, because mesh convergence saves time, and economical to run and increase the efficiency of modeling for both sink and source flow. Then flow field is resolved using a very fine mesh near-wall, using enhanced wall treatment. After that we are going to compare this flow using standard k-epsilon, RNG k-epsilon turbulence models. Lastly compare some experimental data with numerical solution for sink flow. The good agreement of numerical solution with the experimental works validates the current modeling.

Keywords: hydraulic diameter, k-epsilon model, meshes convergence, Reynolds number, RNG model, sink flow, source flow, wall y+

Procedia PDF Downloads 533
896 Computational Fluid Dynamics (CFD) Simulations for Studying Flow Behaviors in Dipping Tank in Continuous Latex Gloves Production Lines

Authors: Worrapol Koranuntachai, Tonkid Chantrasmi, Udomkiat Nontakaew

Abstract:

Medical latex gloves are made from the latex compound in production lines. Latex dipping is considered one of the most important processes that directly affect the final product quality. In a continuous production line, a chain conveyor carries the formers through the process and partially submerges them into an open channel flow in a latex dipping tank. In general, the conveyor speed is determined by the desired production capacity, and the latex-dipping tank can then be designed accordingly. It is important to understand the flow behavior in the dipping tank in order to achieve high quality in the process. In this work, Computational Fluid Dynamics (CFD) was used to simulate the flow past an array of formers in a simplified latex dipping process. The computational results showed both the flow structure and the vortex generation between two formers. The maximum shear stress over the surface of the formers was used as the quality metric of the latex-dipping process when adjusting operation parameters.

Keywords: medical latex gloves, latex dipping, dipping tank, computational fluid dynamics

Procedia PDF Downloads 128
895 Architectural Geometric Shapes That Have Changed the World: Heydar Aliyev Centre vs. the Pyramid of Quéops

Authors: Ayda Kurtulus

Abstract:

Heydar Aliyev Centre and Quéops Pyramid are two contrasting examples of sacred geometry perceived as metaphorical alchemy by linking cosmos and earth. Zaha Hadid’s modern building has a wave-like shape and semi-circular alternations that show fluidity and movement, while The Great Pyramid of Giza is triangular. The centre is reminding of the shape of planets, an attempt to regain the balance lost in the modern-day capitalist world, while the Great Pyramid of Giza represents a vortex of energy that connects heaven and earth, harmony and balance. The sacred geometric shapes link the past and the future through God and Ra, humanism and spiritualism in an architectural evolution continuum, mind and spirit into one. An analysis of two geometrical forms, a semi-circle, and a triangle, were carried out through a comprehensive literature review, indicating that behind the materialistic perceptual beauty of buildings, ancient and contemporary, there are mathematical and sacred geometrical constructions that add value to one superficiality can interpret.

Keywords: architectural shapes, The Great Pyramid of Giza, Heydar Aliyev Centre, sacred geometry, philosophy

Procedia PDF Downloads 102
894 Interior Architecture in the Anthropocene: Engaging the Subnature through the Intensification of Body-Surface Interaction

Authors: Verarisa Ujung

Abstract:

The Anthropocene – as scientists define as a new geological epoch where human intervention has the dominant influence on the geological, atmospheric, and ecological processes challenges the contemporary discourse in architecture and interior. The dominant influence characterises the incapability to distinguish the notion of nature, subnature, human and non-human. Consequently, living in the Anthropocene demands sensitivity and responsiveness to heighten our sense of the rhythm of transformation and recognition of our environment as a product of natural, social and historical processes. The notion of subnature is particularly emphasised in this paper to investigate the poetic sense of living with subnature. It could be associated with the critical tool for exploring the aesthetic and programmatic implications of subnature on interiority. The ephemeral immaterial attached to subnature promotes the sense of atmospheric delineation of interiority, the very inner significance of body-surface interaction, which central to interior architecture discourse. This would then reflect human’s activities; examine the transformative change, the architectural motion and the traces that left between moments. In this way, engaging the notion of subnature enable us to better understand the critical subject on interiority and might provide an in-depth study on interior architecture. Incorporating the exploration on the form, materiality, and pattern of subnature, this research seeks to grasp the inner significance of micro to macro approaches so that the future of interior might be compelled to depend more on the investigation and development of responsive environment. To reflect upon the form, materiality and intensity of subnature that specifically characterized by the natural, social and historical processes, this research examines a volcanic land, White Island/Whakaari, New Zealand as the chosen site of investigation. Emitting various forms and intensities of subnatures - smokes, mud, sulphur gas, this volcanic land also open to the new inhabitation within the sulphur factory ruins that reflects human’s past occupation. In this way, temporal and natural selected manifestations of materiality, artefact, and performance can be traced out and might reveal the meaningful relations among space, inhabitation, and well-being of inhabitants in the Anthropocene.

Keywords: anthropocene, body, intensification, intensity, interior architecture, subnature, surface

Procedia PDF Downloads 172
893 A Numerical Investigation of Flow Maldistribution in Inlet Header Configuration of Plate Fin Heat Exchanger

Authors: Appasaheb Raul

Abstract:

Numerical analysis of a plate fin heat exchanger accounting for the effect of fluid flow maldistribution on the inlet header configuration of the heat exchanger is investigated. It is found that the flow maldistribution is very significant in normal to the flow direction. Various inlet configuration has been studied for various Reynolds Number. By the study, a modified header configuration is proposed and simulated. The two-dimensional parameters are used to evaluate the flow non-uniformity in the header, global flow maldistribution parameter (Sg), and Velocity Ratio (θ). A series of velocity vectors and streamline graphs at different cross-section are achieved and studied qualitatively with experimental results in the literature. The numerical result indicates that the flow maldistribution is serious in the conventional header while in the improved configuration less maldistribution occurs. The flow maldistribution parameter (Sg) and velocity ratio (θ) is reduced in improved configuration. The vortex decreases compared to that of the conventional configuration so the energy and pressure loss is reduced. The improved header can effectively enhance the efficiency of plate fin heat exchanger and uniformity of flow distribution.

