Search results for: Kriging techniques
6103 Platform Urbanism: Planning towards Hyper-Personalisation
Authors: Provides Ng
Abstract:
Platform economy is a peer-to-peer model of distributing resources facilitated by community-based digital platforms. In recent years, digital platforms are rapidly reconfiguring the public realm using hyper-personalisation techniques. This paper aims at investigating how urban planning can leapfrog into the digital age to help relieve the rising tension of the global issue of labour flow; it discusses the means to transfer techniques of hyper-personalisation into urban planning for plasticity using platform technologies. This research first denotes the limitations of the current system of urban residency, where the system maintains itself on the circulation of documents, which are data on paper. Then, this paper tabulates how some of the institutions around the world, both public and private, digitise data, and streamline communications between a network of systems and citizens using platform technologies. Subsequently, this paper proposes ways in which hyper-personalisation can be utilised to form a digital planning platform. Finally, this paper concludes by reviewing how the proposed strategy may help to open up new ways of thinking about how we affiliate ourselves with cities.Keywords: platform urbanism, hyper-personalisation, digital inventory, urban accessibility
Procedia PDF Downloads 1146102 Flood-prone Urban Area Mapping Using Machine Learning, a Case Sudy of M'sila City (Algeria)
Authors: Medjadj Tarek, Ghribi Hayet
Abstract:
This study aims to develop a flood sensitivity assessment tool using machine learning (ML) techniques and geographic information system (GIS). The importance of this study is integrating the geographic information systems (GIS) and machine learning (ML) techniques for mapping flood risks, which help decision-makers to identify the most vulnerable areas and take the necessary precautions to face this type of natural disaster. To reach this goal, we will study the case of the city of M'sila, which is among the areas most vulnerable to floods. This study drew a map of flood-prone areas based on the methodology where we have made a comparison between 3 machine learning algorithms: the xGboost model, the Random Forest algorithm and the K Nearest Neighbour algorithm. Each of them gave an accuracy respectively of 97.92 - 95 - 93.75. In the process of mapping flood-prone areas, the first model was relied upon, which gave the greatest accuracy (xGboost).Keywords: Geographic information systems (GIS), machine learning (ML), emergency mapping, flood disaster management
Procedia PDF Downloads 956101 Evaluation of a Hybrid Configuration for Active Space Radiation Bio-Shielding
Authors: Jiahui Song, Ravindra P. Joshi
Abstract:
One of the biggest obstacles to human space exploration of the solar system is the risk posed by prolonged exposure to space radiation. It is generally agreed that particles with energies around 1-2 GeV per nucleon are the most damaging to humans. Passive shielding techniques entail using solid material to create a shield that prevents particles from penetrating a given region by absorbing the energy of incident particles. Previous techniques resulted in adding ‘dead mass’ to spacecraft, which is not an economically viable solution. Additionally, collisions of the incoming ionized particles with traditional passive protective material lead to secondary radiation. This study develops an enhanced hybrid active space radiation bio-shielding concept, a combination of the electrostatic and magnetostatic shielding, by varying the size of the magnetic ring, and by having multiple current-carrying rings, to mitigate the biohazards of severe space radiation for the success of deep-space explorations. The simulation results show an unprecedented reduction of 1GeV GCR (Galactic Cosmic Rays) proton transmission to about 15%.Keywords: bio-shielding, electrostatic, magnetostatic, radiation
Procedia PDF Downloads 3946100 Stakeholder Management for Successful Software Projects
Authors: Kassem Saleh
Abstract:
An alarming number of software projects fail to deliver the required functionalities within the provided budget and timeframe and with the required qualities. Some of the main reasons for this problem include bad stakeholder management, poor communications and informal change management. Informal processes to identify, engage and control stakeholders lead to these reasons. Recently, to emphasize its importance, the Project Management Institute (PMI) updated the Project Management Body of Knowledge (PMBoK) to explicitly include the stakeholder management knowledge area. This knowledge area consists of four processes to identify stakeholders, plan stakeholder management, and manage and control stakeholder engagement. The use of appropriate techniques for stakeholder management in software projects will definitely lead to higher quality and successful software. In this paper, we describe some of the proven techniques that can be used during the execution of the four processes for stakeholder management. Development of collaboration tools for automating these processes are recommended and need to be integrated in available software project management tools.Keywords: project management, stakeholder management, software development, project management body of knowledge
Procedia PDF Downloads 3116099 A Non-Destructive TeraHertz System and Method for Capsule and Liquid Medicine Identification
Authors: Ke Lin, Steve Wu Qing Yang, Zhang Nan
Abstract:
The medicine and drugs has in the past been manufactured to the final products and then used laboratory analysis to verify their quality. However the industry needs crucially a monitoring technique for the final batch to batch quality check. The introduction of process analytical technology (PAT) provides an incentive to obtain real-time information about drugs on the production line, with the following optical techniques being considered: near-infrared (NIR) spectroscopy, Raman spectroscopy and imaging, mid-infrared spectroscopy with the use of chemometric techniques to quantify the final product. However, presents problems in that the spectra obtained will consist of many combination and overtone bands of the fundamental vibrations observed, making analysis difficult. In this work, we describe a non-destructive system and method for capsule and liquid medicine identification, more particularly, using terahertz time-domain spectroscopy and/or designed terahertz portable system for identifying different types of medicine in the package of capsule or in liquid medicine bottles. The target medicine can be detected directly, non-destructively and non-invasively.Keywords: terahertz, non-destructive, non-invasive, chemical identification
