Search results for: latent heat thermal energy storage
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13378

Search results for: latent heat thermal energy storage

6268 PbLi Activation Due to Corrosion Products in WCLL BB (EU-DEMO) and Its Impact on Reactor Design and Recycling

Authors: Nicole Virgili, Marco Utili

Abstract:

The design of the Breeding Blanket in Tokamak fusion energy systems has to guarantee sufficient availability in addition to its functions, that are, tritium breeding self-sufficiency, power extraction and shielding (the magnets and the VV). All these function in the presence of extremely harsh operating conditions in terms of heat flux and neutron dose as well as chemical environment of the coolant and breeder that challenge structural materials (structural resistance and corrosion resistance). The movement and activation of fluids from the BB to the Ex-vessel components in a fusion power plant have an important radiological consideration because flowing material can carry radioactivity to safety-critical areas. This includes gamma-ray emission from activated fluid and activated corrosion products, and secondary activation resulting from neutron emission, with implication for the safety of maintenance personnel and damage to electrical and electronic equipment. In addition to the PbLi breeder activation, it is important to evaluate the contribution due to the activated corrosion products (ACPs) dissolved in the lead-lithium eutectic alloy, at different concentration levels. Therefore, the purpose of the study project is to evaluate the PbLi activity utilizing the FISPACT II inventory code. Emphasis is given on how the design of the EU-DEMO WCLL, and potential recycling of the breeder material will be impacted by the activation of PbLi and the associated active corrosion products (ACPs). For this scope the following Computational Tools, Data and Geometry have been considered: • Neutron source: EU-DEMO neutron flux < 1014/cm2/s • Neutron flux distribution in equatorial breeding blanket module (BBM) #13 in the WCLL BB outboard central zone, which is the most activated zone, with the aim to introduce a conservative component utilizing MNCP6. • The recommended geometry model: 2017 EU DEMO CAD model. • Blanket Module Material Specifications (Composition) • Activation calculations for different ACP concentration levels in the PbLi breeder, with a given chemistry in stationary equilibrium conditions, using FISPACT II code. Results suggest that there should be a waiting time of about 10 years from the shut-down (SD) to be able to safely manipulate the PbLi for recycling operations with simple shielding requirements. The dose rate is mainly given by the PbLi and the ACP concentration (x1 or x 100) does not shift the result. In conclusion, the results show that there is no impact on PbLi activation due to ACPs levels.

Keywords: activation, corrosion products, recycling, WCLL BB., PbLi

Procedia PDF Downloads 123
6267 Fabrication of LiNbO₃ Based Conspicuous Nanomaterials for Renewable Energy Devices

Authors: Riffat Kalsoom, Qurat-Ul-Ain Javed

Abstract:

Optical and dielectric properties of lithium niobates have made them the fascinating materials to be used in optical industry for device formation such as Q and optical switching. Synthesis of lithium niobates was carried out by solvothermal process with and without temperature fluctuation at 200°C for 4 hrs, and behavior of properties for different durations was also examined. Prepared samples of LiNbO₃ were examined in a way as crystallographic phases by using XRD diffractometer, morphology by scanning electron microscope (SEM), absorption by UV-Visible Spectroscopy and dielectric measurement by impedance analyzer. A structural change from trigonal to spherical shape was observed by changing the time of reaction. Crystallite size decreases by the temperature fluctuation and increasing reaction time. Band gap decreases whereas dielectric constant and dielectric loss was increased with increasing time of reaction. Trend of AC conductivity is explained by Joschner’s power law. Due to these significant properties, it finds its applications in devices, such as cells, Q switching and optical switching for laser and gigahertz frequencies, respectively and these applications depend on the industrial demands.

Keywords: lithium niobates, renewable energy devices, controlled structure, temperature fluctuations

Procedia PDF Downloads 127
6266 Solar-Plasma Reactors for a Zero-Emission Economy

Authors: Dassou Nagassou

Abstract:

Recent increase in frequency and severity of climatic impacts throughout the world has put a particular emphasis on the urgency to address the anthropogenic greenhouse gas emissions. The latter, mainly composed of carbon dioxide are responsible for the global warming of planet earth. Despite efforts to transition towards a zero-emission economy, manufacturing industries, electricity generation power plants, and transportation sectors continue to encounter challenges which hinder their progress towards a full decarbonization. The growing energy demand from both developed and under-developed economies exacerbates the situation and as a result, more carbon dioxide is discharged into the atmosphere. This situation imposes a lot of constraints on industries which are involved i.e., manufacturing industries, transportation, and electricity generation which must navigate the stringent environmental regulations in order to remain profitable. Existing solutions such as energy efficiencies, green materials (life cycle analysis), and many more have fallen short to address the problem due to their inadaptation to existing infrastructures, low efficiencies, and prohibitive costs. The proposed technology exploits the synergistic interaction between solar radiation and plasma to boost a direct decomposition of the molecules of carbon dioxide while producing alternative fuels which can be used to sustain on-site high-temperature processes via 100% solar energy harvesting in the form of photons and electricity. The advantages of this technology and its ability to be easily integrated into existing systems make it appealing for the industry which can now afford to fast track on the path towards full decarbonization, thanks to the solar plasma reactor. Despite the promising experimental results which proved the viability of this concept, solar-plasma reactors require further investigations to understand the synergistic interactions between plasma and solar radiation for a potential technology scale-up.