Keywords: global flow maldistribution parameter, Sg, velocity ratio, plate fin heat exchanger, fluent 14.5

Procedia PDF Downloads 519
892 Productivity Improvement in the Propeller Shaft Manufacturing Process

Authors: Won Jung

Abstract:

In automotive, propeller shaft is the device for transferring power from engine to axle via transmission, and the slip yoke is one of the main parts in the component. Since the propeller shafts are subject to torsion and shear stress, they need to be strong enough to bear the stress. The purpose of this research is to improve the productivity of slip yoke for automotive propeller shaft. We present how to redesign the component that currently manufactured as a forged single body type. The research was focused on not only reducing processing time but insuring durability of the component simultaneously.

Keywords: automotive, propeller shaft, productivity, durability, slip yoke

Procedia PDF Downloads 374
891 Latitudinal Impact on Spatial and Temporal Variability of 7Be Activity Concentrations in Surface Air along Europe

Authors: M. A. Hernández-Ceballos, M. Marín-Ferrer, G. Cinelli, L. De Felice, T. Tollefsen, E. Nweke, P. V. Tognoli, S. Vanzo, M. De Cort

Abstract:

This study analyses the latitudinal impact of the spatial and temporal distribution on the cosmogenic isotope 7Be in surface air along Europe. The long-term database of the 6 sampling sites (Ivalo, Helsinki, Berlin, Freiburg, Sevilla and La Laguna), that regularly provide data to the Radioactivity Environmental Monitoring (REM) network managed by the Joint Research Centre (JRC) in Ispra, were used. The selection of the stations was performed attending to different factors, such as 1) heterogeneity in terms of latitude and altitude, and 2) long database coverage. The combination of these two parameters ensures a high degree of representativeness of the results. In the later, the temporal coverage varies between stations, being used in the present study sampling stations with a database more or less continuously from 1984 to 2011. The mean values of 7Be activity concentration presented a spatial distribution value ranging from 2.0 ± 0.9 mBq/m3 (Ivalo, north) to 4.8 ± 1.5 mBq/m3 (La Laguna, south). An increasing gradient with latitude was observed from the north to the south, 0.06 mBq/m3. However, there was no correlation with altitude, since all stations are sited within the atmospheric boundary layer. The analyses of the data indicated a dynamic range of 7Be activity for solar cycle and phase (maximum or minimum), having been observed different impact on stations according to their location. The results indicated a significant seasonal behavior, with the maximum concentrations occurring in the summer and minimum in the winter, although with differences in the values reached and in the month registered. Due to the large heterogeneity in the temporal pattern with which the individual radionuclide analyses were performed in each station, the 7Be monthly index was calculated to normalize the measurements and perform the direct comparison of monthly evolution among stations. Different intensity and evolution of the mean monthly index were observed. The knowledge of the spatial and temporal distribution of this natural radionuclide in the atmosphere is a key parameter for modeling studies of atmospheric processes, which are important phenomena to be taken into account in the case of a nuclear accident.

Keywords: Berilium-7, latitudinal impact in Europe, seasonal and monthly variability, solar cycle

Procedia PDF Downloads 334
890 Preparation of Alumina (Al2O3) Particles and MMCS of (Al-7% Si– 0.45% Mg) Alloy Using Vortex Method

Authors: Abdulmagid A. Khattabi

Abstract:

The aim of this research is to study the manner of alumina (Al2O3) particles dispersion with (2-10) mm size in (Al-7%Si-0.45% Mg) base of alloy melt employing of classical casting method. The mechanism of particles diffusions by melt turning and stirring that makes vortexes help the particles entrance in the matrix of base alloy also has been studied. The samples of metallic composites (MMCs) with dispersed particles percentages (4% - 6% - 8% - 10% - 15% and 20%) are prepared. The effect of the particles dispersion on the mechanical properties of produced samples were carried out by tension & hardness tests. It is found that the ultimate tensile strength of the produced composites can be increased by increasing the percentages of alumina particles in the matrix of the base alloy. It becomes (232 Mpa) at (20%) of added particles. The results showed that the average hardness of prepared samples increasing with increases the alumina content. Microstructure study of prepared samples was carried out. The results showed particles location and distribution of it in the matrix of base alloy. The dissolution of Alumina particles into liquid base alloy was clear in some cases.

Keywords: base alloy, matrix, hardness, thermal properties, base metal MMCs

Procedia PDF Downloads 348
889 CFD Simulation and Experimental Validation of the Bubble-Induced Flow during Electrochemical Water Splitting

Authors: Gabriel Wosiak, Jeyse da Silva, Sthefany S. Sena, Renato N. de Andrade, Ernesto Pereira

Abstract:

The bubble formation during hydrogen production by electrolysis and several electrochemical processes is an inherent phenomenon and can impact the energy consumption of the processes. In this work, it was reported both experimental and computational results describe the effect of bubble displacement, which, under the cases investigated, leads to the formation of a convective flow in the solution. The process is self-sustained, and a solution vortex is formed, which modifies the bubble growth and covering at the electrode surface. Using the experimental data, we have built a model to simulate it, which, with high accuracy, describes the phenomena. Then, it simulated many different experimental conditions and evaluated the effects of the boundary conditions on the bubble surface covering the surface. We have observed a position-dependent bubble covering the surface, which has an effect on the water-splitting efficiency. It was shown that the bubble covering is not uniform at the electrode surface, and using statistical analysis; it was possible to evaluate the influence of the gas type (H2 and O2), current density, and the bubble size (and cross-effects) on the covering fraction and the asymmetric behavior over the electrode surface.

