Search results for: shared/mental models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9362

Search results for: shared/mental models

2252 Power Ultrasound Application on Convective Drying of Banana (Musa paradisiaca), Mango (Mangifera indica L.) and Guava (Psidium guajava L.)

Authors: Erika K. Méndez, Carlos E. Orrego, Diana L. Manrique, Juan D. Gonzalez, Doménica Vallejo

Abstract:

High moisture content in fruits generates post-harvest problems such as mechanical, biochemical, microbial and physical losses. Dehydration, which is based on the reduction of water activity of the fruit, is a common option for overcoming such losses. However, regular hot air drying could affect negatively the quality properties of the fruit due to the long residence time at high temperature. Power ultrasound (US) application during the convective drying has been used as a novel method able to enhance drying rate and, consequently, to decrease drying time. In the present study, a new approach was tested to evaluate the effect of US on the drying time, the final antioxidant activity (AA) and the total polyphenol content (TPC) of banana slices (BS), mango slices (MS) and guava slices (GS). There were also studied the drying kinetics with nine different models from which water effective diffusivities (Deff) (with or without shrinkage corrections) were calculated. Compared with the corresponding control tests, US assisted drying for fruit slices showed reductions in drying time between 16.23 and 30.19%, 11.34 and 32.73%, and 19.25 and 47.51% for the MS, BS and GS respectively. Considering shrinkage effects, Deff calculated values ranged from 1.67*10-10 to 3.18*10-10 m2/s, 3.96*10-10 and 5.57*10-10 m2/s and 4.61*10-10 to 8.16*10-10 m2/s for the BS, MS and GS samples respectively. Reductions of TPC and AA (as DPPH) were observed compared with the original content in fresh fruit data in all kinds of drying assays.

Keywords: banana, drying, effective diffusivity, guava, mango, ultrasound

Procedia PDF Downloads 535
2251 Enhancing Information Technologies with AI: Unlocking Efficiency, Scalability, and Innovation

Authors: Abdal-Hafeez Alhussein

Abstract:

Artificial Intelligence (AI) has become a transformative force in the field of information technologies, reshaping how data is processed, analyzed, and utilized across various domains. This paper explores the multifaceted applications of AI within information technology, focusing on three key areas: automation, scalability, and data-driven decision-making. We delve into how AI-powered automation is optimizing operational efficiency in IT infrastructures, from automated network management to self-healing systems that reduce downtime and enhance performance. Scalability, another critical aspect, is addressed through AI’s role in cloud computing and distributed systems, enabling the seamless handling of increasing data loads and user demands. Additionally, the paper highlights the use of AI in cybersecurity, where real-time threat detection and adaptive response mechanisms significantly improve resilience against sophisticated cyberattacks. In the realm of data analytics, AI models—especially machine learning and natural language processing—are driving innovation by enabling more precise predictions, automated insights extraction, and enhanced user experiences. The paper concludes with a discussion on the ethical implications of AI in information technologies, underscoring the importance of transparency, fairness, and responsible AI use. It also offers insights into future trends, emphasizing the potential of AI to further revolutionize the IT landscape by integrating with emerging technologies like quantum computing and IoT.

Keywords: artificial intelligence, information technology, automation, scalability

Procedia PDF Downloads 17
2250 Impact of Climate on Sugarcane Yield Over Belagavi District, Karnataka Using Statistical Mode

Authors: Girish Chavadappanavar

Abstract:

The impact of climate on agriculture could result in problems with food security and may threaten the livelihood activities upon which much of the population depends. In the present study, the development of a statistical yield forecast model has been carried out for sugarcane production over Belagavi district, Karnataka using weather variables of crop growing season and past observed yield data for the period of 1971 to 2010. The study shows that this type of statistical yield forecast model could efficiently forecast yield 5 weeks and even 10 weeks in advance of the harvest for sugarcane within an acceptable limit of error. The performance of the model in predicting yields at the district level for sugarcane crops is found quite satisfactory for both validation (2007 and 2008) as well as forecasting (2009 and 2010).In addition to the above study, the climate variability of the area has also been studied, and hence, the data series was tested for Mann Kendall Rank Statistical Test. The maximum and minimum temperatures were found to be significant with opposite trends (decreasing trend in maximum and increasing in minimum temperature), while the other three are found in significant with different trends (rainfall and evening time relative humidity with increasing trend and morning time relative humidity with decreasing trend).

Keywords: climate impact, regression analysis, yield and forecast model, sugar models

Procedia PDF Downloads 71
2249 Research Project of National Interest (PRIN-PNRR) DIVAS: Developing Methods to Assess Tree Vitality after a Wildfire through Analyses of Cambium Sugar Metabolism

Authors: Claudia Cocozza, Niccolò Frassinelli, Enrico Marchi, Cristiano Foderi, Alessandro Bizzarri, Margherita Paladini, Maria Laura Traversi, Eleftherious Touloupakis, Alessio Giovannelli

Abstract:

The development of tools to quickly identify the fate of injured trees after stress is highly relevant when biodiversity restoration of damaged sites is based on nature-based solutions. In this context, an approach to assess irreversible physiological damages within trees could help to support planning management decisions of perturbed sites to restore biodiversity, for the safety of the environment and understanding functionality adjustments of the ecosystems. Tree vitality can be estimated by a series of physiological proxies like cambium activity, starch, and soluble sugars amount in C-sinks whilst the accumulation of ethanol within the cambial cells and phloem is considered an alert of cell death. However, their determination requires time-consuming laboratory protocols, which makes the approach unfeasible as a practical option in the field. The project aims to develop biosensors to assess the concentration of soluble sugars and ethanol in stem tissues. Soluble sugars and ethanol concentrations will be used to define injured trees to discriminate compromised and recovering trees in the forest directly. To reach this goal, we select study sites subjected to prescribed fires or recent wildfires as experimental set-ups. Indeed, in Mediterranean countries, forest fire is a recurrent event that must be considered as a central component of regional and global strategies in forest management and biodiversity restoration programs. A biosensor will be developed through a multistep process related to target analytes characterization, bioreceptor selection, and, finally, calibration/testing of the sensor. To validate biosensor signals, soluble sugars and ethanol will be quantified by HPLC and GC using synthetic media (in lab) and phloem sap (in field) whilst cambium vitality will be assessed by anatomical observations. On burnt trees, the stem growth will be monitored by dendrometers and/or estimated by tree ring analyses, whilst the tree response to past fire events will be assessed by isotopic discrimination. Moreover, the fire characterization and the visual assessment procedure will be used to assign burnt trees to a vitality class. At the end of the project, a well-defined procedure combining biosensor signal and visual assessment will be produced and applied to a study case. The project outcomes and the results obtained will be properly packaged to reach, engage and address the needs of the final users and widely shared with relevant stakeholders involved in the optimal use of biosensors and in the management of post-fire areas. This project was funded by National Recovery and Resilience Plan (NRRP), Mission 4, Component C2, Investment 1.1 - Call for tender No. 1409 of 14 September 2022 – ‘Progetti di Ricerca di Rilevante interesse Nazionale – PRIN’ of Italian Ministry of University and Research funded by the European Union – NextGenerationEU; Grant N° P2022Z5742, CUP B53D23023780001.

Keywords: phloem, scorched crown, conifers, prescribed burning, biosensors

Procedia PDF Downloads 17
2248 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information

Authors: Haifeng Wang, Haili Zhang

Abstract:

Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.

Keywords: computational social science, movie preference, machine learning, SVM

Procedia PDF Downloads 260
2247 Relationship between the Ability of Accruals and Non-Systematic Risk of Shares for Companies Listed in Stock Exchange: Case Study, Tehran

Authors: Lina Najafian, Hamidreza Vakilifard

Abstract:

The present study focused on the relationship between the quality of accruals and non-systematic risk. The independent study variables included the ability of accruals, the information content of accruals, and amount of discretionary accruals considered as accruals quality measures. The dependent variable was non-systematic risk based on the Fama and French Three Factor model (FFTFM) and the capital asset pricing model (CAPM). The control variables were firm size, financial leverage, stock return, cash flow fluctuations, and book-to-market ratio. The data collection method was based on library research and document mining including financial statements. Multiple regression analysis was used to analyze the data. The study results showed that there is a significant direct relationship between financial leverage and discretionary accruals and non-systematic risk based on FFTFM and CAPM. There is also a significant direct relationship between the ability of accruals, information content of accruals, firm size, and stock return and non-systematic based on both models. It was also found that there is no relationship between book-to-market ratio and cash flow fluctuations and non-systematic risk.

Keywords: accruals quality, non-systematic risk, CAPM, FFTFM

Procedia PDF Downloads 159
2246 BIM-Based Tool for Sustainability Assessment and Certification Documents Provision

Authors: Taki Eddine Seghier, Mohd Hamdan Ahmad, Yaik-Wah Lim, Samuel Opeyemi Williams

Abstract:

The assessment of building sustainability to achieve a specific green benchmark and the preparation of the required documents in order to receive a green building certification, both are considered as major challenging tasks for green building design team. However, this labor and time-consuming process can take advantage of the available Building Information Modeling (BIM) features such as material take-off and scheduling. Furthermore, the workflow can be automated in order to track potentially achievable credit points and provide rating feedback for several design options by using integrated Visual Programing (VP) to handle the stored parameters within the BIM model. Hence, this study proposes a BIM-based tool that uses Green Building Index (GBI) rating system requirements as a unique input case to evaluate the building sustainability in the design stage of the building project life cycle. The tool covers two key models for data extraction, firstly, a model for data extraction, calculation and the classification of achievable credit points in a green template, secondly, a model for the generation of the required documents for green building certification. The tool was validated on a BIM model of residential building and it serves as proof of concept that building sustainability assessment of GBI certification can be automatically evaluated and documented through BIM.

Keywords: green building rating system, GBRS, building information modeling, BIM, visual programming, VP, sustainability assessment

Procedia PDF Downloads 326
2245 Time Delayed Susceptible-Vaccinated-Infected-Recovered-Susceptible Epidemic Model along with Nonlinear Incidence and Nonlinear Treatment

Authors: Kanica Goel, Nilam

Abstract:

Infectious diseases are a leading cause of death worldwide and hence a great challenge for every nation. Thus, it becomes utmost essential to prevent and reduce the spread of infectious disease among humans. Mathematical models help to better understand the transmission dynamics and spread of infections. For this purpose, in the present article, we have proposed a nonlinear time-delayed SVIRS (Susceptible-Vaccinated-Infected-Recovered-Susceptible) mathematical model with nonlinear type incidence rate and nonlinear type treatment rate. Analytical study of the model shows that model exhibits two types of equilibrium points, namely, disease-free equilibrium and endemic equilibrium. Further, for the long-term behavior of the model, stability of the model is discussed with the help of basic reproduction number R₀ and we showed that disease-free equilibrium is locally asymptotically stable if the basic reproduction number R₀ is less than one and unstable if the basic reproduction number R₀ is greater than one for the time lag τ≥0. Furthermore, when basic reproduction number R₀ is one, using center manifold theory and Casillo-Chavez and Song theorem, we showed that the model undergoes transcritical bifurcation. Moreover, numerical simulations are being carried out using MATLAB 2012b to illustrate the theoretical results.