Keywords: solar, non-equilibrium, plasma, reactor, greenhouse-gases, solar-fuels

Procedia PDF Downloads 55
6265 Valorisation of Food Waste Residue into Sustainable Bioproducts

Authors: Krishmali N. Ekanayake, Brendan J. Holland, Colin J. Barrow, Rick Wood

Abstract:

Globally, more than one-third of all food produced is lost or wasted, equating to 1.3 billion tonnes per year. Around 31.2 million tonnes of food waste are generated across the production, supply, and consumption chain in Australia. Generally, the food waste management processes adopt environmental-friendly and more sustainable approaches such as composting, anerobic digestion and energy implemented technologies. However, unavoidable, and non-recyclable food waste ends up as landfilling and incineration that involve many undesirable impacts and challenges on the environment. A biorefinery approach contributes to a waste-minimising circular economy by converting food and other organic biomass waste into valuable outputs, including feeds, nutrition, fertilisers, and biomaterials. As a solution, Green Eco Technologies has developed a food waste treatment process using WasteMaster system. The system uses charged oxygen and moderate temperatures to convert food waste, without bacteria, additives, or water, into a virtually odour-free, much reduced quantity of reusable residual material. In the context of a biorefinery, the WasteMaster dries and mills food waste into a form suitable for storage or downstream extraction/separation/concentration to create products. The focus of the study is to determine the nutritional composition of WasteMaster processed residue to potential develop aquafeed ingredients. The global aquafeed industry is projected to reach a high value market in future, which has shown high demand for the aquafeed products. Therefore, food waste can be utilized for aquaculture feed development by reducing landfill. This framework will lessen the requirement of raw crops cultivation for aquafeed development and reduce the aquaculture footprint. In the present study, the nutritional elements of processed residue are consistent with the input food waste type, which has shown that the WasteMaster is not affecting the expected nutritional distribution. The macronutrient retention values of protein, lipid, and nitrogen free extract (NFE) are detected >85%, >80%, and >95% respectively. The sensitive food components including omega 3 and omega 6 fatty acids, amino acids, and phenolic compounds have been found intact in each residue material. Preliminary analysis suggests a price comparability with current aquafeed ingredient cost making the economic feasibility. The results suggest high potentiality of aquafeed development as 5 to 10% of the ingredients to replace/partially substitute other less sustainable ingredients across biorefinery setting. Our aim is to improve the sustainability of aquaculture and reduce the environmental impacts of food waste.

Keywords: biorefinery, ffood waste residue, input, wasteMaster

Procedia PDF Downloads 61
6264 Impact of Gold Mining on Crop Production, Livelihood and Environmental Sustainability in West Africa in the Context of Water-Energy-Food Nexus

Authors: Yusif Habib

Abstract:

The Volta River Basin (VRB) is a transboundary resource shared by Six (6) the West African States. It’s utilization spans across irrigation, hydropower generation, domestic/household water use, transportation, industrial processing, among others. Simultaneously, mineral resources such as gold are mined within the VRB catchment. Typically, the extraction/mining operation is earth-surface excavation; known as Artisanal and Small-scale mining. We developed a conceptual framework in the context of Water-Energy-Food (WEF) Nexus to delineate the trade-offs and synergies between the mineral extractive operation’s impact on Agricultural systems, specifically, cereal crops (e.g. Maize, Millet, and Rice) and the environment (water and soil quality, deforestation, etc.) on the VRB. Thus, the study examined the trade-offs and synergies through the WEF nexus lens to explore the extent of an eventual overarching mining preference for gold exploration with high economic returns as opposed to the presumably low yearly harvest and household income from food crops production to inform intervention prioritization. Field survey (household, expert, and stakeholder consultation), bibliometric analysis/literature review, scenario, and simulation models, including land-use land cover (LULC) analyses, were conducted. The selected study area(s) in Ghana was the location where the mineral extractive operation’s presence and impact are widespread co-exist with the Agricultural systems. Overall, the study proposes mechanisms of the virtuous cycle through FEW Nexus instead of the presumably existing vicious cycle to inform decision making and policy implementation.

Keywords: agriculture, environmental sustainability, gold Mining, synergies, trade-off, water-energy-food nexus

Procedia PDF Downloads 153
6263 The Creep Analysis of a Varying Thickness on a Rotating Composite Disk with Different Particle Size by Using Sherby’s Law

Authors: Rupinder Kaur, Harjot Kaur

Abstract:

The objective of this paper is to present the study of the effect of varying thickness on rotating composite disks made from Al-SiC_P having different particle sizes. Mathematical modeling is used to calculate the effect of varying thickness with different particle sizes on rotating composite disks in radial as well as tangential directions with thermal gradients. In comparison to various particle sizes with varied thicknesses, long-term deformation occurs. The results are displayed visually, demonstrating how creep deformation decreases with changing particle size and thickness.

Keywords: creep, varying thickness, particle size, stresses and strain rates

Procedia PDF Downloads 77
6262 Elaboration of Sustainable Luminescence Material Based on Rare Earth Complexes for Solar Energy Conversion

Authors: Othmane Essahili, Mohamed Ilsouk, Carine Duhayon, Omar Moudam

Abstract:

Due to their excellent and promising properties, a great deal of attention has recently been devoted to luminescent materials, particularly those utilizing rare earth elements. These materials play an essential role in low-cost energy conversion technology applications, such as luminescent solar concentrators (LSCs). They also have potential applications in Agri-PV systems and smart building windows. Luminescent materials based on europium (III) complexes are known for their high luminescence efficiency, long fluorescence lifetimes, and sharp emission bands. However, they present certain drawbacks related to their limited absorption capacity due to the forbidden 4f-4f electronic transitions. To address these drawbacks, using β-diketonate ligands as sensitizers appears as a promising solution to enhance luminescence intensity through the antenna effect, where the ligand's excited energy is transferred to the europium ions. In this study, we synthesized β-diketonate-based europium complexes with phenanthroline derivatives, modified with various methyl groups, to examine their effects on the complexes' stability in poly(methyl methacrylate) (PMMA) films. Our findings reveal that these complexes exhibit remarkable red emission and high photoluminescence quantum yield. Stability tests under different conditions for 1200 hours showed that complexes with a higher number of methyl substitutions offer improved photoluminescent stability and resistance to degradation, particularly in outdoor settings. This research underscores the potential of chemically tuned phenanthroline ligands in developing stable, efficient luminescent materials for future optoelectronic devices, including efficient and durable LSCs.