Keywords: water splitting, bubble, electrolysis, hydrogen production

Procedia PDF Downloads 95
888 Physically Informed Kernels for Wave Loading Prediction

Authors: Daniel James Pitchforth, Timothy James Rogers, Ulf Tyge Tygesen, Elizabeth Jane Cross

Abstract:

Wave loading is a primary cause of fatigue within offshore structures and its quantification presents a challenging and important subtask within the SHM framework. The accurate representation of physics in such environments is difficult, however, driving the development of data-driven techniques in recent years. Within many industrial applications, empirical laws remain the preferred method of wave loading prediction due to their low computational cost and ease of implementation. This paper aims to develop an approach that combines data-driven Gaussian process models with physical empirical solutions for wave loading, including Morison’s Equation. The aim here is to incorporate physics directly into the covariance function (kernel) of the Gaussian process, enforcing derived behaviors whilst still allowing enough flexibility to account for phenomena such as vortex shedding, which may not be represented within the empirical laws. The combined approach has a number of advantages, including improved performance over either component used independently and interpretable hyperparameters.

Keywords: offshore structures, Gaussian processes, Physics informed machine learning, Kernel design

Procedia PDF Downloads 186
887 On Regional Climate Singularity: On Example of the Territory of Georgia

Authors: T. Davitashvili

Abstract:

In this paper, some results of numerical simulation of the air flow dynamics in the troposphere over the Caucasus Mountains taking place in conditions of nonstationarity of large-scale undisturbed background flow are presented. Main features of the atmospheric currents changeability while air masses are transferred from the Black Sea to the land’s surface had been investigated. In addition, the effects of thermal and advective-dynamic factors of atmosphere on the changes of the West Georgian climate have been studied. It was shown that non-proportional warming of the Black Sea and Colkhi lowland provokes the intensive strengthening of circulation and effect of climate cooling in the western Georgia.

Keywords: regional climate, numerical simulation, local circulation, orographic effect

Procedia PDF Downloads 479
886 Analysis of the Operating Load of Gas Bearings in the Gas Generator of the Turbine Engine during a Deceleration to Dash Maneuver

Authors: Zbigniew Czyz, Pawel Magryta, Mateusz Paszko

Abstract:

The paper discusses the status of loads acting on the drive unit of the unmanned helicopter during deceleration to dash maneuver. Special attention was given for the loads of bearings in the gas generator turbine engine, in which will be equipped a helicopter. The analysis was based on the speed changes as a function of time for manned flight of helicopter PZL W3-Falcon. The dependence of speed change during the flight was approximated by the least squares method and then determined for its changes in acceleration. This enabled us to specify the forces acting on the bearing of the gas generator in static and dynamic conditions. Deceleration to dash maneuvers occurs in steady flight at a speed of 222 km/h by horizontal braking and acceleration. When the speed reaches 92 km/h, it dynamically changes an inclination of the helicopter to the maximum acceleration and power to almost maximum and holds it until it reaches its initial speed. This type of maneuvers are used due to ineffective shots at significant cruising speeds. It is, therefore, important to reduce speed to the optimum as soon as possible and after giving a shot to return to the initial speed (cruising). In deceleration to dash maneuvers, we have to deal with the force of gravity of the rotor assembly, gas aerodynamics forces and the forces caused by axial acceleration during this maneuver. While we can assume that the working components of the gas generator are designed so that axial gas forces they create could balance the aerodynamic effects, the remaining ones operate with a value that results from the motion profile of the aircraft. Based on the analysis, we can make a compilation of the results. For this maneuver, the force of gravity (referring to statistical calculations) respectively equals for bearing A = 5.638 N and bearing B = 1.631 N. As overload coefficient k in this direction is 1, this force results solely from the weight of the rotor assembly. For this maneuver, the acceleration in the longitudinal direction achieved value a_max = 4.36 m/s2. Overload coefficient k is, therefore, 0.44. When we multiply overload coefficient k by the weight of all gas generator components that act on the axial bearing, the force caused by axial acceleration during deceleration to dash maneuver equals only 3.15 N. The results of the calculations are compared with other maneuvers such as acceleration and deceleration and jump up and jump down maneuvers. This work has been financed by the Polish Ministry of Science and Higher Education.

Keywords: gas bearings, helicopters, helicopter maneuvers, turbine engines

Procedia PDF Downloads 332
885 Adsorption Cooling Using Hybrid Energy Resources

Authors: R. Benelmir, M. El Kadri, A. Donnot, D. Descieux

Abstract:

HVAC represents a significant part of energy needs in buildings. Integrating renewable energy in cooling processes contributes to reducing primary energy consumption. Sorption refrigeration allows cold production through the use of solar/biomass/geothermal energy or even valuation of waste heat. This work presents an analysis of an experimental bench incorporating an adsorption chiller driven by hybrid energy resources associating solar thermal collectors with a cogeneration gas engine and a geothermal heat pump.