Procedia PDF Downloads 1316098 Machine Learning Techniques in Bank Credit Analysis
Authors: Fernanda M. Assef, Maria Teresinha A. Steiner
Abstract:
The aim of this paper is to compare and discuss better classifier algorithm options for credit risk assessment by applying different Machine Learning techniques. Using records from a Brazilian financial institution, this study uses a database of 5,432 companies that are clients of the bank, where 2,600 clients are classified as non-defaulters, 1,551 are classified as defaulters and 1,281 are temporarily defaulters, meaning that the clients are overdue on their payments for up 180 days. For each case, a total of 15 attributes was considered for a one-against-all assessment using four different techniques: Artificial Neural Networks Multilayer Perceptron (ANN-MLP), Artificial Neural Networks Radial Basis Functions (ANN-RBF), Logistic Regression (LR) and finally Support Vector Machines (SVM). For each method, different parameters were analyzed in order to obtain different results when the best of each technique was compared. Initially the data were coded in thermometer code (numerical attributes) or dummy coding (for nominal attributes). The methods were then evaluated for each parameter and the best result of each technique was compared in terms of accuracy, false positives, false negatives, true positives and true negatives. This comparison showed that the best method, in terms of accuracy, was ANN-RBF (79.20% for non-defaulter classification, 97.74% for defaulters and 75.37% for the temporarily defaulter classification). However, the best accuracy does not always represent the best technique. For instance, on the classification of temporarily defaulters, this technique, in terms of false positives, was surpassed by SVM, which had the lowest rate (0.07%) of false positive classifications. All these intrinsic details are discussed considering the results found, and an overview of what was presented is shown in the conclusion of this study.Keywords: artificial neural networks (ANNs), classifier algorithms, credit risk assessment, logistic regression, machine Learning, support vector machines
Procedia PDF Downloads 1036097 Controlled Synthesis of CdSe Quantum Dots via Microwave-Enhanced Process: A Green Approach for Mass Production
Authors: Delele Worku Ayele, Bing-Joe Hwang
Abstract:
A method that does not employ hot injection techniques has been developed for the size-tunable synthesis of high-quality CdSe quantum dots (QDs) with a zinc blende structure. In this environmentally benign synthetic route, which uses relatively less toxic precursors, solvents, and capping ligands, CdSe QDs that absorb visible light are obtained. The size of the as-prepared CdSe QDs and, thus, their optical properties can be manipulated by changing the microwave reaction conditions. The QDs are characterized by XRD, TEM, UV-vis, FTIR, time-resolved fluorescence spectroscopy, and fluorescence spectrophotometry. In this approach, the reaction is conducted in open air and at a much lower temperature than in hot injection techniques. The use of microwaves in this process allows for a highly reproducible and effective synthesis protocol that is fully adaptable for mass production and can be easily employed to synthesize a variety of semiconductor QDs with the desired properties. The possible application of the as-prepared CdSe QDs has been also assessed using deposition on TiO2 films.Keywords: average life time, CdSe QDs, microwave (MW), mass production oleic acid, Na2SeSO3
Procedia PDF Downloads 3176096 Influence of Pier Modification Techniques for Reducing Scour around Bridge Piers
Authors: Rashid Farooq, Abdul Razzaq Ghumman, Hashim Nisar Hashmi
Abstract:
Bridge piers often fail all over the world and the whole structure may be endangered due to scouring phenomena. Scouring has been linked to catastrophic failures that lead into the loss of human lives. Various techniques have been employed to extenuate the scouring process in order to assist the bridge designs. Pier modifications plays vital role to control scouring at the vicinity of the pier. This experimental study aims at monitoring the effectiveness of pier modification and temporal development of scour depth around a bridge pier by providing a collar, a cable or openings under the same flow conditions. Provision of a collar around the octagonal pier reduced more scour depth than that for other two configurations. Providing a collar around the octagonal pier found to be the best in reducing scour. The scour depth in front of pier was found to be 19.5% less than that at the octagonal pier without any modifications. Similarly, the scour depth around the octagonal pier having provision of a cable was less than that at pier with provision of openings. The scour depth around an octagonal pier was also compared with a plain circular pier and found to be 9.1% less.Keywords: Scour, octagonal pier, collar, cable
Procedia PDF Downloads 2656095 Online Delivery Approaches of Post Secondary Virtual Inclusive Media Education
Authors: Margot Whitfield, Andrea Ducent, Marie Catherine Rombaut, Katia Iassinovskaia, Deborah Fels
Abstract:
Learning how to create inclusive media, such as closed captioning (CC) and audio description (AD), in North America is restricted to the private sector, proprietary company-based training. We are delivering (through synchronous and asynchronous online learning) the first Canadian post-secondary, practice-based continuing education course package in inclusive media for broadcast production and processes. Despite the prevalence of CC and AD taught within the field of translation studies in Europe, North America has no comparable field of study. This novel approach to audio visual translation (AVT) education develops evidence-based methodology innovations, stemming from user study research with blind/low vision and Deaf/hard of hearing audiences for television and theatre, undertaken at Ryerson University. Knowledge outcomes from the courses include a) Understanding how CC/AD fit within disability/regulatory frameworks in Canada. b) Knowledge of how CC/AD could be employed in the initial