Keywords: luminescent materials, photochemistry, luminescent solar concentrators, β-diketonate-based europium complexes

Procedia PDF Downloads 59
6261 Polymer Solar Cells Synthesized with Copper Oxide Nanoparticles

Authors: Nidal H. Abu-Zahra, Aruna P. Wanninayake

Abstract:

Copper Oxide (CuO) is a p-type semiconductor with a band gap energy of 1.5 eV, this is close to the ideal energy gap of 1.4 eV required for solar cells to allow good solar spectral absorption. The inherent electrical characteristics of CuO nano particles make them attractive candidates for improving the performance of polymer solar cells when incorporated into the active polymer layer. The UV-visible absorption spectra and external quantum efficiency of P3HT/PC70BM solar cells containing different weight percentages of CuO nano particles showed a clear enhancement in the photo absorption of the active layer, this increased the power conversion efficiency of the solar cells by 24% in comparison to the reference cell. The short circuit current of the reference cell was found to be 5.234 mA/cm2 and it seemed to increase to 6.484 mA/cm2 in cells containing 0.6 mg of CuO NPs; in addition the fill factor increased from 61.15% to 68.0%, showing an enhancement of 11.2%. These observations suggest that the optimum concentration of CuO nano particles was 0.6 mg in the active layer. These significant findings can be applied to design high-efficiency polymer solar cells containing inorganic nano particles.

Keywords: copper oxide nanoparticle, UV-visible spectroscopy, polymer solar cells, P3HT/PCBM

Procedia PDF Downloads 420
6260 Protective Effects of Coenzyme Q10 and N-Acetylcysteine on Myocardial Oxidative Stress, Inflammation, and Impaired Energy metabolism in Carbon Tetrachloride Intoxicated Rats

Authors: Nayira A. Abd Elbaky, Amal J. Fatani, Hazar Yaqub, Nouf M. Al-Rasheed, Naglaa El-Orabi, Mai Osman

Abstract:

The present work is aimed to evaluate the protective effect of N-acetyl cystiene (NAC), coenzyme Q10 (CoQ10), and their combination against carbon tetrachloride (CCl4)-induced cardiotoxicity in rats. CCl4 treatment significantly elevated the levels of cardiac oxidative stress bio markers including nitric oxide (NO) and malondialdehyde (MDA). A concomitant decrease in the level of reduced glutathione and the activity of membrane bound enzyme, calcium-adenosine triphosphatase were observed in the hearts of rats exposed to CCl4 compared to respective values in normal group. Quantitative analysis of myocardial energy metabolism revealed a significant decrease in the glucose content coupled with depletion in the activities of myocardial glycolytic enzymes as hexokinase (HK), phosphofructokinase (PFK) and lactate dehydrogenase (LDH) after CCl4 treatment. In addition, a significant elevation in myocardial hydroxyproline level was observed in CCl4 intoxicated rats indicating interstitial collagen accumulation. Pretreatment with either NAC, CoQ10 or their combination successively alleviated the alterations in myocardial oxidative stress and antioxidant markers, as well as effectively up-regulated the decrease in cardiac energetic biomarkers in CCl4 intoxicated rats. Moreover, these antioxidants markedly reduced myocardial hydroxyproline level versus that of CCl4-treated animals. In conclusion, the present results illustrated that the prophylactic use of the current antioxidant resulted in a remarkable cardioprotective effect against CCl4 induced myocardial damage, which suggest that they may candidates as prophylactic agents against different cardio-toxins.

Keywords: carbon tetrachloride, lipid peroxidation, antioxidant, energy metabolism, hydroxyproline

Procedia PDF Downloads 395
6259 Prediction of the Mechanical Power in Wind Turbine Powered Car Using Velocity Analysis

Authors: Abdelrahman Alghazali, Youssef Kassem, Hüseyin Çamur, Ozan Erenay

Abstract:

Savonius is a drag type vertical axis wind turbine. Savonius wind turbines have a low cut-in speed and can operate at low wind speed. This makes it suitable for electricity or mechanical generation in low-power applications such as individual domestic installations. Therefore, the primary purpose of this work was to investigate the relationship between the type of Savonius rotor and the torque and mechanical power generated. And it was to illustrate how the type of rotor might play an important role in the prediction of mechanical power of wind turbine powered car. The main purpose of this paper is to predict and investigate the aerodynamic effects by means of velocity analysis on the performance of a wind turbine powered car by converting the wind energy into mechanical energy to overcome load that rotates the main shaft. The predicted results based on theoretical analysis were compared with experimental results obtained from literature. The percentage of error between the two was approximately around 20%. Prediction of the torque was done at a wind speed of 4 m/s, and an angular velocity of 130 RPM according to meteorological statistics in Northern Cyprus.

Keywords: mechanical power, torque, Savonius rotor, wind car

Procedia PDF Downloads 327
6258 Enhancing Sewage Sludge Management through Integrated Hydrothermal Liquefaction and Anaerobic Digestion: A Comparative Study

Authors: Harveen Kaur Tatla, Parisa Niknejad, Rajender Gupta, Bipro Ranjan Dhar, Mohd. Adana Khan

Abstract:

Sewage sludge management presents a pressing challenge in the realm of wastewater treatment, calling for sustainable and efficient solutions. This study explores the integration of Hydrothermal Liquefaction (HTL) and Anaerobic Digestion (AD) as a promising approach to address the complexities associated with sewage sludge treatment. The integration of these two processes offers a complementary and synergistic framework, allowing for the mitigation of inherent limitations, thereby enhancing overall efficiency, product quality, and the comprehensive utilization of sewage sludge. In this research, we investigate the optimal sequencing of HTL and AD within the treatment framework, aiming to discern which sequence, whether HTL followed by AD or AD followed by HTL, yields superior results. We explore a range of HTL working temperatures, including 250°C, 300°C, and 350°C, coupled with residence times of 30 and 60 minutes. To evaluate the effectiveness of each sequence, a battery of tests is conducted on the resultant products, encompassing Total Ammonia Nitrogen (TAN), Chemical Oxygen Demand (COD), and Volatile Fatty Acids (VFA). Additionally, elemental analysis is employed to determine which sequence maximizes energy recovery. Our findings illuminate the intricate dynamics of HTL and AD integration for sewage sludge management, shedding light on the temperature-residence time interplay and its impact on treatment efficiency. This study not only contributes to the optimization of sewage sludge treatment but also underscores the potential of integrated processes in sustainable waste management strategies. The insights gleaned from this research hold promise for advancing the field of wastewater treatment and resource recovery, addressing critical environmental and energy challenges.