Keywords: nonlinear incidence rate, nonlinear treatment rate, stability, time delayed SVIRS epidemic model

Procedia PDF Downloads 149
2244 Development of Partial Discharge Defect Recognition and Status Diagnosis System with Adaptive Deep Learning

Authors: Chien-kuo Chang, Bo-wei Wu, Yi-yun Tang, Min-chiu Wu

Abstract:

This paper proposes a power equipment diagnosis system based on partial discharge (PD), which is characterized by increasing the readability of experimental data and the convenience of operation. This system integrates a variety of analysis programs of different data formats and different programming languages and then establishes a set of interfaces that can follow and expand the structure, which is also helpful for subsequent maintenance and innovation. This study shows a case of using the developed Convolutional Neural Networks (CNN) to integrate with this system, using the designed model architecture to simplify the complex training process. It is expected that the simplified training process can be used to establish an adaptive deep learning experimental structure. By selecting different test data for repeated training, the accuracy of the identification system can be enhanced. On this platform, the measurement status and partial discharge pattern of each equipment can be checked in real time, and the function of real-time identification can be set, and various training models can be used to carry out real-time partial discharge insulation defect identification and insulation state diagnosis. When the electric power equipment entering the dangerous period, replace equipment early to avoid unexpected electrical accidents.

Keywords: partial discharge, convolutional neural network, partial discharge analysis platform, adaptive deep learning

Procedia PDF Downloads 78
2243 Antidiabetic and Admet Pharmacokinetic Properties of Grewia Lasiocarpa E. Mey. Ex Harv. Stem Bark Extracts: An in Vitro and in Silico Study

Authors: Akwu N. A., Naidoo Y., Salau V. F., Olofinsan K. A.

Abstract:

Grewia lasiocarpa E. Mey. ex Harv. (Malvaceae) is a Southern African medicinal plant indigenously used with other plants for birthing problems. The anti-diabetic properties of the hexane, chloroform, and methanol extracts of Grewia lasiocarpa stem bark were assessed using in vitro α-glucosidase enzyme inhibition assay. The predictive in silico drug-likeness and toxicity properties of the phytocompounds were conducted using the pKCSM, ADMElab, and SwissADME computer-aided online tools. The highest α-glucosidase percentage inhibition was observed in the hexane extract (86.76%, IC50= 0.24 mg/mL), followed by chloroform (63.08%, IC50= 4.87 mg/mL) and methanol (53.22%, IC50= 9.41 mg/mL); while acarbose, the standard anti-diabetic drug was (84.54%, IC50= 1.96 mg/mL). The α-glucosidase assay revealed that the hexane extract exhibited the strongest carbohydrate inhibiting capacity and is a better inhibitor than the standard reference drug-acarbose. The computational studies also affirm the results observed in the in vitroα-glucosidaseassay. Thus, the extracts of G. lasiocarpa may be considered a potential plant-sourced compound for treating type 2 diabetes mellitus. This is the first study on the anti-diabetic properties of Grewia lasiocarpa hexane, chloroform, and methanol extracts using in vitro and in silico models.

Keywords: grewia lasiocarpa, α-glucosidase inhibition, anti-diabetes, ADMET

Procedia PDF Downloads 104
2242 Possibilities of Psychodiagnostics in the Context of Highly Challenging Situations in Military Leadership

Authors: Markéta Chmelíková, David Ullrich, Iva Burešová

Abstract:

The paper maps the possibilities and limits of diagnosing selected personality and performance characteristics of military leadership and psychology students in the context of coping with challenging situations. Individuals vary greatly inter-individually in their ability to effectively manage extreme situations, yet existing diagnostic tools are often criticized mainly for their low predictive power. Nowadays, every modern army focuses primarily on the systematic minimization of potential risks, including the prediction of desirable forms of behavior and the performance of military commanders. The context of military leadership is well known for its life-threatening nature. Therefore, it is crucial to research stress load in the specific context of military leadership for the purpose of possible anticipation of human failure in managing extreme situations of military leadership. The aim of the submitted pilot study, using an experiment of 24 hours duration, is to verify the possibilities of a specific combination of psychodiagnostic to predict people who possess suitable equipment for coping with increased stress load. In our pilot study, we conducted an experiment of 24 hours duration with an experimental group (N=13) in the bomb shelter and a control group (N=11) in a classroom. Both groups were represented by military leadership students (N=11) and psychology students (N=13). Both groups were equalized in terms of study type and gender. Participants were administered the following test battery of personality characteristics: Big Five Inventory 2 (BFI-2), Short Dark Triad (SD-3), Emotion Regulation Questionnaire (ERQ), Fatigue Severity Scale (FSS), and Impulsive Behavior Scale (UPPS-P). This test battery was administered only once at the beginning of the experiment. Along with this, they were administered a test battery consisting of the Test of Attention (d2) and the Bourdon test four times overall with 6 hours ranges. To better simulate an extreme situation – we tried to induce sleep deprivation - participants were required to try not to fall asleep throughout the experiment. Despite the assumption that a stay in an underground bomb shelter will manifest in impaired cognitive performance, this expectation has been significantly confirmed in only one measurement, which can be interpreted as marginal in the context of multiple testing. This finding is a fundamental insight into the issue of stress management in extreme situations, which is crucial for effective military leadership. The results suggest that a 24-hour stay in a shelter, together with sleep deprivation, does not seem to simulate sufficient stress for an individual, which would be reflected in the level of cognitive performance. In the context of these findings, it would be interesting in future to extend the diagnostic battery with physiological indicators of stress, such as: heart rate, stress score, physical stress, mental stress ect.