stages of production development within broadcasting. c) Writing and/or speaking techniques designed for media. d) Hands-on practice in captioning re-speaking techniques and open source technologies, or in AD techniques. e) Understanding of audio production technologies and editing techniques. The case study of the curriculum development and deployment, involving first-time online course delivery from academic and practitioner-based instructors in introductory Captioning and Audio Description courses (CDIM 101 and 102), will compare two different instructors' approaches to learning design, including the ratio of synchronous and asynchronous classroom time and technological engagement tools on meeting software platform such as breakout rooms and polling. Student reception of these two different approaches will be analysed using qualitative thematic and quantitative survey analysis. Thus far, anecdotal conversations with students suggests that they prefer synchronous compared with asynchronous learning within our hands-on online course delivery method.Keywords: inclusive media theory, broadcasting practices, AVT post secondary education, respeaking, audio description, learning design, virtual education
Procedia PDF Downloads 1836094 Multi-Spectral Medical Images Enhancement Using a Weber’s law
Authors: Muna F. Al-Sammaraie
Abstract:
The aim of this research is to present a multi spectral image enhancement methods used to achieve highly real digital image populates only a small portion of the available range of digital values. Also, a quantitative measure of image enhancement is presented. This measure is related with concepts of the Webers Low of the human visual system. For decades, several image enhancement techniques have been proposed. Although most techniques require profuse amount of advance and critical steps, the result for the perceive image are not as satisfied. This study involves changing the original values so that more of the available range is used; then increases the contrast between features and their backgrounds. It consists of reading the binary image on the basis of pixels taking them byte-wise and displaying it, calculating the statistics of an image, automatically enhancing the color of the image based on statistics calculation using algorithms and working with RGB color bands. Finally, the enhanced image is displayed along with image histogram. A number of experimental results illustrated the performance of these algorithms. Particularly the quantitative measure has helped to select optimal processing parameters: the best parameters and transform.Keywords: image enhancement, multi-spectral, RGB, histogram
Procedia PDF Downloads 3286093 Uncertain Time-Cost Trade off Problems of Construction Projects Using Fuzzy Set Theory
Authors: V. S. S. Kumar, B. Vikram
Abstract:
The development of effective decision support tools that adopted in the construction industry is vital in the world we live in today, since it can lead to substantial cost reduction and efficient resource consumption. Solving the time-cost trade off problems and its related variants is at the heart of scientific research for optimizing construction planning problems. In general, the classical optimization techniques have difficulties in dealing with TCT problems. One of the main reasons of their failure is that they can easily be entrapped in local minima. This paper presents an investigation on the application of meta-heuristic techniques to two particular variants of the time-cost trade of analysis, the time-cost trade off problem (TCT), and time-cost trade off optimization problem (TCO). In first problem, the total project cost should be minimized, and in the second problem, the total project cost and total project duration should be minimized simultaneously. Finally it is expected that, the optimization models developed in this paper will contribute significantly for efficient planning and management of construction project.Keywords: fuzzy sets, uncertainty, optimization, time cost trade off problems
Procedia PDF Downloads 3566092 Development of Computational Approach for Calculation of Hydrogen Solubility in Hydrocarbons for Treatment of Petroleum
Authors: Abdulrahman Sumayli, Saad M. AlShahrani
Abstract:
For the hydrogenation process, knowing the solubility of hydrogen (H2) in hydrocarbons is critical to improve the efficiency of the process. We investigated the H2 solubility computation in four heavy crude oil feedstocks using machine learning techniques. Temperature, pressure, and feedstock type were considered as the inputs to the models, while the hydrogen solubility was the sole response. Specifically, we employed three different models: Support Vector Regression (SVR), Gaussian process regression (GPR), and Bayesian ridge regression (BRR). To achieve the best performance, the hyper-parameters of these models are optimized using the whale optimization algorithm (WOA). We evaluated the models using a dataset of solubility measurements in various feedstocks, and we compared their performance based on several metrics. Our results show that the WOA-SVR model tuned with WOA achieves the best performance overall, with an RMSE of 1.38 × 10− 2 and an R-squared of 0.991. These findings suggest that machine learning techniques can provide accurate predictions of hydrogen solubility in different feedstocks, which could be useful in the development of hydrogen-related technologies. Besides, the solubility of hydrogen in the four heavy oil fractions is estimated in different ranges of temperatures and pressures of 150 ◦C–350 ◦C and 1.2 MPa–10.8 MPa, respectivelyKeywords: temperature, pressure variations, machine learning, oil treatment
Procedia PDF Downloads 696091 The shaping of Metal-Organic Frameworks for Water Vapor Adsorption
Authors: Tsung-Lin Hsieh, Jiun-Jen Chen, Yuhao Kang
Abstract:
Metal-organic frameworks (MOFs) have drawn scientists’ attention for decades due to its high specific surface area, tunable pore size, and relatively low temperature for regeneration. Bearing with those mentioned properties, MOFs has been widely used in various applications, such as adsorption/separation and catalysis. However, the current challenge for practical use of MOFs is to effectively shape these crystalline powder material into controllable forms such as pellets, granules, and monoliths with sufficient mechanical and chemical stability, while maintaining the excellent properties of MOFs powders. Herein, we have successfully synthesized an Al-based MOF powder which exhibits a high water capacity at relatively low humidity conditions and relatively low temperature for regeneration. Then the synthesized Al-MOF was shaped into granules with particle size of 2-4 mm by (1) tumbling granulation, (2) High shear mixing granulation, and (3) Extrusion techniques. Finally, the water vapor adsorption rate and crush strength of Al-MOF granules by different shaping techniques were measured and compared.Keywords: granulation, granules, metal-organic frameworks, water vapor adsorption