Keywords: Anaerobic Digestion (AD), aqueous phase, energy recovery, Hydrothermal Liquefaction (HTL), sewage sludge management, sustainability.

Procedia PDF Downloads 69
6257 Acoustic Partial Discharge Propagation and Perfectly Matched Layer in Acoustic Detection-Transformer

Authors: Nirav J. Patel, Kalpesh K. Dudani

Abstract:

Partial discharge (PD) is the dissipation of energy caused by localized breakdown of insulation. Power transformers are one of the most important components in the electrical energy network. Insulation degradation of transformer is frequently linked to PD. This is why PD detection is used in power system to monitor the health of high voltage transformer. If such problem are not detected and repaired, the strength and frequency of PD may increase and eventually lead to the catastrophic failure of the transformer. This can further cause external equipment damage, fires and loss of revenue due to an unscheduled outage. Hence, reliable online PD detection is a critical need for power companies to improve personnel safety and decrease the probability of loss of service. The PD phenomenon is manifested in a variety of physically observable signals including Ultra High Frequency (UHF) radiation and Acoustic Disturbances, Electrical pulses. Acoustic method is based on sensing the radiated acoustic emission from discharge sites in the insulation. Propagated wave from the PD fault site are captured sensor are consequently pre-amplified, filtered, recorded and analyze.

Keywords: acoustic, partial discharge, perfectly matched layer, sensor

Procedia PDF Downloads 523
6256 Mixed Micellization Study of Adiphenine Hydrochloride with 1-Decyl-3-Methylimidazolium Chloride

Authors: Abbul B. Khan, Neeraj Dohare, Rajan Patel

Abstract:

The mixed micellization of adiphenine hydrochloride (ADP) with 1-decyl-3-methylimidazolium chloride (C10mim.Cl), was investigated at different mole fractions and temperatures by surface tension measurements. The synergistic behavior (i.e., non-ideal behavior) for binary mixtures was explained by the deviation of critical micelle concentration (cmc) from ideal critical micelle concentration (cmc*), micellar mole fraction (Xim) from ideal micellar mole fraction (Xiideal), the values of interaction parameter (β) and activity coefficients (fi) (for both mixed micelles and mixed monolayer). The excess free energy (∆Gex) for the ADP- C10mim.Cl binary mixtures explain the stability of mixed micelles in comparison to micelles of pure ADP and C10mim.Cl. Interfacial parameters, i.e., Gibbs surface excess (Гmax), minimum head group area at air/ water interface (Amin), and free energy of micellization (ΔG0m) were also evaluated for the systems.

Keywords: adiphenine hydrochloride, critical micelle concentration, interaction parameter, activity coefficient

Procedia PDF Downloads 266
6255 Spectroscopic Study of Eu³⁺ Ions Doped Potassium Lead Alumino Borate Glasses for Photonic Device Application

Authors: Nisha Deopa, Allam Srinivasa Rao

Abstract:

Quaternary potassium lead alumino borate (KPbAlB) glasses doped with different concentration of Eu³⁺ ions have been synthesized by melt quench technique and characterized by X-ray diffraction (XRD), Scanning electron microscope (SEM), Photoluminescence (PL), Time-resolved photoluminescence (TRPL) and CIE-chromaticity co-ordinates to study their luminescence behavior. A broad hump was observed in XRD spectrum confirms glassy nature of as-prepared glasses. By using Judd-Ofelt (J-O) theory, various radiative parameters for the prominent fluorescent levels of Eu³⁺ have been investigated. The intense emission peak was observed at 613 nm (⁵D₀→⁷F₂) under 393 nm excitation, matches well with the excitation of n-UV LED chips. The decay profiles observed for ⁵D₀ level were exponential for lower Eu³⁺ ion concentration while non-exponential for higher concentration, which may be due to efficient energy transfer between Eu³⁺-Eu³⁺ through cross relaxation and subsequent quenching observed. From the emission cross-sections, branching ratios, quantum efficiency and CIE coordinates, it was concluded that 7 mol % of Eu³⁺ ion concentration (glass B) is optimum in KPbAlB glasses for photonic device application.

Keywords: energy transfer, glasses, J-O parameters, photoluminescence

Procedia PDF Downloads 158
6254 Influence of Some Technological Parameters on the Content of Voids in Composite during On-Line Consolidation with Filament Winding Technology

Authors: M. Stefanovska, B. Samakoski, S. Risteska, G. Maneski

Abstract:

In this study was performed in situ consolidation of polypropylene matrix/glass reinforced roving by combining heating systems and roll pressing. The commingled roving during hoop winding was winded on a cylindrical mandrel. The work also presents the advances made in the processing of these materials into composites by conventional technique filament winding. Experimental studies were performed with changing parameters – temperature, pressure and speed. Finally, it describes the investigation of the optimal processing conditions that maximize the mechanical properties of the composites. These properties are good enough for composites to be used as engineering materials in many structural applications.