Keywords: bomb shelter, extreme situation, military leadership, psychodiagnostic

Procedia PDF Downloads 91
2241 Peer-Mediated Interventions as a High-Leverage Practice in Inclusive General Education Classrooms

Authors: Daniel Pyle, Nicole Pyle, Ben Lignugaris-Kraft, Lawrence Maheady

Abstract:

Students with disabilities are not included in general education at the same rate as their peers without disabilities. There are multiple reasons cited for why inclusion rates vary, such as teachers' lack of knowledge of the successful delivery of inclusive practices to students with the most extensive support needs. However, decades of research document effective inclusive practices associated with benefits across domains for students with disabilities. One effective inclusive practice that teachers use to improve outcomes for students with disabilities is flexible grouping. Teachers can use flexible grouping to facilitate students working collaboratively by using peer-mediated interventions (PMIs). This article describes PMIs as a flexible grouping of High Leverage Practices (HLP). There are variations of PMIs to select from when using flexible grouping. PMIs are described by varied grouping arrangements and different instructional procedures to clarify the flexibility of grouping students and students’ roles within those groupings. In support of teachers’ use of flexible grouping in inclusive general education classrooms, we identify different PMI formats teachers can use depending on the preferred grouping arrangement, explain the distinctive characteristics of PMI models to distinguish expected procedures with peers, highlight outcomes associated with PMIs, and provide an overview of evaluating PMIs effectiveness.

Keywords: peer-mediated interventions, high leverage practices, flexible grouping, general education, special education

Procedia PDF Downloads 78
2240 From Isolation to Integration: A Biophilic Design Approach for Enhancing Inhabitants’ Well-being in Urban Residential Spaces in Dhaka

Authors: Maliha Afroz Nitu, Shahreen Mukashafat Semontee

Abstract:

The concept of biophilic design has emerged as a transformative approach to restore the intrinsic connection between people and nature, an innate bond disrupted by urbanization and industrialization. As urbanization progresses, it is crucial to raise awareness about these issues in order to ensure people can live and work in healthy environments that enhance well-being. Dhaka, the capital of Bangladesh, faces challenges arising from unplanned urban expansion, leading to a notable disconnect between city dwellers and their natural surroundings, a problem prevalent in rapidly developing megacities. Significant interdisciplinary research consistently shows that connecting indoor and outdoor spaces can improve mental and physical well-being by rekindling a connection with the natural world. However, there is a significant lack of study on the implementation of biophilic design principles in the built environment to tackle these problems, despite the well-documented advantages. The Palashi Government Staff Quarter, a 3.8-acre housing area for government staff with around 1,000 residents in Dhaka, has been selected as a case study. The main goal is to create and implement biophilic design solutions to address social, environmental, and health issues while also enhancing the built environment. A methodology applicable to improving biophilic design is developed according to the needs of the residents. This research uses a comprehensive approach, including site inspections and structured and semi-structured interviews with residents to gather qualitative data on their experiences and needs. A total of ten identical six-story buildings have been surveyed, with varying resident responses providing insight into their different perspectives. Based on these findings, the study proposes alternative design strategies that integrate biophilic elements such as daylight, air, plants, and water into buildings through windows, skylights, clerestories, green walls, vegetation, and constructed water bodies. The objective of these strategies is to improve the built environment that restores the existing disconnection between humans and nature. Comparative analyses of the current and proposed scenarios demonstrate substantial upgrades in the built environment, as well as major improvements in the physical and psychological well-being of residents. Although this research focuses on a particular government housing, the findings can be applied to other residential areas in Dhaka and similar urban environments. The study highlights the importance of biophilic design in housing and provides recommendations for policymakers and architects to improve living conditions by integrating nature into urban settings.

Keywords: biophilic design, residential, built environment, human nature connection, urban, Dhaka

Procedia PDF Downloads 33
2239 Prediction of Music Track Popularity: A Machine Learning Approach

Authors: Syed Atif Hassan, Luv Mehta, Syed Asif Hassan

Abstract:

Hit song science is a field of investigation wherein machine learning techniques are applied to music tracks in order to extract such features from audio signals which can capture information that could explain the popularity of respective tracks. Record companies invest huge amounts of money into recruiting fresh talents and churning out new music each year. Gaining insight into the basis of why a song becomes popular will result in tremendous benefits for the music industry. This paper aims to extract basic musical and more advanced, acoustic features from songs while also taking into account external factors that play a role in making a particular song popular. We use a dataset derived from popular Spotify playlists divided by genre. We use ten genres (blues, classical, country, disco, hip-hop, jazz, metal, pop, reggae, rock), chosen on the basis of clear to ambiguous delineation in the typical sound of their genres. We feed these features into three different classifiers, namely, SVM with RBF kernel, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model at the end. Predicting song popularity is particularly important for the music industry as it would allow record companies to produce better content for the masses resulting in a more competitive market.

Keywords: classifier, machine learning, music tracks, popularity, prediction

Procedia PDF Downloads 663
2238 An Ensemble Learning Method for Applying Particle Swarm Optimization Algorithms to Systems Engineering Problems

Authors: Ken Hampshire, Thomas Mazzuchi, Shahram Sarkani

Abstract:

As a subset of metaheuristics, nature-inspired optimization algorithms such as particle swarm optimization (PSO) have shown promise both in solving intractable problems and in their extensibility to novel problem formulations due to their general approach requiring few assumptions. Unfortunately, single instantiations of algorithms require detailed tuning of parameters and cannot be proven to be best suited to a particular illustrative problem on account of the “no free lunch” (NFL) theorem. Using these algorithms in real-world problems requires exquisite knowledge of the many techniques and is not conducive to reconciling the various approaches to given classes of problems. This research aims to present a unified view of PSO-based approaches from the perspective of relevant systems engineering problems, with the express purpose of then eliciting the best solution for any problem formulation in an ensemble learning bucket of models approach. The central hypothesis of the research is that extending the PSO algorithms found in the literature to real-world optimization problems requires a general ensemble-based method for all problem formulations but a specific implementation and solution for any instance. The main results are a problem-based literature survey and a general method to find more globally optimal solutions for any systems engineering optimization problem.