Procedia PDF Downloads 1586090 Use of Locally Available Organic Resources for Soil Fertility Improvement on Farmers Yield in the Eastern and Greater Accra Regions of Ghana
Authors: Ebenezer Amoquandoh, Daniel Bruce Sarpong, Godfred K. Ofosu-Budu, Andreas Fliessbach
Abstract:
Soil quality is at stake globally, but under tropical conditions, the loss of soil fertility may be existential. The current rates of soil nutrient depletion, erosion and environmental degradation in most of Africa’s farmland urgently require methods for soil fertility restoration through affordable agricultural management techniques. The study assessed the effects of locally available organic resources to improve soil fertility, crop yield and profitability compared to business as usual on farms in the Eastern and Greater Accra regions of Ghana. Apart from this, we analyzed the change of farmers’ perceptions and knowledge upon the experience with the new techniques; the effect of using locally available organic resource on farmers’ yield and determined the factors influencing the profitability of farming. Using the Difference in Mean Score and Proportion to estimate the extent to which farmers’ perceptions, knowledge and practices have changed, the study showed that farmers’ perception, knowledge and practice on the use of locally available organic resources have changed significantly. This paves way for the sustainable use of locally available organic resource for soil fertility improvement. The Propensity Score Matching technique and Endogenous Switching Regression model used showed that using locally available organic resources have the potential to increase crop yield. It was also observed that using the Profit Margin, Net Farm Income and Return on Investment analysis, it is more profitable to use locally available organic resources than other soil fertility amendments techniques studied. The results further showed that socioeconomic, farm characteristics and institutional factors are significant in influencing farmers’ decision to use locally available organic resources and profitability.Keywords: soil fertility, locally available organic resources, perception, profitability, sustainability
Procedia PDF Downloads 1486089 Sensitive Electrochemical Sensor for Simultaneous Detection of Endocrine Disruptors, Bisphenol A and 4- Nitrophenol Using La₂Cu₂O₅ Modified Glassy Carbon Electrode
Authors: S. B. Mayil Vealan, C. Sekar
Abstract:
Bisphenol A (BIS A) and 4 Nitrophenol (4N) are the most prevalent environmental endocrine-disrupting chemicals which mimic hormones and have a direct relationship to the development and growth of animal and human reproductive systems. Moreover, intensive exposure to the compound is related to prostate and breast cancer, infertility, obesity, and diabetes. Hence, accurate and reliable determination techniques are crucial for preventing human exposure to these harmful chemicals. Lanthanum Copper Oxide (La₂Cu₂O₅) nanoparticles were synthesized and investigated through various techniques such as scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. Cyclic voltammetry and square wave voltammetry techniques are employed to evaluate the electrochemical behavior of as-synthesized samples toward the electrochemical detection of Bisphenol A and 4-Nitrophenol. Under the optimal conditions, the oxidation current increased linearly with increasing the concentration of BIS A and 4-N in the range of 0.01 to 600 μM with a detection limit of 2.44 nM and 3.8 nM. These are the lowest limits of detection and the widest linear ranges in the literature for this determination. The method was applied to the simultaneous determination of BIS A and 4-N in real samples (food packing materials and river water) with excellent recovery values ranging from 95% to 99%. Better stability, sensitivity, selectivity and reproducibility, fast response, and ease of preparation made the sensor well-suitable for the simultaneous determination of bisphenol and 4 Nitrophenol. To the best of our knowledge, this is the first report in which La₂Cu₂O₅ nano particles were used as efficient electron mediators for the fabrication of endocrine disruptor (BIS A and 4N) chemical sensors.Keywords: endocrine disruptors, electrochemical sensor, Food contacting materials, lanthanum cuprates, nanomaterials
Procedia PDF Downloads 866088 State-of-the Art Practices in Bridge Inspection
Authors: Salam Yaghi, Saleh Abu Dabous
Abstract:
Government reports and published research have flagged and brought to public attention the deteriorating condition of a large percentage of bridges in Canada and the United States. With the increasing number of deteriorated bridges in the US, Canada, and around the globe, condition assessment techniques of concrete bridges are evolving. Investigation for bridges’ defects such as cracks, spalls, and delamination and their level of severity are the main objectives of condition assessment. Inspection and rehabilitation programs are being implemented to monitor and maintain deteriorated bridge infrastructure. This paper highlights the state-of-the art of current practices being performed for concrete bridge inspection. The information is gathered from the literature and through a distributed questionnaire. The current practices in concrete bridge inspection rely on the use of hummer sounding and chain dragging tests. Non-Destructive Testing (NDT) techniques are not being utilized fully in the process. Nonetheless, they are being partially utilized by the recommendation of the bridge inspector after conducting the visual inspection. Lanes are usually closed during the performance of visual inspection and bridge inspection in general.Keywords: bridge inspection, condition assessment, questionnaire, non-destructive testing
Procedia PDF Downloads 2806087 Remediation of Heavy Metal Contaminated Soil with Vivianite Nanoparticles
Authors: Shinen B., Bavor J., Dorjkhand B., Suvd B., Maitsetseg B.