Keywords: commingled fiber, consolidation heat, filament winding, voids

Procedia PDF Downloads 264
6253 Laser Paint Stripping on Large Zones on AA 2024 Based Substrates

Authors: Selen Unaldi, Emmanuel Richaud, Matthieu Gervais, Laurent Berthe

Abstract:

Aircrafts are painted with several layers to guarantee their protection from external attacks. For aluminum AA 2024-T3 (metallic structural part of the plane), a protective primer is applied to ensure its corrosion protection. On top of this layer, the top coat is applied for aesthetic aspects. During the lifetime of an aircraft, top coat stripping has an essential role which should be operated as an average of every four years. However, since conventional stripping processes create hazardous disposals and need long hours of labor work, alternative methods have been investigated. Amongst them, laser stripping appears as one of the most promising techniques not only because of the reasons mentioned above but also its controllable and monitorable aspects. The application of a laser beam from the coated side provides stripping, but the depth of the process should be well controlled in order to prevent damage to a substrate and the anticorrosion primer. Apart from that, thermal effects should be taken into account on the painted layers. As an alternative, we worked on developing a process that includes the usage of shock wave propagation to create the stripping via mechanical effects with the application of the beam from the substrate side (back face) of the samples. Laser stripping was applied on thickness-specified samples with a thickness deviation of 10-20%. First, the stripping threshold is determined as a function of power density which is the first flight off of the top coats. After obtaining threshold values, the same power densities were applied to specimens to create large stripping zones with a spot overlap of 10-40%. Layer characteristics were determined on specimens in terms of physicochemical properties and thickness range both before and after laser stripping in order to validate the substrate material health and coating properties. The substrate health is monitored by measuring the roughness of the laser-impacted zones and free surface energy tests (both before and after laser stripping). Also, Hugoniot Elastic Limit (HEL) is determined from VISAR diagnostic on AA 2024-T3 substrates (for the back face surface deformations). In addition, the coating properties are investigated as a function of adhesion levels and anticorrosion properties (neutral salt spray test). The influence of polyurethane top-coat thickness is studied in order to verify the laser stripping process window for industrial aircraft applications.

Keywords: aircraft coatings, laser stripping, laser adhesion tests, epoxy, polyurethane

Procedia PDF Downloads 73
6252 Spatial Architecture Impact in Mediation Open Circuit Voltage Control of Quantum Solar Cell Recovery Systems

Authors: Moustafa Osman Mohammed

Abstract:

The photocurrent generations are influencing ultra-high efficiency solar cells based on self-assembled quantum dot (QD) nanostructures. Nanocrystal quantum dots (QD) provide a great enhancement toward solar cell efficiencies through the use of quantum confinement to tune absorbance across the solar spectrum enabled multi-exciton generation. Based on theoretical predictions, QDs have potential to improve systems efficiency in approximate regular electrons excitation intensity greater than 50%. In solar cell devices, an intermediate band formed by the electron levels in quantum dot systems. The spatial architecture is exploring how can solar cell integrate and produce not only high open circuit voltage (> 1.7 eV) but also large short-circuit currents due to the efficient absorption of sub-bandgap photons. In the proposed QD system, the structure allows barrier material to absorb wavelengths below 700 nm while multi-photon processes in the used quantum dots to absorb wavelengths up to 2 µm. The assembly of the electronic model is flexible to demonstrate the atoms and molecules structure and material properties to tune control energy bandgap of the barrier quantum dot to their respective optimum values. In terms of energy virtual conversion, the efficiency and cost of the electronic structure are unified outperform a pair of multi-junction solar cell that obtained in the rigorous test to quantify the errors. The milestone toward achieving the claimed high-efficiency solar cell device is controlling the edge causes of energy bandgap between the barrier material and quantum dot systems according to the media design limits. Despite this remarkable potential for high photocurrent generation, the achievable open-circuit voltage (Voc) is fundamentally limited due to non-radiative recombination processes in QD solar cells. The orientation of voltage recovery system is compared theoretically with experimental Voc variation in mediation upper–limit obtained one diode modeling form at the cells with different bandgap (Eg) as classified in the proposed spatial architecture. The opportunity for improvement Voc is valued approximately greater than 1V by using smaller QDs through QD solar cell recovery systems as confined to other micro and nano operations states.

Keywords: nanotechnology, photovoltaic solar cell, quantum systems, renewable energy, environmental modeling

Procedia PDF Downloads 149
6251 Three Dimensional Flexible Dynamics of Continuous Cislunar Payloads Transfer System

Authors: Y. Yang, Dian Ming Xing, Qiu Hua Du

Abstract:

Based on the Motorized Momentum Exchange Tether (MMET), with the principle of momentum exchange, the three dimension flexible dynamics of continuous cislunar payloads transferring system (CCPTS) is built by Lagrange method and its numerical solution is solved by Mathematica software. In the derivation precession of potential energy, this paper uses the Tylor expansion method to simplify the Lagrange equation. Furthermore, the tension coming from the centripetal load is considered in the elastic potential energy. The comparison simulation results between the 3D rigid model and 3D flexible model of CCPTS shows that the tether flexibility has important influence on CCPTS’s orbital parameters (such as radius of CCPTS’s COM and the true anomaly) and the tether’s rotational movement, the relative deviation of radius and the true anomaly between the two dynamic models is about 0.00678% and 0.00259%, the relative deviation of the angle of tether-span and local gravity gradient is about 3.55%. Additionally, the external torque has an apparent influence on the tether’s axial vibration.

Keywords: cislunar transfer, dynamics, momentum exchange, tether

Procedia PDF Downloads 266
6250 Conversion of Tropical Wood to Bio-oil and Charcoal by Using the Process of Pyrolysis

Authors: Kittiphop Promdee, Somruedee Satitkune, Chakkrich Boonmee, Tharapong Vitidsant

Abstract:

Conversion of tropical wood using the process of pyrolysis, which converts tropical wood into fuel products, i.e. bio-oil and charcoal. The results showed the high thermal in the reactor core was thermally controlled between 0-600°C within 60 minutes. The products yield calculation showed that the liquid yield obtained from tropical wood was at its highest at 39.42 %, at 600°C, indicating that the tropical wood had received good yields because of a low gas yield average and high solid and liquid yield average. This research is not only concerned with the controlled temperatures, but also with the controlled screw rotating and feeding rate of biomass.

