Search results for: ion temperature gradient mode
2308 In-situ Oxygen Enrichment for Underground Coal Gasification
Authors: Adesola O. Orimoloye, Edward Gobina
Abstract:
Membrane separation technology is still considered as an emerging technology in the mining sector and does not yet have the widespread acceptance that it has in other industrial sectors. Underground Coal Gasification (UCG), wherein coal is converted to gas in-situ, is a safer alternative to mining method that retains all pollutants underground making the process environmentally friendly. In-situ combustion of coal for power generation allows access to more of the physical global coal resource than would be included in current economically recoverable reserve estimates. Where mining is no longer taking place, for economic or geological reasons, controlled gasification permits exploitation of the deposit (again a reaction of coal to form a synthesis gas) of coal seams in situ. The oxygen supply stage is one of the most expensive parts of any gasification project but the use of membranes is a potentially attractive approach for producing oxygen-enriched air. In this study, a variety of cost-effective membrane materials that gives an optimal amount of oxygen concentrations in the range of interest was designed and tested at diverse operating conditions. Oxygen-enriched atmosphere improves the combustion temperature but a decline is observed if oxygen concentration exceeds optimum. Experimental result also reveals the preparatory method, apparatus and performance of the fabricated membrane.Keywords: membranes, oxygen-enrichment, gasification, coal
Procedia PDF Downloads 4602307 Seed Germination, Seedling Emergence and Response to Herbicides of Papaver Species (Papaver rhoeas and P. dubium)
Authors: Faezeh Zaefarian1, Sajedeh Golmohammadzadeh, Mohammad Rezvani
Abstract:
Weed management decisions for weed species can be derived from knowledge of seed germination biology. Experiments were conducted in laboratory and greenhouse to determine the effects of light, temperature, salt and water stress, seed burial depth on seed germination and seedling emergence of Papaver rhoeas and P.dubium and to assay the response of these species to commonly available POST herbicides. Germination of the Papaver seeds was influenced by the tested temperatures (day/night temperatures of 20 and 25 °C) and light. The concentrations of sodium chloride, ranging from 0 to 80 mM, influence germination of seeds. The osmotic potential required for 50% inhibition of maximum germination of P. rhoeas was -0.27 MPa and for P. dubium species was 0.25 MPa. Seedling emergence was greatest for the seeds placed at 1 cm and emergence declined with increased burial depth in the soil. No seedlings emerged from a burial depth of 6 cm. The herbicide 2,4-D at 400 g ai ha-1 provided excellent control of both species when applied at the four-leaf and six-leaf stages. However, at the six-leaf stage, percent control was reduced. The information gained from this study could contribute to developing components of integrated weed management strategies for Papaver species.Keywords: germination, papaver species, planting depth, POST herbicides
Procedia PDF Downloads 2442306 Physical Properties and Elastic Studies of Fluoroaluminate Glasses Based on Alkali
Authors: C. Benhamideche
Abstract:
Fluoroaluminate glasses have been reported as the earliest heavy metal fluoride glasses. By comparison with flurozirconate glasses, they offer a set of similar optical features, but also some differences in their elastic and chemical properties. In practice they have been less developed because their stability against devitrification is smaller than that of the most stable fluoroziconates. The purpose of this study was to investigate glass formation in systems AlF3-YF3-PbF2-MgF2-MF2 (M= Li, Na, K). Synthesis was implemented at room atmosphere using the ammonium fluoride processing. After fining, the liquid was into a preheated brass mold, then annealed below the glass transition temperature for several hours. The samples were polished for optical measurements. Glass formation has been investigated in a systematic way, using pseudo ternary systems in order to allow parameters to vary at the same time. We have chosen the most stable glass compositions for the determination of the physical properties. These properties including characteristic temperatures, density and proprieties elastic. Glass stability increases in multicomponent glasses. Bulk samples have been prepared for physical characterization. These glasses have a potential interest for passive optical fibers because they are less sensitive to water attack than ZBLAN glass, mechanically stronger. It is expected they could have a larger damage threshold for laser power transmission.Keywords: fluoride glass, aluminium fluoride, thermal properties, density, proprieties elastic
Procedia PDF Downloads 2412305 Juniperus thurefera Multiplication Tests by Cauttigs in Aures, Algeria
Authors: N. Khater, S. A. Menina, H. Benbouza
Abstract:
Juniperus thurefera is an endemic cupressacée constitutes a forest cover in the mountains of Aures (Algeria). It is a heritage and important ecological richness but continues to decline, highly endangered species in danger of extinction, these populations show significant originality due to climatic conditions of the environment, because of its strength and extraordinary vitality, made a powerful but fragile and unique ecosystem in which natural regeneration by seed is almost absent in Algeria. Because of the quality of seeds that are either dormant or affected at the tree and the ground level by a large number of pests and parasites, which will lead to the total disappearance of this species and consequently leading to the biodiversity. View the ecological and socio- economic interest presented by this case, it deserves to be preserved and produced in large quantities in this respect. The present work aims to try to regenerate the Juniperus thurefera via vegetative propagation. We studied the potential of cuttings to form adventitious roots and buds. Cuttings were taken from young subjects from 5 to 20 years treated with indole butyric acid (AIB) and planted out-inside perlite under atomizer whose temperature and light are controlled. Results indicated that the percentage of developing buds on cuttings is better than the rooting ones.Keywords: Juniperus thurefera, indole butyric acid, cutting, buds, rooting
Procedia PDF Downloads 2712304 Visual Aid and Imagery Ramification on Decision Making: An Exploratory Study Applicable in Emergency Situations
Authors: Priyanka Bharti
Abstract:
Decades ago designs were based on common sense and tradition, but after an enhancement in visualization technology and research, we are now able to comprehend the cognitive ability involved in the decoding of the visual information. However, many fields in visuals need intense research to deliver an efficient explanation for the events. Visuals are an information representation mode through images, symbols and graphics. It plays an impactful role in decision making by facilitating quick recognition, comprehension, and analysis of a situation. They enhance problem-solving capabilities by enabling the processing of more data without overloading the decision maker. As research proves that, visuals offer an improved learning environment by a factor of 400 compared to textual information. Visual information engages learners at a cognitive level and triggers the imagination, which enables the user to process the information faster (visuals are processed 60,000 times faster in the brain than text). Appropriate information, visualization, and its presentation are known to aid and intensify the decision-making process for the users. However, most literature discusses the role of visual aids in comprehension and decision making during normal conditions alone. Unlike emergencies, in a normal situation (e.g. our day to day life) users are neither exposed to stringent time constraints nor face the anxiety of survival and have sufficient time to evaluate various alternatives before making any decision. An emergency is an unexpected probably fatal real-life situation which may inflict serious ramifications on both human life and material possessions unless corrective measures are taken instantly. The situation demands the exposed user to negotiate in a dynamic and unstable scenario in the absence or lack of any preparation, but still, take swift and appropriate decisions to save life/lives or possessions. But the resulting stress and anxiety restricts cue sampling, decreases vigilance, reduces the capacity of working memory, causes premature closure in evaluating alternative options, and results in task shedding. Limited time, uncertainty, high stakes and vague goals negatively affect cognitive abilities to take appropriate decisions. More so, theory of natural decision making by experts has been understood with far more depth than that of an ordinary user. Therefore, in this study, the author aims to understand the role of visual aids in supporting rapid comprehension to take appropriate decisions during an emergency situation.Keywords: cognition, visual, decision making, graphics, recognition
Procedia PDF Downloads 2682303 Morphological Process of Villi Detachment Assessed by Computer-Assisted 3D Reconstruction of Intestinal Crypt from Serial Ultrathin Sections of Rat Duodenum Mucosa
Authors: Lise P. Labéjof, Ivna Mororó, Raquel G. Bastos, Maria Isabel G. Severo, Arno H. de Oliveira
Abstract:
This work presents an alternative mode of intestine mucosa renewal that may allow to better understand the total loss of villi after irradiation. It was tested a morphological method of 3d reconstruction using micrographs of serial sections of rat duodenum. We used hundreds of sections of each specimen of duodenum placed on glass slides and examined under a light microscope. Those containing the detachment, approximately a dozen, were chosen for observation under a transmission electron microscope (TEM). Each of these sections was glued on a block of epon resin and recut into a hundred of 60 nm-thick sections. Ribbons of these ultrathin sections were distributed on a series of copper grids in the same order of appearance than during the process of microstomia. They were then stained by solutions of uranyl and lead salts and observed under a TEM. The sections were pictured and the electron micrographs showing signs of cells detachment were transferred into two softwares, ImageJ to align the cellular structures and Reconstruct to realize the 3d reconstruction. It has been detected epithelial cells that exhibited all signs of programmed cell death and localized at the villus-crypt junction. Their nucleus was irregular in shape with a condensed chromatin in clumps. Their cytoplasm was darker than that of neighboring cells, containing many swollen mitochondria. In some places of the sections, we could see intercellular spaces enlarged by the presence of shrunk cells which displayed a plasma membrane with an irregular shape in thermowell as if the cell interdigitations would distant from each