Abstract:
A number of remediation techniques are available for the treatment of soils and sediments contaminated by heavy metals. However, some of these techniques are expensive and environmentally disruptive. Nanomaterials are used in the environment as environmental catalysts to convert toxic substances from water, soil, and sediment into environmentally benign compounds. This study was carried out to scrutinize the feasibility of vivianite nanoparticles for remediation of soils contaminated with heavy metals. Column experiments were performed in the laboratory to examine nanoparticle sequestration of metal in soil amended with vivianite nanoparticle suspension. The effect of environmental parameters such as temperature, pH and redox potential on metal leachability and bioavailability of soil amended with nanoparticle suspension was examined and compared with non-amended soils. The vivianite was effective in reducing the leachability of metals in soils. It is suggested that vivianite nanoparticles could be applied for the remediation of contaminated sites polluted by heavy metals due to mining activities, particularly in Mongolia, where mining industries have been developing rapidly in the last decade.Keywords: bioavailability, heavy metals, nanoparticles, remediation
Procedia PDF Downloads 1906086 Optimal Configuration for Polarimetric Surface Plasmon Resonance Sensors
Authors: Ibrahim Watad, Ibrahim Abdulhalim
Abstract:
Conventional spectroscopic surface plasmon resonance (SPR) sensors are widely used, both in fundamental research and environmental monitoring as well as healthcare diagnostics. However, they still lack the low limit of detection (LOD) and there still a place for improvement. SPR conventional sensors are based on the detection of a dip in the reflectivity spectrum which is relatively wide. To improve the performance of these sensors, many techniques and methods proposed either to reduce the width of the dip or to increase the sensitivity. Together with that, profiting from the sharp jump in the phase spectrum under SPR, several works suggested the extraction of the phase of the reflected wave. However, existing phase measurement setups are in general more complicated compared to the conventional setups, require more stability and are very sensitive to external vibrations and noises. In this study, a simple polarimetric technique for phase extraction under SPR is presented, followed by a theoretical error analysis and an experimental verification. The advantages of the proposed technique upon existing techniques will be elaborated, together with conclusions regarding the best polarimetric function, and its corresponding optimal metal layer range of thicknesses to use under the conventional Kretschmann-Raether configuration.Keywords: plasmonics, polarimetry, thin films, optical sensors
Procedia PDF Downloads 4046085 A Multivariate Statistical Approach for Water Quality Assessment of River Hindon, India
Authors: Nida Rizvi, Deeksha Katyal, Varun Joshi
Abstract:
River Hindon is an important river catering the demand of highly populated rural and industrial cluster of western Uttar Pradesh, India. Water quality of river Hindon is deteriorating at an alarming rate due to various industrial, municipal and agricultural activities. The present study aimed at identifying the pollution sources and quantifying the degree to which these sources are responsible for the deteriorating water quality of the river. Various water quality parameters, like pH, temperature, electrical conductivity, total dissolved solids, total hardness, calcium, chloride, nitrate, sulphate, biological oxygen demand, chemical oxygen demand and total alkalinity were assessed. Water quality data obtained from eight study sites for one year has been subjected to the two multivariate techniques, namely, principal component analysis and cluster analysis. Principal component analysis was applied with the aim to find out spatial variability and to identify the sources responsible for the water quality of the river. Three Varifactors were obtained after varimax rotation of initial principal components using principal component analysis. Cluster analysis was carried out to classify sampling stations of certain similarity, which grouped eight different sites into two clusters. The study reveals that the anthropogenic influence (municipal, industrial, waste water and agricultural runoff) was the major source of river water pollution. Thus, this study illustrates the utility of multivariate statistical techniques for analysis and elucidation of multifaceted data sets, recognition of pollution sources/factors and understanding temporal/spatial variations in water quality for effective river water quality management.Keywords: cluster analysis, multivariate statistical techniques, river Hindon, water quality
Procedia PDF Downloads 4666084 An Experimental Study on the Mechanical Performance of Concrete Enhanced with Graphene Nanoplatelets
Authors: Johana Jaramillo, Robin Kalfat, Dmitriy A. Dikin
Abstract:
The cement production process is one of the major sources of carbon dioxide (CO₂), a potent greenhouse gas. Indeed, as a result of its cement manufacturing process, concrete contributes approximately 8% of global greenhouse gas emissions. In addition to environmental concerns, concrete also has a low tensile and ductility strength, which can lead to cracks. Graphene nanoplatelets (GNPs) have proven to be an eco-friendly solution for improving the mechanical and durability properties of concrete. The current research investigates the effects of preparing concrete enhanced with GNPs by using different wet dispersions techniques and mixing methods on its mechanical properties. Concrete specimens were prepared with 0.00 wt%, 0.10 wt%, 0.20 wt%, 0.30 wt% and wt% GNPs. Compressive and flexural strength of concrete at age 7 days were determined. The results showed that the maximum improvement in mechanical properties was observed when GNPs content was 0.20 wt%. The compressive and flexural were improved by up to 17.5% and 8.6%, respectively. When GNP dispersions were prepared by the combination of a drill and an ultrasonic probe, mechanical properties experienced maximum improvement.Keywords: concrete, dispersion techniques, graphene nanoplatelets, mechanical properties, mixing methods