Keywords: pyrolysis, tropical wood, bio-oil, charcoal, heating value, SEM

Procedia PDF Downloads 473
6249 Control Strategy for a Solar Vehicle Race

Authors: Francois Defay, Martim Calao, Jean Francois Dassieu, Laurent Salvetat

Abstract:

Electrical vehicles are a solution for reducing the pollution using green energy. The shell Eco-Marathon provides rules in order to minimize the battery use for the race. The use of solar panel combined with efficient motor control and race strategy allow driving a 60kg vehicle with one pilot using only the solar energy in the best case. This paper presents a complete modelization of a solar vehicle used for the shell eco-marathon. This project called Helios is cooperation between non-graduated students, academic institutes, and industrials. The prototype is an ultra-energy-efficient vehicle based on one-meter square solar panel and an own-made brushless controller to optimize the electrical part. The vehicle is equipped with sensors and embedded system to provide all the data in real time in order to evaluate the best strategy for the course. A complete modelization with Matlab/Simulink is used to test the optimal strategy to increase the global endurance. Experimental results are presented to validate the different parts of the model: mechanical, aerodynamics, electrical, solar panel. The major finding of this study is to provide solutions to identify the model parameters (Rolling Resistance Coefficient, drag coefficient, motor torque coefficient, etc.) by means of experimental results combined with identification techniques. One time the coefficients are validated, the strategy to optimize the consumption and the average speed can be tested first in simulation before to be implanted for the race. The paper describes all the simulation and experimental parts and provides results in order to optimize the global efficiency of the vehicle. This works have been started four years ago and evolved many students for the experimental and theoretical parts and allow to increase the knowledge on electrical self-efficient vehicle.

Keywords: electrical vehicle, endurance, optimization, shell eco-marathon

Procedia PDF Downloads 261
6248 On Transferring of Transient Signals along Hollow Waveguide

Authors: E. Eroglu, S. Semsit, E. Sener, U.S. Sener

Abstract:

In Electromagnetics, there are three canonical boundary value problem with given initial conditions for the electromagnetic field sought, namely: Cavity Problem, Waveguide Problem, and External Problem. The Cavity Problem and Waveguide Problem were rigorously studied and new results were arised at original works in the past decades. In based on studies of an analytical time domain method Evolutionary Approach to Electromagnetics (EAE), electromagnetic field strength vectors produced by a time dependent source function are sought. The fields are took place in L2 Hilbert space. The source function that performs signal transferring, energy and surplus of energy has been demonstrated with all clarity. Depth of the method and ease of applications are emerged needs of gathering obtained results. Main discussion is about perfect electric conductor and hollow waveguide. Even if well studied time-domain modes problems are mentioned, specifically, the modes which have a hollow (i.e., medium-free) cross-section domain are considered.

Keywords: evolutionary approach to electromagnetics, time-domain waveguide mode, Neumann problem, Dirichlet boundary value problem, Klein-Gordon

Procedia PDF Downloads 323
6247 Numerical Analysis and Design of Dielectric to Plasmonic Waveguides Couplers

Authors: Emanuela Paranhos Lima, Vitaly Félix Rodríguez Esquerre

Abstract:

In this work, efficient directional coupler composed of dielectric waveguides and metallic film has been analyzed in details by simulations using finite element method (FEM). The structure consists of a step-index fiber with dielectric core, silica cladding, and a metal nanowire parallel to the core. The results show that an efficient conversion of optical dielectric modes to long range plasmonic is possible. Low insertion losses in conjunction with short coupling length and a broadband operation can be achieved under certain conditions. This kind of couplers has potential applications for the design of photonic integrated circuits for signal routing between dielectric/plasmonic waveguides, sensing, lithography, and optical storage systems. A high efficient focusing of light in a very small region can be obtained.

Keywords: directional coupler, finite element method, metallic nanowire, plasmonic, surface plasmon polariton, superfocusing

Procedia PDF Downloads 268
6246 Modelling the Photovoltaic Pump Output Using Empirical Data from Local Conditions in the Vhembe District

Authors: C. Matasane, C. Dwarika, R. Naidoo

Abstract:

The mathematical analysis on radiation obtained and the development of the solar photovoltaic (PV) array groundwater pumping is needed in the rural areas of Thohoyandou, Limpopo Province for sizing and power performance subject to the climate conditions within the area. A simple methodology approach is developed for the directed coupled solar, controller and submersible ground water pump system. The system consists of a PV array, pump controller and submerged pump, battery backup and charger controller. For this reason, the theoretical solar radiation obtained for optimal predictions and system performance in order to achieve different design and operating parameters. Here the examination of the PV schematic module in a Direct Current (DC) application is used for obtainable maximum solar power energy for water pumping. In this paper, a simple efficient photovoltaic water pumping system is presented with its theoretical studies and mathematical modeling of photovoltaics (PV) system.

Keywords: renewable energy sources, solar groundwater pumping, theoretical and mathematical analysis of photovoltaic (PV) system, theoretical solar radiation

Procedia PDF Downloads 370
6245 Influence of Acceptor Dopant on the Physicochemical and Transport Properties of Textured BaCe0.5Zr0.3ln0.2O3−Δ Materials (Ln = Yb, Y, Cd, Sm, Nd)

Authors: J. Lyagaeva, D. Medvedev, A. Brouzgou, A. Demin, P. Tsiakaras

Abstract:

The investigation of highly conductive and chemically stable electrolytes for solid oxide fuel cells (SOFC) is a necessity. The aim of the present work is to study the influence of acceptor dopant on the functional properties of textured BaCe0.5Zr0.3Ln0.2O3−δ (Ln = Yb, Y, Gd, Sm, Nd) ceramics. The X-Ray diffraction analysis, scanning electron microscopy, dilatometry and 4-probe dc method of conductivity measurements were used. It was found that the mean grain size of ceramics increases (from 1.4 to 3.2 μm), thermal expansion coefficient grows (from 7.6•10–6 to 10.7•10–6 К–1), but ionic conductivity decreases (from 14 to 3 mS cm–1 at 900°С), when ionic radii of impurity acceptor increases from 0.868 Å (Yb3+) to 0.983 Å (Nd3+).