other. The three-dimensional reconstruction of the crypts has allowed observe gradual loss of intercellular contacts of crypt cells in the longitudinal plan of the duodenal mucosa. In the transverse direction, there was a gradual increase of the intercellular space as if these cells moved away from one another. This observation allows assume that the gradual remoteness of the cells at the villus-crypt junction is the beginning of the mucosa detachment. Thus, the shrinking of cells due to apoptosis is the way that they detach from the mucosa and progressively the villi also. These results are in agreement with our initial hypothesis and thus have demonstrated that the villi become detached from the mucosa at the villus-crypt junction by the programmed cell death process. This type of loss of entire villus helps explain the rapid denudation of the intestinal mucosa in case of irradiation.Keywords: 3dr, transmission electron microscopy, ionizing radiations, rat small intestine, apoptosis
Procedia PDF Downloads 3782302 Failure and Stress Analysis of Super Heater Tubes of a 67 TPH Coke Dry Quenching Boiler
Authors: Subodh N. Patel, Abhijit Pusty, Manashi Adhikary, Sandip Bhattacharyya
Abstract:
The steam superheater (SH) is a coil type heat exchanger which is used to produce superheated steam or to convert the wet steam to dry steam (69.6 kg/cm² and 495°C), generated by a boiler. There were two superheaters in the system, SH I and SH II. SH II is a set of tubes that faces the initial interaction with flue gas at high temperature followed by SH I tubes. After a service life of 2100 hours, a tube in the SH II found to be punctured. Dye penetrant test revealed that out of 50 such tubes, 14 more tubes had severe cracks at a similar location. The failure was investigated in detail. The materials and scale were characterized by optical microscope and advance characterization technique. Scale, observed on fracture surface, was characterized under scanning electron microscope and Raman spectroscopy. Stresses acting on the tubes in working condition were analyzed by finite element method software, ANSYS. Cyclic stresses were observed in the simulation at the same prone location due to restriction in expansion of tubes. Based on scale characterization and stress analysis, it was concluded that the tube failed in thermo-mechanical fatigue. Finally, prevention and control measures were taken to avoid such failure in the future.Keywords: finite element analysis, oxide scale, superheater tube, thermomechanical fatigue
Procedia PDF Downloads 1172301 TiO2 Formation after Nanotubes Growth on Ti-15Mo Alloy Surface for Different Annealing Temperatures
Authors: A. L. R. Rangel, J. A. M. Chaves, A. P. R. Alves Claro
Abstract:
Surface modification of titanium and its alloys using TiO2 nanotube growth has been widely studied for biomedical field due to excellent interaction between implant and biological environment. The success of this treatment is directly related to anatase phase formation (TiO2 phase) which affects the cells growth. The aim of this study was to evaluate the phases formed in the nanotubes growth on the Ti-15Mo surface. Nanotubes were grown by electrochemical anodization of the alloy in ammonium fluoride based glycerol electrolyte for 24 hours at 20V. Then, the samples were annealed at 200°,400°, 450°, 500°, 600°, and 800° C for 1 hour. Contact angles measurements, scanning electron microscopy images and X rays diffraction analysis (XRD) were carried out for all samples. Raman Spectroscopy was used to evaluate TiO2 phases transformation in nanotubes samples as well. The results of XRD showed anatase formation for lower temperatures, while at 800 ° C the rutile phase was observed all over the surface. Raman spectra indicate that this phase transition occurs between 500 and 600 °C. The different phases formed have influenced the nanotubes morphologies, since higher annealing temperatures induced agglutination of the TiO2 layer, disrupting the tubular structure. On the other hand, the nanotubes drastically reduced the contact angle, regardless the annealing temperature.Keywords: nanotubes, TiO2, titanium alloys, Ti-15Mo
Procedia PDF Downloads 3842300 Determination of Inflow Performance Relationship for Naturally Fractured Reservoirs: Numerical Simulation Study
Authors: Melissa Ramirez, Mohammad Awal
Abstract:
The Inflow Performance Relationship (IPR) of a well is a relation between the oil production rate and flowing bottom-hole pressure. This relationship is an important tool for petroleum engineers to understand and predict the well performance. In the petroleum industry, IPR correlations are used to design and evaluate well completion, optimizing well production, and designing artificial lift. The most commonly used IPR correlations models are Vogel and Wiggins, these models are applicable to homogeneous and isotropic reservoir data. In this work, a new IPR model is developed to determine inflow performance relationship of oil wells in a naturally fracture reservoir. A 3D black-oil reservoir simulator is used to develop the oil mobility function for the studied reservoir. Based on simulation runs, four flow rates are run to record the oil saturation and calculate the relative permeability for a naturally fractured reservoir. The new method uses the result of a well test analysis along with permeability and pressure-volume-temperature data in the fluid flow equations to obtain the oil mobility function. Comparisons between the new method and two popular correlations for non-fractured reservoirs indicate the necessity for developing and using an IPR correlation specifically developed for a fractured reservoir.Keywords: inflow performance relationship, mobility function, naturally fractured reservoir, well test analysis