Keywords: particle swarm optimization, nature-inspired optimization, metaheuristics, systems engineering, ensemble learning

Procedia PDF Downloads 99
2237 Influence of Loading Pattern and Shaft Rigidity on Laterally Loaded Helical Piles in Cohesion-Less Soil

Authors: Mohamed Hesham Hamdy Abdelmohsen, Ahmed Shawky Abdul Aziz, Mona Fawzy Al-Daghma

Abstract:

Helical piles are widely used as axially and laterally loaded deep foundations. Once they are required to resist bearing combined loads (BCLs), as axial compression and lateral thrust, different behaviour is expected, necessitating further investigation. The objective of the present article is to clarify the behaviour of a single helical pile of different shaft rigidity embedded in cohesion-less soil and subjected to simultaneous or successive loading patterns of BCLs. The study was first developed analytically and extended numerically. The numerical analysis was further verified through a laboratory experimental program on a set of helical pile models. The results indicate highly interactive effects of the studied parameters, but it is obviously confirmed that the pile performance increases with both the increase of shaft rigidity and the change of BCLs loading pattern from simultaneous to successive. However, it is noted that the increase of vertical load does not always enhance the lateral capacity but may cause a decrement in lateral capacity, as observed with helical piles of flexible shafts. This study provides insightful information for the design of helical piles in structures loaded by complex sequence of forces, wind turbines, and industrial shafts.

Keywords: helical pile, lateral loads, combined loads, cohesion-less soil, analytical, numerical

Procedia PDF Downloads 67
2236 Qualitative and Quantitative Research Methodology Theoretical Framework and Descriptive Theory: PhD Construction Management

Authors: Samuel Quashie

Abstract:

PhDs in Construction Management often designs their methods based on those established in social sciences using theoretical models, to collect, gather and analysis data to answer research questions. Work aim is to apply qualitative and quantitative as a data analysis method, and as part of the theoretical framework - descriptive theory. To improve the ability to replicate the contribution to knowledge the research. Using practical triangulation approach, which covers, interviews and observations, literature review and (archival) document studies, project-based case studies, questionnaires surveys and review of integrated systems used in, construction and construction related industries. The clarification of organisational context and management delivery that influences organizational performance and quality of product and measures are achieved. Results illustrate improved reliability in this research approach when interpreting real world phenomena; cumulative results of research can be applied with confidence under similar environments. Assisted validity of the PhD research outcomes and strengthens the confidence to apply cumulative results of research under similar conditions in the Built Environment research systems, which have been criticised for the lack of reliability in approaches when interpreting real world phenomena.

Keywords: case studies, descriptive theory, theoretical framework, qualitative and quantitative research

Procedia PDF Downloads 386
2235 Investigating the Factors Affecting the Innovation of Firms in Metropolitan Regions: The Case of Mashhad Metropolitan Region, Iran

Authors: Hashem Dadashpoor, Sadegh Saeidi Shirvan

Abstract:

While with the evolution of the economy towards a knowledge-based economy, innovation is a requirement for metropolitan regions, the adoption of an open innovation strategy is an option and a requirement for many industrial firms in these regions. Studies show that investing in research and development units cannot alone increase innovation. Within the framework of the theory of learning regions, this gap, which scholars call it the ‘innovation gap’, is filled with regional features of firms. This paper attempts to investigate the factors affecting the open innovation of firms in metropolitan regions, and it searches for these in territorial innovation models and, in particular, the theory of learning regions. In the next step, the effect of identified factors which is considered as regional learning factors in this research is analyzed on the innovation of sample firms by SPSS software using multiple linear regression. The case study of this research is constituted of industrial enterprises from two groups of food industry and auto parts in Toos industrial town in Mashhad metropolitan region. For data gathering of this research, interviews were conducted with managers of industrial firms using structured questionnaires. Based on this study, the effect of factors such as size of firms, inter-firm competition, the use of local labor force and institutional infrastructures were significant in the innovation of the firms studied, and 44% of the changes in the firms’ innovation occurred as a result of the change in these factors.

Keywords: regional knowledge networks, learning regions, interactive learning, innovation

Procedia PDF Downloads 179
2234 Effective Supply Chain Coordination with Hybrid Demand Forecasting Techniques

Authors: Gurmail Singh

Abstract:

Effective supply chain is the main priority of every organization which is the outcome of strategic corporate investments with deliberate management action. Value-driven supply chain is defined through development, procurement and by configuring the appropriate resources, metrics and processes. However, responsiveness of the supply chain can be improved by proper coordination. So the Bullwhip effect (BWE) and Net stock amplification (NSAmp) values were anticipated and used for the control of inventory in organizations by both discrete wavelet transform-Artificial neural network (DWT-ANN) and Adaptive Network-based fuzzy inference system (ANFIS). This work presents a comparative methodology of forecasting for the customers demand which is non linear in nature for a multilevel supply chain structure using hybrid techniques such as Artificial intelligence techniques including Artificial neural networks (ANN) and Adaptive Network-based fuzzy inference system (ANFIS) and Discrete wavelet theory (DWT). The productiveness of these forecasting models are shown by computing the data from real world problems for Bullwhip effect and Net stock amplification. The results showed that these parameters were comparatively less in case of discrete wavelet transform-Artificial neural network (DWT-ANN) model and using Adaptive network-based fuzzy inference system (ANFIS).

Keywords: bullwhip effect, hybrid techniques, net stock amplification, supply chain flexibility

Procedia PDF Downloads 127
2233 Teachers of the Pandemic: Retention, Resilience, and Training

Authors: Theoni Soublis

Abstract:

The COVID-19 pandemic created a severe interruption in teaching and learning in K-12 schools. It is essential that educational researchers, teachers, and administrators understand the long term effects that COVID-19 had on a variety of stakeholders in education. This investigation aims to analyze the research since the beginning of the pandemic that focuses specifically on teacher retention, resilience, and training. The results of this investigation will help to inform future research in order to better understand how the institution of education can continue to be prepared and to better prepare for future significant shifts in the modalities of instruction. The results of this analysis will directly impact the field of education as it will broaden the scope of understanding regarding how COVID- 19 impacted teaching and learning. The themes that will emerge from the data analysis will directly inform policy makers, administrators, and researchers about how to best implement training and curriculum design in order to support teacher effectiveness this in the classroom. Educational researchers have written about how teacher morale plummeted and how many teachers reported early burnout and higher stress levels. Teachers’ stress and anxiety soared during the COVID-19 pandemic, but so has their resilience and dedication to the field of education. This research aims to understand how public-school teachers overcame teaching obstacles presented to them during COVID-19. Research has been conducted to identify a variety of information regarding the impact the pandemic has had on K-12 teachers, students, and families. This research aims to understand how teachers continued to pursue their teaching objectives without significant training of effective online instruction methods. Not many educators even heard of the video conferencing platform Zoom before the spring of 2020. Researchers are interested in understanding how teachers used their expertise, prior knowledge, and training to institute immediate and effective online learning environments, what types of relationships did teachers build with students while teaching 100% remotely, and how did relationships change with students while teaching remotely? Furthermore, did the teacher-student relationship propel teacher resolve to be successful while teaching during a pandemic. Recent world events have significantly impacted the field of public-school teaching. The pandemic forced teachers to shift their paradigm about how to maintain high academic expectations, meet state curriculum standards, and assess students learning gains to make data-informed decisions while simultaneously adapting modes of instruction through multiple outlets with little to no training on remote, synchronous, asynchronous, virtual, and hybrid teaching. While it would be very interesting to study how teaching positively impacted students learning during the pandemic, I am more interested in understanding how teaches stayed the course and maintained their mental health while dealing with the stress and pressure of teaching during COVID-19.

Keywords: teacher retention, COVID-19, teacher education, teacher moral

Procedia PDF Downloads 85
2232 Feasibility and Acceptability of Modified Mindfulness-Based Stress Reduction for Health Care Workers in Acute Stress during the COVID-19 Pandemic

Authors: Susan Evans, Janna Gordon-Elliott, Katarzyna Wyka, Virginia Mutch

Abstract:

During the rise of the COVID-19 pandemic, healthcare workers needed an intervention that could address their profound acute stress. Mindfulness-based stress reduction (MBSR) is a program that has long established effectiveness for mental and physical health outcomes. In recent years, MBSR has been modified such that the duration of both class time and number of sessions has been abbreviated, and its delivery has been adapted for online dissemination, thus increasing the likelihood that individuals who could most benefit from the program would do so. We sought to investigate whether a brief, online version of MBSR could be feasible and acceptable for health care workers (HCW) in acute stress in response to the COVID-19 pandemic. Participants were recruited via an email sent to all hospital employees, which spans residents, physicians, nurses, housekeeping, lab technicians, administrators, and others. Participating HCW were asked about their previous experience with mindfulness and asked to commit to a minimum of 3 sessions. They were then provided with four weekly 1-hour sessions online that included the major mindfulness exercises taught during traditional MBSR programs (i.e., body scan, sitting meditation, mindful eating, and yoga). Participants were provided with supporting slides, videos, demonstrations and asked to track their practice. Hospital staff enrolled in the program; by the end of the first day of recruitment, 40 had applied; by the start date, about 100 were enrolled, and n attended a minimum of 3 sessions, supporting feasibility. Hospital staff also participated and practiced the mindfulness exercises (n=42), thus supporting acceptability. Participants reported that the program was logical, successful, and worth recommending both before starting the program and after completing it (M= 22.02 and M=21.76, respectively, possible range 0-27). There was a slight decline in the belief in improvement in health and well-being due to the program (ES=.37, p=.021). Secondary hypotheses regarding participants’ self-reported stress and levels of mindfulness were also supported, such that participants reported improvements in perceived stress (ES=.45, p=.006), compassion satisfaction, burnout, and secondary traumatic stress (ES=.41, ES=.31, ES=.35, respectively, p<.05). Participants reported significant improvements in the describing facet of mindfulness (ES=.49, p=.004), while all other facets (observing, acting with awareness, nonjudging of inner experience, nonreactivity to inner experience) remained unchanged pre- to post-program. Results from this study suggest that an abridged, online version of MBSR is feasible and accessible to health care workers in acute stress and provides benefits expected from traditional MBSR programs. The lack of a randomized control group limits generalizability. We intend to provide a structure, framework, and lessons learned to hospital administrators and clinical staff seeking to support their employees in acute stress.

Keywords: acute stress, health care workers, mindfulness, online interventions

Procedia PDF Downloads 128
2231 Surface Pressure Distributions for a Forebody Using Pressure Sensitive Paint

Authors: Yi-Xuan Huang, Kung-Ming Chung, Ping-Han Chung

Abstract:

Pressure sensitive paint (PSP), which relies on the oxygen quenching of a luminescent molecule, is an optical technique used in wind-tunnel models. A full-field pressure pattern with low aerodynamic interference can be obtained, and it is becoming an alternative to pressure measurements using pressure taps. In this study, a polymer-ceramic PSP was used, using toluene as a solvent. The porous particle and polymer were silica gel (SiO₂) and RTV-118 (3g:7g), respectively. The compound was sprayed onto the model surface using a spray gun. The absorption and emission spectra for Ru(dpp) as a luminophore were respectively 441-467 nm and 597 nm. A Revox SLG-55 light source with a short-pass filter (550 nm) and a 14-bit CCD camera with a long-pass (600 nm) filter were used to illuminate PSP and to capture images. This study determines surface pressure patterns for a forebody of an AGARD B model in a compressible flow. Since there is no experimental data for surface pressure distributions available, numerical simulation is conducted using ANSYS Fluent. The lift and drag coefficients are calculated and in comparison with the data in the open literature. The experiments were conducted using a transonic wind tunnel at the Aerospace Science and Research Center, National Cheng Kung University. The freestream Mach numbers were 0.83, and the angle of attack ranged from -4 to 8 degree. Deviation between PSP and numerical simulation is within 5%. However, the effect of the setup of the light source should be taken into account to address the relative error.