Keywords: acceptor dopant, crystal structure, proton-conducting, SOFC

Procedia PDF Downloads 368
6244 Urban Rehabilitation Assessment: Buildings' Integrity and Embodied Energy

Authors: Joana Mourão

Abstract:

Transition to a low carbon economy requires changes in consumption and production patterns, including the improvement of existing buildings’ environmental performance. Urban rehabilitation is a top policy priority in Europe, creating an opportunity to increase this performance. However, urban rehabilitation comprises different typologies of interventions with distinct levels of consideration for cultural urban heritage values and for environmental values, thus with different impacts. Cities rely on both material and non-material forms of heritage that are deep-rooted and resilient. One of the most relevant parts of that urban heritage is the historical pre-industrial housing stock, with an extensive presence in many European cities, as Lisbon. This stock is rehabilitated and transformed at the framework of urban management and local governance traditions, as well as the framework of the global economy, and in that context, faces opportunities and threats that need evaluation and control. The scope of this article is to define methodological bases and research lines for the assessment of impacts that urban rehabilitation initiatives set on the vulnerable and historical pre-industrial urban housing stock, considering it as an environmental and cultural unreplaceable material value and resource. As a framework, this article reviews the concepts of urban regeneration, urban renewal, current buildings conservation and refurbishment, and energy refurbishment of buildings, seeking to define key typologies of urban rehabilitation that represent different approaches to the urban fabric, in terms of scope, actors, and priorities. Moreover, main types of interventions - basing on a case-study in a XVIII century neighborhood in Lisbon - are defined and analyzed in terms of the elements lost in each type of intervention, and relating those to urbanistic, architectonic and constructive values of urban heritage, as well as to environmental and energy efficiency. Further, the article overviews environmental cultural heritage assessment and life-cycle assessment tools, selecting relevant and feasible impact assessment criteria for urban buildings rehabilitation regulation, focusing on multi-level urban heritage integrity. Urbanistic, architectonic, constructive and energetic integrity are studied as criteria for impact assessment and specific indicators are proposed. The role of these criteria in sustainable urban management is discussed. Throughout this article, the key challenges for urban rehabilitation planning and management, concerning urban built heritage as a resource for sustainability, are discussed and clarified.

Keywords: urban rehabilitation, impact assessment criteria, buildings integrity, embodied energy

Procedia PDF Downloads 193
6243 Wind Resource Classification and Feasibility of Distributed Generation for Rural Community Utilization in North Central Nigeria

Authors: O. D. Ohijeagbon, Oluseyi O. Ajayi, M. Ogbonnaya, Ahmeh Attabo

Abstract:

This study analyzed the electricity generation potential from wind at seven sites spread across seven states of the North-Central region of Nigeria. Twenty-one years (1987 to 2007) wind speed data at a height of 10m were assessed from the Nigeria Meteorological Department, Oshodi. The data were subjected to different statistical tests and also compared with the two-parameter Weibull probability density function. The outcome shows that the monthly average wind speeds ranged between 2.2 m/s in November for Bida and 10.1 m/s in December for Jos. The yearly average ranged between 2.1m/s in 1987 for Bida and 11.8 m/s in 2002 for Jos. Also, the power density for each site was determined to range between 29.66 W/m2 for Bida and 864.96 W/m2 for Jos, Two parameters (k and c) of the Weibull distribution were found to range between 2.3 in Lokoja and 6.5 in Jos for k, while c ranged between 2.9 in Bida and 9.9m/s in Jos. These outcomes points to the fact that wind speeds at Jos, Minna, Ilorin, Makurdi and Abuja are compatible with the cut-in speeds of modern wind turbines and hence, may be economically feasible for wind-to-electricity at and above the height of 10 m. The study further assessed the potential and economic viability of standalone wind generation systems for off-grid rural communities located in each of the studied sites. A specific electric load profile was developed to suite hypothetic communities, each consisting of 200 homes, a school and a community health center. Assessment of the design that will optimally meet the daily load demand with a loss of load probability (LOLP) of 0.01 was performed, considering 2 stand-alone applications of wind and diesel. The diesel standalone system (DSS) was taken as the basis of comparison since the experimental locations have no connection to a distribution network. The HOMER® software optimizing tool was utilized to determine the optimal combination of system components that will yield the lowest life cycle cost. Sequel to the analysis for rural community utilization, a Distributed Generation (DG) analysis that considered the possibility of generating wind power in the MW range in order to take advantage of Nigeria’s tariff regime for embedded generation was carried out for each site. The DG design incorporated each community of 200 homes, freely catered for and offset from the excess electrical energy generated above the minimum requirement for sales to a nearby distribution grid. Wind DG systems were found suitable and viable in producing environmentally friendly energy in terms of life cycle cost and levelised value of producing energy at Jos ($0.14/kWh), Minna ($0.12/kWh), Ilorin ($0.09/kWh), Makurdi ($0.09/kWh), and Abuja ($0.04/kWh) at a particluar turbine hub height. These outputs reveal the value retrievable from the project after breakeven point as a function of energy consumed Based on the results, the study demonstrated that including renewable energy in the rural development plan will enhance fast upgrade of the rural communities.