Keywords: solar cooling, cogeneration, geothermal heat pump, hybrid energy resources

Procedia PDF Downloads 352
884 Spatial Distribution and Source Identification of Trace Elements in Surface Soil from Izmir Metropolitan Area

Authors: Melik Kara, Gulsah Tulger Kara

Abstract:

The soil is a crucial component of the ecosystem, and in industrial and urban areas it receives large amounts of trace elements from several sources. Therefore, accumulated pollutants in surface soils can be transported to different environmental components, such as deep soil, water, plants, and dust particles. While elemental contamination of soils is caused mainly by atmospheric deposition, soil also affects the air quality since enriched trace elemental contents in atmospheric particulate matter originate from resuspension of polluted soils. The objectives of this study were to determine the total and leachate concentrations of trace elements in soils of city area in Izmir and characterize their spatial distribution and to identify the possible sources of trace elements in surface soils. The surface soil samples were collected from 20 sites. They were analyzed for total element concentrations and leachate concentrations. Analyses of trace elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Hf, Ho, K, La, Li, Lu, Mg, Mn, Mo, Na, Nd, Ni, P, Pb, Pr, Rb, Sb, Sc, Se, Si, Sm, Sn, Sr, Tb, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn and Zr) were carried out using ICP-MS (Inductively Coupled Plasma-Mass Spectrometer). The elemental concentrations were calculated along with overall median, kurtosis, and skewness statistics. Elemental composition indicated that the soil samples were dominated by crustal elements such as Si, Al, Fe, Ca, K, Mg and the sea salt element, Na which is typical for Aegean region. These elements were followed by Ti, P, Mn, Ba and Sr. On the other hand, Zn, Cr, V, Pb, Cu, and Ni (which are anthropogenic based elements) were measured as 61.6, 39.4, 37.9, 26.9, 22.4, and 19.4 mg/kg dw, respectively. The leachate element concentrations were showed similar sorting although their concentrations were much lower than total concentrations. In the study area, the spatial distribution patterns of elemental concentrations varied among sampling sites. The highest concentrations were measured in the vicinity of industrial areas and main roads. To determine the relationships among elements and to identify the possible sources, PCA (Principal Component Analysis) was applied to the data. The analysis resulted in six factors. The first factor exhibited high loadings of Co, K, Mn, Rb, V, Al, Fe, Ni, Ga, Se, and Cr. This factor could be interpreted as residential heating because of Co, K, Rb, and Se. The second factor associated positively with V, Al, Fe, Na, Ba, Ga, Sr, Ti, Se, and Si. Therefore, this factor presents mixed city dust. The third factor showed high loadings with Fe, Ni, Sb, As, Cr. This factor could be associated with industrial facilities. The fourth factor associated with Cu, Mo, Zn, Sn which are the marker elements of traffic. The fifth factor presents crustal dust, due to its high correlation with Si, Ca, and Mg. The last factor is loaded with Pb and Cd emitted from industrial activities.

Keywords: trace elements, surface soil, source apportionment, Izmir

Procedia PDF Downloads 135
883 Modeling and Optimization of Micro-Grid Using Genetic Algorithm

Authors: Mehrdad Rezaei, Reza Haghmaram, Nima Amjadi

Abstract:

This paper proposes an operating and cost optimization model for micro-grid (MG). This model takes into account emission costs of NOx, SO2, and CO2, together with the operation and maintenance costs. Wind turbines (WT), photovoltaic (PV) arrays, micro turbines (MT), fuel cells (FC), diesel engine generators (DEG) with different capacities are considered in this model. The aim of the optimization is minimizing operation cost according to constraints, supply demand and safety of the system. The proposed genetic algorithm (GA), with the ability to fine-tune its own settings, is used to optimize the micro-grid operation.

Keywords: micro-grid, optimization, genetic algorithm, MG

Procedia PDF Downloads 504
882 A Metric to Evaluate Conventional and Electrified Vehicles in Terms of Customer-Oriented Driving Dynamics

Authors: Stephan Schiffer, Andreas Kain, Philipp Wilde, Maximilian Helbing, Bernard Bäker

Abstract:

Automobile manufacturers progressively focus on a downsizing strategy to meet the EU's CO2 requirements concerning type-approval consumption cycles. The reduction in naturally aspirated engine power is compensated by increased levels of turbocharging. By downsizing conventional engines, CO2 emissions are reduced. However, it also implicates major challenges regarding longitudinal dynamic characteristics. An example of this circumstance is the delayed turbocharger-induced torque reaction which leads to a partially poor response behavior of the vehicle during acceleration operations. That is why it is important to focus conventional drive train design on real customer driving again. The currently considered dynamic maneuvers like the acceleration time 0-100 km/h discussed by journals and car manufacturers describe longitudinal dynamics experienced by a driver inadequately. For that reason we present the realization and evaluation of a comprehensive proband study. Subjects are provided with different vehicle concepts (electrified vehicles, vehicles with naturally aspired engines and vehicles with different concepts of turbochargers etc.) in order to find out which dynamic criteria are decisive for a subjectively strong acceleration and response behavior of a vehicle. Subsequently, realistic acceleration criteria are derived. By weighing the criteria an evaluation metric is developed to objectify customer-oriented transient dynamics. Fully-electrified vehicles are the benchmark in terms of customer-oriented longitudinal dynamics. The electric machine provides the desired torque almost without delay. This advantage compared to combustion engines is especially noticeable at low engine speeds. In conclusion, we will show the degree to which extent customer-relevant longitudinal dynamics of conventional vehicles can be approximated to electrified vehicle concepts. Therefore, various technical measures (turbocharger concepts, 48V electrical chargers etc.) and drive train designs (e.g. varying the final drive) are presented and evaluated in order to strengthen the vehicle’s customer-relevant transient dynamics. As a rating size the newly developed evaluation metric will be used.