Keywords: pressure sensitive paint, forebody, surface pressure, compressible flow

Procedia PDF Downloads 127
2230 Behavior of Laterally Loaded Multi-Helix Helical Piles Under Vertical Loading in Cohesive and Cohesionless Soils

Authors: Mona Fawzy Aldaghma

Abstract:

Helical piles are gaining popularity as a viable deep foundation alternative due to their quick installation and multipurpose use in compression and tension. These piles are commonly used as foundations for constructions such as solar panels, wind turbines and offshore platforms. These structures typically transfer various combinations of loads to their helical-pile foundations, including axial and lateral loads. Further research is needed to determine the effects of loading patterns that may act on helical piles as compounds of axial compression and lateral stresses. Multi helical piles are used to increase the efficiency of these piles. In this study, it investigate the behavior of laterally loaded helical piles with multiple helices when subjected to vertical loading conditions in both cohesive and cohesionless soils. Two models of intermediate shaft rigidity are studied with either two or three helices. Additionally, the vertical loading conditions were altered between successive and simultaneous loading. The cohesionless soil is sand with medium density and the cohesive soil is clay with medium cohesion. The study will carried out with numerical analysis using PLAXIS 3D and will be verified by an experimental tests. The numerical simulations reveal that helical piles exhibit different behavior in cohesive soil compared to cohesionless soil.

Keywords: helical piles, multi-helix, numerical modeling, PLAXIS 3D, cohesive soil, cohesionless soil, experimental

Procedia PDF Downloads 37
2229 Synthesis of Novel Nanostructure Copper(II) Metal-Organic Complex for Photocatalytic Degradation of Remdesivir Antiviral COVID-19 from Aqueous Solution: Adsorption Kinetic and Thermodynamic Studies

Authors: Sam Bahreini, Payam Hayati

Abstract:

Metal-organic coordination [Cu(L)₄(SCN)₂] was synthesized applying ultrasonic irradiation, and its photocatalytic performance for the degradation of Remdesivir (RS) under sunlight irradiation was systematically explored for the first time in this study. The physicochemical properties of the synthesized photocatalyst were investigated using Fourier-transform infrared (FT-IR), field emission scanning electron microscopy (FE-SEM), powder x-ray diffraction (PXRD), energy-dispersive x-ray (EDX), thermal gravimetric analysis (TGA), diffuse reflectance spectroscopy (DRS) techniques. Systematic examinations were carried out by changing irradiation time, temperature, solution pH value, contact time, RS concentration, and catalyst dosage. The photodegradation kinetic profiles were modeled in pseudo-first order, pseudo-second-order, and intraparticle diffusion models reflected that photodegradation onto [Cu(L)₄(SCN)₂] catalyst follows pseudo-first order kinetic model. The fabricated [Cu(L)₄(SCN)₂] nanostructure bandgap was determined as 2.60 eV utilizing the Kubelka-Munk formula from the diffuse reflectance spectroscopy method. Decreasing chemical oxygen demand (COD) (from 70.5 mgL-1 to 36.4 mgL-1) under optimal conditions well confirmed mineralizing of the RS drug. The values of ΔH° and ΔS° was negative, implying the process of adsorption is spontaneous and more favorable in lower temperatures.

Keywords: Photocatalytic degradation, COVID-19, density functional theory (DFT), molecular electrostatic potential (MEP)

Procedia PDF Downloads 169
2228 Experimental and Computational Analysis of Glass Fiber Reinforced Plastic Beams with Piezoelectric Fibers

Authors: Selin Kunc, Srinivas Koushik Gundimeda, John A. Gallagher, Roselita Fragoudakis

Abstract:

This study investigates the behavior of Glass Fiber Reinforced Plastic (GFRP) laminated beams additionally reinforced with piezoelectric fibers. The electromechanical behavior of piezoelectric materials coupled with high strength/low weight GFRP laminated beams can have significant application in a wide range of industries. Energy scavenging through mechanical vibrations is the focus of this study, and possible applications can be seen in the automotive industry. This study examines the behavior of such composite laminates using Classical Lamination Theory (CLT) under three-point bending conditions. Fiber orientation is optimized for the desired stiffness and deflection that yield maximum energy output. Finite element models using ABAQUS/CAE are verified through experimental testing. The optimum stacking sequences examined are [0o]s, [ 0/45o]s, and [45/-45o]s. Results show the superiority of the stacking sequence [0/45o]s, providing higher strength at a lower weight, and maximum energy output. Furthermore, laminated GFRP beams additionally reinforced with piezoelectric fibers can be used under bending to not only replace metallic component while providing similar strength at a lower weight but also provide an energy output.

Keywords: classical lamination theory (CLT), energy scavenging, glass fiber reinforced plastics (GFRP), piezoelectric fibers

Procedia PDF Downloads 307
2227 Development and Validation of the Dimensional Social Anxiety Scale: Assessment for the Offensive Type of Social Anxiety

Authors: Ryotaro Ishikawa

Abstract:

Social Anxiety Disorder (SAD) is marked by the persistent fear of social or performance situations in which embarrassment may occur. In contrast, SA in Japan and in China is understood differently. Taijin Kyofusho (TKS) is a culture-bound subtype of SAD which has been the focus of recent research. TKS refers to a unique form of SAD found in Japanese and East Asian cultures characterized by a fear of offending others, in contrast to prototypical SAD in which the source of fear is typically concerned about one’s own embarrassment, humiliation, or rejection by others. Criteria for TKS partially overlap with but are distinct from SAD; a primary factor distinguishing TKS from SAD appears to be individualistic versus interdependent or collectivistic self-construals. The aim of this study was to develop a scale to assess the typical SAD and offensive type of SAD (TKS). This study aimed to test the internal consistency and validity of the scale (Dimensional Social Anxiety Scale: DSAS) using university students sample. For this, 148 university students were enrolled (male=90, female=58, age=19.77, Standard Deviation=1.04). As a result of confirmatory factor analysis, three-factor models of DSAS were verified (χ2(74) =128.36). These three factors were named ‘general’, ‘perfomance’, and ‘offensive’. DSAS were significantly correlated with the Liebowitz Social Anxiety Scale (r = .538, p < .001). Good internal consistencies were indicated on the three subscales (α = .76 to 89). In conclusion, this study indicated DSAS has adequate internal consistency and validity for assessing of multi-type of SADs.