Keywords: wind speed, wind power, distributed generation, cost per kilowatt-hour, clean energy, North-Central Nigeria

Procedia PDF Downloads 506
6242 Alcohol and Soda Consumption of University Students in Manila

Authors: Alexi Colleen F. Lim, Inna Felicia I. Agoncillo, Quenniejoy T. Dizon, Jennifer Joyce T. Eti, Carlota Aileen H. Monares, Neil Roy B. Rosales, Joshua F. Santillan, Alyssa Francesca D. S. Tanchuling, Josefina A. Tuazon, Mary Joan Therese C. Valera-Kourdache

Abstract:

Majority of leading causes of mortality in the Philippines are NCDs, which are preventable through control of known risk factors such as smoking, obesity, physical inactivity, and alcohol. Sugar-sweetened beverages such as soda and energy drinks also contribute to NCD risk and are of concern particularly for youth. This study provides baseline data on beverage consumption of university students in Manila with the focus on alcohol and soda. It further aims to identify factors affecting consumption. Specific objectives include: (1) to describe beverage consumption practices of university students in Manila; and (2) to determine factors promoting excessive consumption of alcohol and soda including demographic characteristics, attitude, interpersonal and environmental variables. Methods: The study employed correlational design with randomly selected students from two universities in Manila. Students 18 years or older who agreed to participate were included after obtaining ethical clearance. The study had two instruments: (1) World Health Organization’s Alcohol Use Disorders Identification Test (AUDIT) was used with permission, to determine excessive alcohol consumption; and (2) a questionnaire to obtain information regarding soda and energy drink consumption. Results: Out of 400 students surveyed, 70% were female and 78.75% were 18-20 years old (mean=19.79; SD=3.76). Among them, 51.50% consumed alcohol, with 30.10% excessive drinkers. Soda consumption is 91.50% with 37.70% excessive consumers. For energy drinks, 36.75% consume this and only 4.76% drink excessively. Using logistic regression, students who were more likely to be excessive alcohol drinkers belonged to non-health courses (OR=2.21) and purchased alcohol from bars (OR=7.84). Less likely to drink excessively are students who do not drink due to stress (OR=0.05) and drink when it is accessible (OR=0.02). Excessive soda consumption was less likely for female students (OR=0.28), those who drink when it is accessible (OR=0.14), do not drink soda during stressful situations (OR=0.19), and do not use soda as hangover treatment (OR=0.15). Conclusion: Excessive alcohol consumption was greater among students in Manila (30.10%) than in US (20%). Drinking alcohol with friends was not related to excessive consumption but availability in bars was. It is expected that health sciences students are less likely to engage in excessive alcohol as they are more aware of its ill effects. Prevalence of soda consumption in Manila (91.50%) is markedly higher compared to 24.5% in the US. These findings can inform schools in developing appropriate health education interventions and policies. For greater understanding of these behaviors and factors, further studies are recommended to explore knowledge and other factors that may promote excessive consumption.

Keywords: alcohol consumption, beverage consumption, energy drinks consumption, soda consumption, university students

Procedia PDF Downloads 274
6241 Integrated Grey Rational Analysis-Standard Deviation Method for Handover in Heterogeneous Networks

Authors: Mohanad Alhabo, Naveed Nawaz, Mahmoud Al-Faris

Abstract:

The dense deployment of small cells is a promising solution to enhance the coverage and capacity of the heterogeneous networks (HetNets). However, the unplanned deployment could bring new challenges to the network ranging from interference, unnecessary handovers and handover failures. This will cause a degradation in the quality of service (QoS) delivered to the end user. In this paper, we propose an integrated Grey Rational Analysis Standard Deviation based handover method (GRA-SD) for HetNet. The proposed method integrates the Standard Deviation (SD) technique to acquire the weight of the handover metrics and the GRA method to select the best handover base station. The performance of the GRA-SD method is evaluated and compared with the traditional Multiple Attribute Decision Making (MADM) methods including Simple Additive Weighting (SAW) and VIKOR methods. Results reveal that the proposed method has outperformed the other methods in terms of minimizing the number of frequent unnecessary handovers and handover failures, in addition to improving the energy efficiency.

Keywords: energy efficiency, handover, HetNets, MADM, small cells

Procedia PDF Downloads 111
6240 Investigation of Biochar from Banana Peel

Authors: Anurita Selvarajoo, Svenja Hanson

Abstract:

Growing energy needs and increasing environmental issues are creating awareness for alternative energy which substitutes the non-renewable and polluting fossil fuels. Agricultural wastes are a good feedstock for biochar production through the pyrolysis process. There is potential to generate solid fuel from agricultural wastes, as there are large quantities of agricultural wastes available in Malaysia. This paper outlines the experimental study on the pyrolysis of banana peel. The effects of pyrolysis temperatures on the yield of biochar from the banana peel were investigated. Banana peel was pyrolysed in a horizontal tubular reactor under inert atmosphere by varying the temperatures between 300 and 700 0C. With increasing temperature, the total biochar yield decreased with increased heating value. It was found that the pyrolysis temperature had major effect on the yield of biochar product. It also exerted major influence on the heating value and C,H and O composition. The obtained biochar ranged between 31.9 to 56.7 %wt, at different pyrolysis temperatures. The optimum biochar yield was obtained at 325 0C. Biochar yield obtained at optimum temperature was 47 % wt with a heating value of 25.9 MJ kg-1. The study has been performed in order to demonstrate that agricultural wastes like banana peel are also important source of solid fuel.

Keywords: agricultural Wastes, banana peel, biochar, pyrolysis

Procedia PDF Downloads 291
6239 Interoperable Design Coordination Method for Sharing Communication Information Using Building Information Model Collaboration Format

Authors: Jin Gang Lee, Hyun-Soo Lee, Moonseo Park

Abstract:

The utilization of BIM and IFC allows project participants to collaborate across different areas by consistently sharing interoperable product information represented in a model. Comments or markups generated during the coordination process can be categorized as communication information, which can be shared in less standardized manner. It can be difficult to manage and reuse such information compared to the product information in a model. The present study proposes an interoperable coordination method using BCF (the BIM Collaboration Format) for managing and sharing the communication information during BIM based coordination process. A management function for coordination in the BIM collaboration system is developed to assess its ability to share the communication information in BIM collaboration projects. This approach systematically links communication information during the coordination process to the building model and serves as a type of storage system for retrieving knowledge created during BIM collaboration projects.

Keywords: design coordination, building information model, BIM collaboration format, industry foundation classes

Procedia PDF Downloads 424