Keywords: 48V, customer-oriented driving dynamics, electric charger, electrified vehicles, vehicle concepts

Procedia PDF Downloads 402
881 A Small-Scale Study of Fire Whirls and Investigation of the Effects of Near-Ground Height on the Behavior of Fire Whirls

Authors: M. Arabghahestani, A. Darwish Ahmad, N. K. Akafuah

Abstract:

In this work, small-scale experiments of fire whirl were conducted to study the spinning fire phenomenon and to gain comprehensive understandings of fire tornadoes and the factors that affect their behavior. High speed imaging was used to track the flames at both temporal and spatial scales. This allowed us to better understand the role of the near-ground height in creating a boundary layer flow profile that, in turn contributes to formation of vortices around the fire, and consequent fire whirls. Based on the results obtained from these observations, we were able to spot the differences in the fuel burning rate of the fire itself as a function of a newly defined specific non-dimensional near-ground height. Based on our observations, there is a cutoff non-dimensional height, beyond which a normal fire can be turned into a fire whirl. Additionally, the results showed that the fire burning rate decreases by moving the fire to a height higher than the ground level. These effects were justified by the interactions between vortices formed by, the back pressure and the boundary layer velocity profile, and the vortices generated by the fire itself.

Keywords: boundary layer profile, fire whirls, near-ground height, vortex interactions

Procedia PDF Downloads 157
880 Comparison of Finite Difference Schemes for Numerical Study of Ripa Model

Authors: Sidrah Ahmed

Abstract:

The river and lakes flows are modeled mathematically by shallow water equations that are depth-averaged Reynolds Averaged Navier-Stokes equations under Boussinesq approximation. The temperature stratification dynamics influence the water quality and mixing characteristics. It is mainly due to the atmospheric conditions including air temperature, wind velocity, and radiative forcing. The experimental observations are commonly taken along vertical scales and are not sufficient to estimate small turbulence effects of temperature variations induced characteristics of shallow flows. Wind shear stress over the water surface influence flow patterns, heat fluxes and thermodynamics of water bodies as well. Hence it is crucial to couple temperature gradients with shallow water model to estimate the atmospheric effects on flow patterns. The Ripa system has been introduced to study ocean currents as a variant of shallow water equations with addition of temperature variations within the flow. Ripa model is a hyperbolic system of partial differential equations because all the eigenvalues of the system’s Jacobian matrix are real and distinct. The time steps of a numerical scheme are estimated with the eigenvalues of the system. The solution to Riemann problem of the Ripa model is composed of shocks, contact and rarefaction waves. Solving Ripa model with Riemann initial data with the central schemes is difficult due to the eigen structure of the system.This works presents the comparison of four different finite difference schemes for the numerical solution of Riemann problem for Ripa model. These schemes include Lax-Friedrichs, Lax-Wendroff, MacCormack scheme and a higher order finite difference scheme with WENO method. The numerical flux functions in both dimensions are approximated according to these methods. The temporal accuracy is achieved by employing TVD Runge Kutta method. The numerical tests are presented to examine the accuracy and robustness of the applied methods. It is revealed that Lax-Freidrichs scheme produces results with oscillations while Lax-Wendroff and higher order difference scheme produce quite better results.

Keywords: finite difference schemes, Riemann problem, shallow water equations, temperature gradients

Procedia PDF Downloads 200
879 Noise Reduction by Energising the Boundary Layer

Authors: Kiran P. Kumar, H. M. Nayana, R. Rakshitha, S. Sushmitha

Abstract:

Aircraft noise is a highly concerned problem in the field of the aviation industry. It is necessary to reduce the noise in order to be environment-friendly. Air-frame noise is caused because of the quick separation of the boundary layer over an aircraft body. So, we have to delay the boundary layer separation of an air-frame and engine nacelle. By following a certain procedure boundary layer separation can be reduced by converting laminar into turbulent and hence early separation can be prevented that leads to the noise reduction. This method has a tendency to reduce the noise of the aircraft hence it can prove efficient and environment-friendly than the present Aircraft.

Keywords: airframe, boundary layer, noise, reduction

Procedia PDF Downloads 473
878 Relational Attention Shift on Images Using Bu-Td Architecture and Sequential Structure Revealing

Authors: Alona Faktor

Abstract:

In this work, we present a NN-based computational model that can perform attention shifts according to high-level instruction. The instruction specifies the type of attentional shift using explicit geometrical relation. The instruction also can be of cognitive nature, specifying more complex human-human interaction or human-object interaction, or object-object interaction. Applying this approach sequentially allows obtaining a structural description of an image. A novel data-set of interacting humans and objects is constructed using a computer graphics engine. Using this data, we perform systematic research of relational segmentation shifts.