Procedia PDF Downloads 1246083 Texture Identification Using Vision System: A Method to Predict Functionality of a Component
Authors: Varsha Singh, Shraddha Prajapati, M. B. Kiran
Abstract:
Texture identification is useful in predicting the functionality of a component. Many of the existing texture identification methods are of contact in nature, which limits its measuring speed. These contact measurement techniques use a diamond stylus and the diamond stylus being sharp going to damage the surface under inspection and hence these techniques can be used in statistical sampling. Though these contact methods are very accurate, they do not give complete information for full characterization of surface. In this context, the presented method assumes special significance. The method uses a relatively low cost vision system for image acquisition. Software is developed based on wavelet transform, for analyzing texture images. Specimens are made using different manufacturing process (shaping, grinding, milling etc.) During experimentation, the specimens are illuminated using proper lighting and texture images a capture using CCD camera connected to the vision system. The software installed in the vision system processes these images and subsequently identify the texture of manufacturing processes.Keywords: diamond stylus, manufacturing process, texture identification, vision system
Procedia PDF Downloads 2896082 Technology Maps in Energy Applications Based on Patent Trends: A Case Study
Authors: Juan David Sepulveda
Abstract:
This article reflects the current stage of progress in the project “Determining technological trends in energy generation”. At first it was oriented towards finding out those trends by employing such tools as the scientometrics community had proved and accepted as effective for getting reliable results. Because a documented methodological guide for this purpose could not be found, the decision was made to reorient the scope and aim of this project, changing the degree of interest in pursuing the objectives. Therefore it was decided to propose and implement a novel guide from the elements and techniques found in the available literature. This article begins by explaining the elements and considerations taken into account when implementing and applying this methodology, and the tools that led to the implementation of a software application for patent revision. Univariate analysis helped recognize the technological leaders in the field of energy, and steered the way for a multivariate analysis of this sample, which allowed for a graphical description of the techniques of mature technologies, as well as the detection of emerging technologies. This article ends with a validation of the methodology as applied to the case of fuel cells.Keywords: energy, technology mapping, patents, univariate analysis
Procedia PDF Downloads 4766081 Comparison of Different Hydrograph Routing Techniques in XPSTORM Modelling Software: A Case Study
Authors: Fatema Akram, Mohammad Golam Rasul, Mohammad Masud Kamal Khan, Md. Sharif Imam Ibne Amir
Abstract:
A variety of routing techniques are available to develop surface runoff hydrographs from rainfall. The selection of runoff routing method is very vital as it is directly related to the type of watershed and the required degree of accuracy. There are different modelling softwares available to explore the rainfall-runoff process in urban areas. XPSTORM, a link-node based, integrated storm-water modelling software, has been used in this study for developing surface runoff hydrograph for a Golf course area located in Rockhampton in Central Queensland in Australia. Four commonly used methods, namely SWMM runoff, Kinematic wave, Laurenson, and Time-Area are employed to generate runoff hydrograph for design storm of this study area. In runoff mode of XPSTORM, the rainfall, infiltration, evaporation and depression storage for sub-catchments were simulated and the runoff from the sub-catchment to collection node was calculated. The simulation results are presented, discussed and compared. The total surface runoff generated by SWMM runoff, Kinematic wave and Time-Area methods are found to be reasonably close, which indicates any of these methods can be used for developing runoff hydrograph of the study area. Laurenson method produces a comparatively less amount of surface runoff, however, it creates highest peak of surface runoff among all which may be suitable for hilly region. Although the Laurenson hydrograph technique is widely acceptable surface runoff routing technique in Queensland (Australia), extensive investigation is recommended with detailed topographic and hydrologic data in order to assess its suitability for use in the case study area.Keywords: ARI, design storm, IFD, rainfall temporal pattern, routing techniques, surface runoff, XPSTORM
Procedia PDF Downloads 4536080 Investigating the Significance of Ground Covers and Partial Root Zone Drying Irrigation for Water Conservation Weed Suppression and Quality Traits of Wheat
Authors: Muhammad Aown Sammar Raza, Salman Ahmad, Muhammad Farrukh Saleem, Muhammad Saqlain Zaheer, Rashid Iqbal, Imran Haider, Muhammad Usman Aslam, Muhammad Adnan Nazar
Abstract:
One of the main negative effects of climate change is the increasing scarcity of water worldwide, especially for irrigation purpose. In order to ensure food security with less available water, there is a need to adopt easy and economic techniques. Two of the effective techniques are; use of ground covers and partial root zone drying (PRD). A field experiment was arranged to find out the most suitable mulch for PRD irrigation system in wheat. The experiment was comprised of two irrigation methods (I0 = irrigation on both sides of roots and I1= irrigation to only one side of the root as alternate irrigation) and four ground covers (M0= open ground without any cover, M1= black plastic cover, M2= wheat straw cover and M4= cotton sticks cover). More plant height, spike length, number of spikelets and number of grains were found in full irrigation treatment. While water use efficiency and grain nutrient (NPK) contents were more in PRD irrigation. All soil covers suppress the weeds and significantly influenced the yield attributes, final yield as well as the grain nutrient contents. However black plastic cover performed the best. It was concluded that joint use of both techniques was more effective for water conservation and increasing grain yield than their sole application and combination of PRD with black plastic mulch performed the best than other ground covers combination used in the experiment.Keywords: ground covers, partial root zone drying, grain yield, quality traits, WUE, weed control efficiency
Procedia PDF Downloads 2486079 High Secure Data Hiding Using Cropping Image and Least Significant Bit Steganography
Authors: Khalid A. Al-Afandy, El-Sayyed El-Rabaie, Osama Salah, Ahmed El-Mhalaway
Abstract:
This paper presents a high secure data hiding technique using image cropping and Least Significant Bit (LSB) steganography. The predefined certain secret coordinate crops will be extracted from the cover image. The secret text message will be divided into sections. These sections quantity is equal the image crops quantity. Each section from the secret text message will embed into an image crop with a secret sequence using LSB technique. The embedding is done using the cover image color channels. Stego image is given by reassembling the image and the stego crops. The results of the technique will be compared to the other state of art techniques. Evaluation is based on visualization to detect any degradation of stego image, the difficulty of extracting the embedded data by any unauthorized viewer, Peak Signal-to-Noise Ratio of stego image (PSNR), and the embedding algorithm CPU time. Experimental results ensure that the proposed technique is more secure compared with the other traditional techniques.Keywords: steganography, stego, LSB, crop
Procedia PDF Downloads 2696078 Comparative Study Between Two Different Techniques for Postoperative Analgesia in Cesarean Section Delivery
Authors: Nermeen Elbeltagy, Sara Hassan, Tamer Hosny, Mostafa Abdelaziz
Abstract:
Introduction: Adequate postoperative analgesia after caesarean section (CS) is crucial as it impacts the distinct surgical recovery needs of the parturient. Over recent years, there has been increased interest in regional nerve block techniques with promising results on efficacy. These techniques reduce the need for additional analgesia, thereby lowering the incidence of drug-related side effects. As postoperative pain after cesarean is mainly due to abdominal incision, the transverses abdomenis plane ( TAP ) block is a relatively new abdominal nerve block with excellent efficacy after different abdominal surgeries, including cesarean section. Objective: The main objective is to compare ultrasound-guided TAP block provided by the anesthesiologist with TAP provided by the surgeon through a caesarean incision regarding the duration of postoperative analgesia, intensity of analgesia, timing of mobilization, and easiness of the procedure. Method: Ninety pregnant females at term who were scheduled for delivery by elective cesarean section were randomly distributed into two groups. The first group (45) received spinal anesthesia and postoperative ultrasound guided TAP block using 20ml on each side of 0.25% bupivacaine which was provided by the anesthesiologist. The second group (45) received spinal anesthesia plus a TAP block using 20ml on each side of 0.25% bupivacaine, which was provided by the surgeon through the cesarean incision. Visual Analogue Scale (VAS) was used for the comparison between the two groups. Results: VAS score after four hours was higher among the TAP block group provided by the surgeon through the surgical incision than the postoperative analgesic profile using ultrasound-guided TAP block provided by the anesthesiologist (P=0.011). On the contrary, there was no statistical difference in the patient’s dose of analgesia after four hours of the TAP block (P=0.228). Conclusion: TAP block provided through the surgical incision is safe and enhances early patient’s mobilization.Keywords: TAP block, CS, VAS, analgesia
Procedia PDF Downloads 496077 Day Ahead and Intraday Electricity Demand Forecasting in Himachal Region using Machine Learning
Authors: Milan Joshi, Harsh Agrawal, Pallaw Mishra, Sanand Sule
Abstract:
Predicting electricity usage is a crucial aspect of organizing and controlling sustainable energy systems. The task of forecasting electricity load is intricate and requires a lot of effort due to the combined impact of social, economic, technical, environmental, and cultural factors on power consumption in communities. As a result, it is important to create strong models that can handle the significant non-linear and complex nature of the task. The objective of this study is to create and compare three machine learning techniques for predicting electricity load for both the day ahead and intraday, taking into account various factors such as meteorological data and social events including holidays and festivals. The proposed methods include a LightGBM, FBProphet, combination of FBProphet and LightGBM for day ahead and Motifs( Stumpy) based on Mueens algorithm for similarity search for intraday. We utilize these techniques to predict electricity usage during normal days and social events in the Himachal Region. We then assess their performance by measuring the MSE, RMSE, and MAPE values. The outcomes demonstrate that the combination of FBProphet and LightGBM method is the most accurate for day ahead and Motifs for intraday forecasting of electricity usage, surpassing other models in terms of MAPE, RMSE, and MSE. Moreover, the FBProphet - LightGBM approach proves to be highly effective in forecasting electricity load during social events, exhibiting precise day ahead predictions. In summary, our proposed electricity forecasting techniques display excellent performance in predicting electricity usage during normal days and special events in the Himachal Region.Keywords: feature engineering, FBProphet, LightGBM, MASS, Motifs, MAPE
Procedia PDF Downloads 726076 Sentiment Analysis: An Enhancement of Ontological-Based Features Extraction Techniques and Word Equations
Authors: Mohd Ridzwan Yaakub, Muhammad Iqbal Abu Latiffi
Abstract:
Online business has become popular recently due to the massive amount of information and medium available on the Internet. This has resulted in the huge number of reviews where the consumers share their opinion, criticisms, and satisfaction on the products they have purchased on the websites or the social media such as Facebook and Twitter. However, to analyze customer’s behavior has become very important for organizations to find new market trends and insights. The reviews from the websites or the social media are in structured and unstructured data that need a sentiment analysis approach in analyzing customer’s review. In this article, techniques used in will be defined. Definition of the ontology and description of its possible usage in sentiment analysis will be defined. It will lead to empirical research that related to mobile phones used in research and the ontology used in the experiment. The researcher also will explore the role of preprocessing data and feature selection methodology. As the result, ontology-based approach in sentiment analysis can help in achieving high accuracy for the classification task.Keywords: feature selection, ontology, opinion, preprocessing data, sentiment analysis
Procedia PDF Downloads 2006075 Evaluation of MPPT Algorithms for Photovoltaic Generator by Comparing Incremental Conductance Method, Perturbation and Observation Method and the Method Using Fuzzy Logic
Authors: Elmahdi Elgharbaoui, Tamou Nasser, Ahmed Essadki
Abstract:
In the era of sustainable development, photovoltaic (PV) technology has shown significant potential as a renewable energy source. Photovoltaic generators (GPV) have a non-linear current-voltage characteristic, with a maximum power point (MPP) characterized by an optimal voltage, and depends on environmental factors such as temperature and irradiation. To extract each time the maximum power available at the terminals of the GPV and transfer it to the load, an adaptation stage is used, consisting of a boost chopper controlled by a maximum power point tracking technique (MPPT) through a stage of pulse width modulation (PWM). Our choice has focused on three techniques which are: the perturbation and observation method (P&O), the incremental conductance method (InCond) and the last is that of control using the fuzzy logic. The implementation and simulation of the system (photovoltaic generator, chopper boost, PWM and MPPT techniques) are then performed in the Matlab/Simulink environment.Keywords: photovoltaic generator, technique MPPT, boost chopper, PWM, fuzzy logic, P&O, InCond
Procedia PDF Downloads 3236074 Document-level Sentiment Analysis: An Exploratory Case Study of Low-resource Language Urdu
Authors: Ammarah Irum, Muhammad Ali Tahir
Abstract:
Document-level sentiment analysis in Urdu is a challenging Natural Language Processing (NLP) task due to the difficulty of working with lengthy texts in a language with constrained resources. Deep learning models, which are complex neural network architectures, are well-suited to text-based applications in addition to data formats like audio, image, and video. To investigate the potential of deep learning for Urdu sentiment analysis, we implemented five different deep learning models, including Bidirectional Long Short Term Memory (BiLSTM), Convolutional Neural Network (CNN), Convolutional Neural Network with Bidirectional Long Short Term Memory (CNN-BiLSTM), and Bidirectional Encoder Representation from Transformer (BERT). In this study, we developed a hybrid deep learning model called BiLSTM-Single Layer Multi Filter Convolutional Neural Network (BiLSTM-SLMFCNN) by fusing BiLSTM and CNN architecture. The proposed and baseline techniques are applied on Urdu Customer Support data set and IMDB Urdu movie review data set by using pre-trained Urdu word embedding that are suitable for sentiment analysis at the document level. Results of these techniques are evaluated and our proposed model outperforms all other deep learning techniques for Urdu sentiment analysis. BiLSTM-SLMFCNN outperformed the baseline deep learning models and achieved 83%, 79%, 83% and 94% accuracy on small, medium and large sized IMDB Urdu movie review data set and Urdu Customer Support data set respectively.Keywords: urdu sentiment analysis, deep learning, natural language processing, opinion mining, low-resource language
Procedia PDF Downloads 72