Keywords: social anxiety, cognitive theory, assessment, anxiety disorder

Procedia PDF Downloads 114
2226 The Effect of Intimate Partner Violence on Child Abuse in South Korea: Focused on the Moderating Effects of Patriarchal Attitude and Informal Social Control

Authors: Hye Lin Yang, Clifton R. Emery

Abstract:

Purpose: The purpose of this study is to examine the effects of intimate partner violence on child abuse, whether patriarchal attitude and informal social control moderate the relationship between intimate partner violence and child abuse. This study was conducted with data from The Seoul Families and Neighborhoods Study (SFNS). The SFNS is a representative random probability 3-stage cluster sample of 541 cohabiting couples in Seoul, South Korea collected in 2012. To verify research models, Random effect analysis were used. All analyses were performed using the Stata program. Results: Crucial findings are the following. First, intimate partner violence showed a significantly positive relationship with Child abuse. Second, there are significant moderating effects of informal social control on intimate partner violence - child abuse. Third, there are significant moderating effects of patriarchal attitude on intimate partner violence - child abuse. In other words, Patriarchal attitude is a significant risk factor of child abuse and informal social control is a significant Protection factor of child abuse. Based on results, the policy and practical implications for preventing child abuse, promoting informal social control were discussed.

Keywords: Intimate partner violence, child abuse, informal social control, patriarchal attitude

Procedia PDF Downloads 302
2225 Media Diplomacy in the Age of Social Networks towards a Conceptual Framework for Understanding Diplomatic Cyber Engagement

Authors: Mohamamd Ayish

Abstract:

This study addresses media diplomacy as an integral component of public diplomacy which emerged in the United States in the post-World War II era and found applications in other countries around the world. The study seeks to evolve a conceptual framework for understanding the practice of public diplomacy through social networks, often referred to as social engagement diplomacy. This form of diplomacy is considered far more ahead of the other two forms associated with both government controlled and independent media. The cases of the Voice of America Arabic Service and the 1977 CBS interviews with the late Egyptian President Anwar Sadat and Israeli Prime Minister Menachem Begin are cited in this study as reflecting the two traditional models. The new social engagement model sees public diplomacy as an act of communication that seeks to effect changes in target audiences through a process of persuasion shaped by discourse orientations and technological features. The proposed conceptual framework for social, diplomatic engagement draws on an open communication environment, an empowered audience, an interactive and symmetrical process of communication, multimedia-based flows of information, direct and credible feedback, distortion and high risk. The writer believes this study would be helpful in providing appropriate knowledge pertaining to our understanding of social diplomacy and furnishing concrete insights into how diplomats could harness virtual space to maximize their goals in the global environment.

Keywords: diplomacy, engagement, social, globalization

Procedia PDF Downloads 276
2224 Simple Infrastructure in Measuring Countries e-Government

Authors: Sukhbaatar Dorj, Erdenebaatar Altangerel

Abstract:

As alternative to existing e-government measuring models, here proposed a new customer centric, service oriented, simple approach for measuring countries e-Governments. If successfully implemented, built infrastructure will provide a single e-government index number for countries. Main schema is as follows. Country CIO or equal position government official, at the beginning of each year will provide to United Nations dedicated web site 4 numbers on behalf of own country: 1) Ratio of available online public services, to total number of public services, 2) Ratio of interagency inter ministry online public services to total number of available online public services, 3) Ratio of total number of citizen and business entities served online annually to total number of citizen and business entities served annually online and physically on those services, 4) Simple index for geographical spread of online served citizen and business entities. 4 numbers then combined into one index number by mathematical Average function. In addition to 4 numbers 5th number can be introduced as service quality indicator of online public services. If in ordering of countries index number is equal, 5th criteria will be used. Notice: This approach is for country’s current e-government achievement assessment, not for e-government readiness assessment.

Keywords: countries e-government index, e-government, infrastructure for measuring e-government, measuring e-government

Procedia PDF Downloads 328
2223 Adsorptive Performance of Surface Modified Montmorillonite in Vanadium Removal from Real Mine Water

Authors: Opeyemi Atiba-Oyewo, Taile Y. Leswfi, Maurice S. Onyango, Christian Wolkersdorfer

Abstract:

This paper describes the preparation of surface modified montmorillonite using hexadecyltrimethylammonium bromide (HDTMA-Br) for the removal of vanadium from mine water. The adsorbent before and after adsorption was characterised by Fourier transform infra-red (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM), while the amount of vanadium adsorbed was determined by ICP-OES. The batch adsorption method was employed using vanadium concentrations in solution ranging from 50 to 320 mg/L and vanadium tailings seepage water from a South African mine. Also, solution pH, temperature and sorbent mass were varied. Results show that the adsorption capacity was affected by solution pH, temperature, sorbent mass and the initial concentration. Electrical conductivity of the mine water before and after adsorption was measured to estimate the total dissolved solids in the mine water. Equilibrium isotherm results revealed that vanadium sorption follows the Freundlich isotherm, indicating that the surface of the sorbent was heterogeneous. The pseudo-second order kinetic model gave the best fit to the kinetic experimental data compared to the first order and Elovich models. The results of this study may be used to predict the uptake efficiency of South Africa montmorillonite in view of its application for the removal of vanadium from mine water. However, the choice of this adsorbent for the uptake of vanadium or other contaminants will depend on the composition of the effluent to be treated.

Keywords: adsorption, vanadium, modified montmorillonite, equilibrium, kinetics, mine water

Procedia PDF Downloads 434