Keywords: cognitive science, attentin, deep learning, generalization

Procedia PDF Downloads 194
877 Microplastic Concentrations and Fluxes in Urban Compartments: A Systemic Approach at the Scale of the Paris Megacity

Authors: Rachid Dris, Robin Treilles, Max Beaurepaire, Minh Trang Nguyen, Sam Azimi, Vincent Rocher, Johnny Gasperi, Bruno Tassin

Abstract:

Microplastic sources and fluxes in urban catchments are only poorly studied. Most often, the approaches taken focus on a single source and only carry out a description of the contamination levels and type (shape, size, polymers). In order to gain an improved knowledge of microplastic inputs at urban scales, estimating and comparing various fluxes is necessary. The Laboratoire Eau, Environnement et Systèmes Urbains (LEESU), the Laboratoire Eau Environnement (LEE) and the SIAAP (Service public de l’assainissement francilien) initiated several projects to investigate different urban sources and flows of microplastics. A systemic approach is undertaken at the scale of Paris Megacity, and several compartments are considered, including atmospheric fallout, wastewater treatments plants, runoff and combined sewer overflows. These investigations are carried out within the Limnoplast and OPUR projects. Atmospheric fallout was sampled during consecutive periods ranging from 2 to 3 weeks with a stainless-steel funnel. Both wet and dry periods were considered. Different treatment steps were sampled in 2 wastewater treatment plants (Seine-Amont for activated sludge and Seine-Centre for biofiltration) of the SIAAP, including sludge samples. Microplastics were also investigated in combined sewer overflows as well as in stormwater at the outlet suburban catchment (Sucy-en-Brie, France) during four rain events. Samples are treated using hydroperoxide digestion (H₂O₂ 30 %) in order to reduce organic material. Microplastics are then extracted from the samples with a density separation step using NaI (d=1.6 g.cm⁻³). Samples are filtered on metallic filters with a porosity of 14 µm between steps to separate them from the solutions (H₂O₂ and NaI). The last filtration was carried out on alumina filters. Infrared mapping analysis (using a micro-FTIR with an MCT detector) is performed on each alumina filter. The resulting maps are analyzed using a microplastic analysis software simple, developed by Aalborg University, Denmark and Alfred Wegener Institute, Germany. Blanks were systematically carried out to consider sample contamination. This presentation aims at synthesizing the data found in the various projects. In order to carry out a systemic approach and compare the various inputs, all the data were converted into annual microplastic fluxes (number of microplastics per year), and extrapolated to the Parisian agglomeration. PP, PE and alkyd are the most prevalent polymers found in storm water samples. Rain intensity and microplastic concentrations did not show any clear correlation. Considering the runoff volumes and the impervious surface area of the studied catchment, a flux of 4*107–9*107 MPs.yr⁻¹.ha⁻¹ was estimated. Samples of wastewater treatment plants and atmospheric fallout are currently being analyzed in order to finalize this assessment. The representativeness of such samplings and uncertainties related to the extrapolations will be discussed and gaps in knowledge will be identified. The data provided by such an approach will help to prioritize future research as well as policy efforts.

Keywords: microplastics, atmosphere, wastewater, urban runoff, Paris megacity, urban waters

Procedia PDF Downloads 177
876 FEM and Experimental Modal Analysis of Computer Mount

Authors: Vishwajit Ghatge, David Looper

Abstract:

Over the last few decades, oilfield service rolling equipment has significantly increased in weight, primarily because of emissions regulations, which require larger/heavier engines, larger cooling systems, and emissions after-treatment systems, in some cases, etc. Larger engines cause more vibration and shock loads, leading to failure of electronics and control systems. If the vibrating frequency of the engine matches the system frequency, high resonance is observed on structural parts and mounts. One such existing automated control equipment system comprising wire rope mounts used for mounting computers was designed approximately 12 years ago. This includes the use of an industrial- grade computer to control the system operation. The original computer had a smaller, lighter enclosure. After a few years, a newer computer version was introduced, which was 10 lbm heavier. Some failures of internal computer parts have been documented for cases in which the old mounts were used. Because of the added weight, there is a possibility of having the two brackets impact each other under off-road conditions, which causes a high shock input to the computer parts. This added failure mode requires validating the existing mount design to suit the new heavy-weight computer. This paper discusses the modal finite element method (FEM) analysis and experimental modal analysis conducted to study the effects of vibration on the wire rope mounts and the computer. The existing mount was modelled in ANSYS software, and resultant mode shapes and frequencies were obtained. The experimental modal analysis was conducted, and actual frequency responses were observed and recorded. Results clearly revealed that at resonance frequency, the brackets were colliding and potentially causing damage to computer parts. To solve this issue, spring mounts of different stiffness were modeled in ANSYS software, and the resonant frequency was determined. Increasing the stiffness of the system increased the resonant frequency zone away from the frequency window at which the engine showed heavy vibrations or resonance. After multiple iterations in ANSYS software, the stiffness of the spring mount was finalized, which was again experimentally validated.

Keywords: experimental modal analysis, FEM Modal Analysis, frequency, modal analysis, resonance, vibration

Procedia PDF Downloads 319
875 Information Extraction Based on Search Engine Results

Authors: Mohammed R. Elkobaisi, Abdelsalam Maatuk

Abstract:

The search engines are the large scale information retrieval tools from the Web that are currently freely available to all. This paper explains how to convert the raw resulted number of search engines into useful information. This represents a new method for data gathering comparing with traditional methods. When a query is submitted for a multiple numbers of keywords, this take a long time and effort, hence we develop a user interface program to automatic search by taking multi-keywords at the same time and leave this program to collect wanted data automatically. The collected raw data is processed using mathematical and statistical theories to eliminate unwanted data and converting it to usable data.

Keywords: search engines, information extraction, agent system

Procedia PDF Downloads 423
874 Using HABIT to Establish the Chemicals Analysis Methodology for Maanshan Nuclear Power Plant

Authors: J. R. Wang, S. W. Chen, Y. Chiang, W. S. Hsu, J. H. Yang, Y. S. Tseng, C. Shih

Abstract:

In this research, the HABIT analysis methodology was established for Maanshan nuclear power plant (NPP). The Final Safety Analysis Report (FSAR), reports, and other data were used in this study. To evaluate the control room habitability under the CO2 storage burst, the HABIT methodology was used to perform this analysis. The HABIT result was below the R.G. 1.78 failure criteria. This indicates that Maanshan NPP habitability can be maintained. Additionally, the sensitivity study of the parameters (wind speed, atmospheric stability classification, air temperature, and control room intake flow rate) was also performed in this research.

Keywords: PWR, HABIT, Habitability, Maanshan

Procedia PDF Downloads 439
873 Assessment of the Impact of Atmospheric Air, Drinking Water and Socio-Economic Indicators on the Primary Incidence of Children in Altai Krai

Authors: A. P. Pashkov

Abstract:

The number of environmental factors that adversely affect children's health is growing every year; their combination in each territory is different. The contribution of socio-economic factors to the health status of the younger generation is increasing. It is the child’s body that is most sensitive to changes in environmental conditions, responding to this with a deterioration in health. Over the past years, scientists have determined the influence of environmental factors and the incidence of children. Currently, there is a tendency to study regional characteristics of the interaction of a combination of environmental factors with the child's body. The aim of the work was to identify trends in the primary non-infectious morbidity of the children of the Altai Territory as a unique region that combines territories with different levels of environmental quality indicators, as well as to assess the effect of atmospheric air, drinking water and socio-economic indicators on the incidence of children in the region. An unfavorable tendency has been revealed in the region for incidence of such nosological groups as neoplasms, including malignant ones, diseases of the endocrine system, including obesity and thyroid disease, diseases of the circulatory system, digestive diseases, diseases of the genitourinary system, congenital anomalies, and respiratory diseases. Between some groups of diseases revealed a pattern of geographical distribution during mapping and a significant correlation. Some nosologies have a relationship with socio-economic indicators for an integrated assessment: circulatory system diseases, respiratory diseases (direct connection), endocrine system diseases, eating disorders, and metabolic disorders (feedback). The analysis of associations of the incidence of children with average annual concentrations of substances that pollute the air and drinking water showed the existence of reliable correlation in areas of critical and intense degree of environmental quality. This fact confirms that the population living in contaminated areas is subject to the negative influence of environmental factors, which immediately affects the health status of children. The results obtained indicate the need for a detailed assessment of the influence of environmental factors on the incidence of children in the regional aspect, the formation of a database, and the development of automated programs that can predict the incidence in each specific territory. This will increase the effectiveness, including economic of preventive measures.

Keywords: incidence of children, regional features, socio-economic factors, environmental factors

Procedia PDF Downloads 112
872 Pay Per Click Attribution: Effects on Direct Search Traffic and Purchases

Authors: Toni Raurich-Marcet, Joan Llonch-Andreu

Abstract:

This research is focused on the relationship between Search Engine Marketing (SEM) and traditional advertising. The dominant assumption is that SEM does not help brand awareness and only does it in session as if it were the cost of manufacturing the product being sold. The study is methodologically developed using an experiment where the effects were determined to analyze the billboard effect. The research allowed the cross-linking of theoretical and empirical knowledge on digital marketing. This paper has validated this marketing generates retention as traditional advertising would by measuring brand awareness and its improvements. This changes the way performance and brand campaigns are split within marketing departments, effectively rebalancing budgets moving forward.

Keywords: attribution, performance marketing, SEM, marketplaces

Procedia PDF Downloads 126
871 Design of Electromagnetic Field of PMSG for VTOL Series-Hybrid UAV

Authors: Sooyoung Cho, In-Gun Kim, Hyun-Seok Hong, Dong-Woo Kang, Ju Lee

Abstract:

Series hybrid UAV(Unmanned aerial vehicle) that is proposed in this paper performs VTOL(Vertical take-off and landing) using the battery and generator, and it applies the series hybrid system with combination of the small engine and generator when cruising flight. This system can be described as the next-generation system that can dramatically increase the UAV flight times. Also, UAV systems require a large energy at the time of VTOL to be conducted for a short time. Therefore, this paper designs PMSG(Permanent Magnet Synchronous Generator) having a high specific power considering VTOL through the FEA.

Keywords: PMSG, VTOL, UAV, high specific power density

Procedia PDF Downloads 513
870 Accumulation of Trace Metals in Leaf Vegetables Cultivated in High Traffic Areas in Ghent, Belgium

Authors: Veronique Troch, Wouter Van der Borght, Véronique De Bleeker, Bram Marynissen, Nathan Van der Eecken, Gijs Du Laing

Abstract:

Among the challenges associated with increased urban food production are health risks from food contamination, due to the higher pollution loads in urban areas, compared to rural sites. Therefore, the risks posed by industrial or traffic pollution of locally grown food, was defined as one of five high-priority issues of urban agriculture requiring further investigation. The impact of air pollution on urban horticulture is the subject of this study. More particular, this study focuses on the atmospheric deposition of trace metals on leaf vegetables cultivated in the city of Ghent, Belgium. Ghent is a particularly interesting study site as it actively promotes urban agriculture. Plants accumulate heavy metals by absorption from contaminated soils and through deposition on parts exposed to polluted air. Accumulation of trace metals in vegetation grown near roads has been shown to be significantly higher than those grown in rural areas due to traffic-related contaminants in the air. Studies of vegetables demonstrated, that the uptake and accumulation of trace metals differed among crop type, species, and among plant parts. Studies on vegetables and fruit trees in Berlin, Germany, revealed significant differences in trace metal concentrations depending on local traffic, crop species, planting style and parameters related to barriers between sampling site and neighboring roads. This study aims to supplement this scarce research on heavy metal accumulation in urban horticulture. Samples from leaf vegetables were collected from different sites, including allotment gardens, in Ghent. Trace metal contents on these leaf vegetables were analyzed by ICP-MS (inductively coupled plasma mass spectrometry). In addition, precipitation on each sampling site was collected by NILU-type bulk collectors and similarly analyzed for trace metals. On one sampling site, different parameters which might influence trace metal content in leaf vegetables were analyzed in detail. These parameters are distance of planting site to the nearest road, barriers between planting site and nearest road, and type of leaf vegetable. For comparison, a rural site, located farther from city traffic and industrial pollution, was included in this study. Preliminary results show that there is a high correlation between trace metal content in the atmospheric deposition and trace metal content in leaf vegetables. Moreover, a significant higher Pb, Cu and Fe concentration was found on spinach collected from Ghent, compared to spinach collected from a rural site. The distance of planting site to the nearest road significantly affected the accumulation of Pb, Cu, Mo and Fe on spinach. Concentrations of those elements on spinach increased with decreasing distance between planting site and the nearest road. Preliminary results did not show a significant effect of barriers between planting site and the nearest road on accumulation of trace metals on leaf vegetables. The overall goal of this study is to complete and refine existing guidelines for urban gardening to exclude potential health risks from food contamination. Accordingly, this information can help city governments and civil society in the professionalization and sustainable development of urban agriculture.

Keywords: atmospheric deposition, leaf vegetables, trace metals, traffic pollution, urban agriculture

Procedia PDF Downloads 234
869 Investigation on Unsteady Flow of a Turbine Stage with Negative Bowed Stator

Authors: Keke Gao, Tao Lin, Yonghui Xie, Di Zhang

Abstract:

Complicated unsteady flow in axial turbines produces high-frequency unsteady aerodynamic exciting force, which threatens the safe operation of turbines. This paper illustrates how negative-bowed stator reduces the rotor unsteady aerodynamic exciting force by unsteady flow field. With the support of three-dimensional viscous compressible Navier-Stokes equation, the single axial turbines with 0, -10 and -20 degree bowed stator are comparably investigated, aiming to identify the flow field structure difference caused by various negative-bowed degrees. The results show that negative-bowed stator strengthens the turbulence kinetic energy, which is further strengthened with the increase of negative-bowed degree. Meanwhile, the flow phenomenon including stator wakes and passage vortex is shown. In addition, the interaction of upstream negative-bowed wakes contributes to the reduction of unsteady blade load fluctuation. Furthermore, the aerodynamic exciting force decreases with the increasing negative bowed degree, while the efficiency is correspondingly reduced. This paper provides the reference for the alleviation of the harmful impact caused by unsteady interaction with the method of wake control.

Keywords: unsteady flow, axial turbine, wake, aerodynamic force, loss

Procedia PDF Downloads 292
868 Assessment of OTA Contamination in Rice from Fungal Growth Alterations in a Scenario of Climate Changes

Authors: Carolina S. Monteiro, Eugénia Pinto, Miguel A. Faria, Sara C. Cunha

Abstract:

Rice (Oryza sativa) production plays a vital role in reducing hunger and poverty and assumes particular importance in low-income and developing countries. Rice is a sensitive plant, and production occurs strictly where suitable temperature and water conditions are found. Climatic changes are likely to affect worldwide, and some models have predicted increased temperatures, variations in atmospheric CO₂ concentrations and modification in precipitation patterns. Therefore, the ongoing climatic changes threaten rice production by increasing biotic and abiotic stress factors, and crops will grow in different environmental conditions in the following years. Around the world, the effects will be regional and can be detrimental or advantageous depending on the region. Mediterranean zones have been identified as possible hot spots, where dramatic temperature changes, modifications of CO₂ levels, and rainfall patterns are predicted. The actual estimated atmospheric CO₂ concentration is around 400 ppm, and it is predicted that it can reach up to 1000–1200 ppm, which can lead to a temperature increase of 2–4 °C. Alongside, rainfall patterns are also expected to change, with more extreme wet/dry episodes taking place. As a result, it could increase the migration of pathogens, and a shift in the occurrence of mycotoxins, concerning their types and concentrations, is expected. Mycotoxigenic spoilage fungi can colonize the crops and be present in all rice food chain supplies, especially Penicillium species, mainly resulting in ochratoxin A (OTA) contamination. In this scenario, the objectives of the present study are evaluating the effect of temperature (20 vs. 25 °C), CO₂ (400 vs. 1000 ppm), and water stress (0.93 vs 0.95 water activity) on growth and OTA production by a Penicillium nordicum strain in vitro on rice-based media and when colonizing layers of raw rice. Results demonstrate the effect of temperature, CO₂ and drought on the OTA production in a rice-based environment, thus contributing to the development of mycotoxins predictive models in climate change scenarios. As a result, improving mycotoxins' surveillance and monitoring systems, whose occurrence can be more frequent due to climatic changes, seems relevant and necessary. The development of prediction models for hazard contaminants presents in foods highly sensitive to climatic changes, such as mycotoxins, in the highly probable new agricultural scenarios is of paramount importance.

Keywords: climate changes, ochratoxin A, penicillium, rice

Procedia PDF Downloads 65