Procedia PDF Downloads 2832299 Synthesis and Characterization of SnO2: Ti Thin Films Spray-Deposited on Optical Glass
Authors: Demet Tatar, Bahattin Düzgün
Abstract:
In this study, we have newly developed titanium-tin oxide (TiSnO) thin films as the transparent conducting oxides materials by the spray pyrolysis technique. Tin oxide thin films doped with different Ti content were successfully grown by spray pyrolysis and they were characterized as a function of Ti content. The effect of Ti contents on the crystalline structure and optical properties of the as-deposited SnO2:Ti films was systematically investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM), atomic force microscopy (AFM), UV-vis spectrometer and photoluminecenc spectrophotometer. The X-ray diffraction patterns taken at room temperature showed that the films are polycrystalline. The preferred directions of crystal growth appeared in the difractogram of SnO2: Ti (TiTO) films were correspond to the reflections from the (110), (200), (211) and (301) planes. The grain size varies from 21.8 to 27.8 nm for (110) preferred plane. SEM and AFM study reveals the surface of TiTO to be made of nanocrystalline particles. The highest visible transmittance (570 nm) of the deposited films is 80 % for 20 wt % titanium doped tin oxide films. The obtained results revealed that the structures and optical properties of the films were greatly affected by doping levels. These films are useful as conducting layers in electro chromic and photovoltaic devices.Keywords: transparent conducting oxide, gas sensors, SnO2, Ti, optoelectronic, spray pyrolysis
Procedia PDF Downloads 3852298 Numerical Investigation of Hot Oil Velocity Effect on Force Heat Convection and Impact of Wind Velocity on Convection Heat Transfer in Receiver Tube of Parabolic Trough Collector System
Authors: O. Afshar
Abstract:
A solar receiver is designed for operation under extremely uneven heat flux distribution, cyclic weather, and cloud transient cycle conditions, which can include large thermal stress and even receiver failure. In this study, the effect of different oil velocity on convection coefficient factor and impact of wind velocity on local Nusselt number by Finite Volume Method will be analyzed. This study is organized to give an overview of the numerical modeling using a MATLAB software, as an accurate, time efficient and economical way of analyzing the heat transfer trends over stationary receiver tube for different Reynolds number. The results reveal when oil velocity is below 0.33m/s, the value of convection coefficient is negligible at low temperature. The numerical graphs indicate that when oil velocity increases up to 1.2 m/s, heat convection coefficient increases significantly. In fact, a reduction in oil velocity causes a reduction in heat conduction through the glass envelope. In addition, the different local Nusselt number is reduced when the wind blows toward the concave side of the collector and it has a significant effect on heat losses reduction through the glass envelope.Keywords: receiver tube, heat convection, heat conduction, Nusselt number
Procedia PDF Downloads 3562297 Non-Centrifugal Cane Sugar Production: Heat Transfer Study to Optimize the Use of Energy
Authors: Fabian Velasquez, John Espitia, Henry Hernadez, Sebastian Escobar, Jader Rodriguez
Abstract:
Non-centrifuged cane sugar (NCS) is a concentrated product obtained through the evaporation of water contain from sugarcane juice inopen heat exchangers (OE). The heat supplied to the evaporation stages is obtained from the cane bagasse through the thermochemical process of combustion, where the thermal energy released is transferred to OE by the flue gas. Therefore, the optimization of energy usage becomes essential for the proper design of the production process. For optimize the energy use, it is necessary modeling and simulation of heat transfer between the combustion gases and the juice and to understand the major mechanisms involved in the heat transfer. The main objective of this work was simulated heat transfer phenomena between the flue gas and open heat exchangers using Computational Fluid Dynamics model (CFD). The simulation results were compared to field measured data. Numerical results about temperature profile along the flue gas pipeline at the measurement points are in good accordance with field measurements. Thus, this study could be of special interest in design NCS production process and the optimization of the use of energy.Keywords: mathematical modeling, design variables, computational fluid dynamics, overall thermal efficiency
Procedia PDF Downloads 1252296 Simulation Studies of Solid-Particle and Liquid-Drop Erosion of NiAl Alloy
Authors: Rong Liu, Kuiying Chen, Ju Chen, Jingrong Zhao, Ming Liang
Abstract:
This article presents modeling studies of NiAl alloy under solid-particle erosion and liquid-drop erosion. In the solid particle erosion simulation, attention is paid to the oxide scale thickness variation on the alloy in high-temperature erosion environments. The erosion damage is assumed to be deformation wear and cutting wear mechanisms, incorporating the influence of the oxide scale on the eroded surface; thus the instantaneous oxide thickness is the result of synergetic effect of erosion and oxidation. For liquid-drop erosion, special interest is in investigating the effects of drop velocity and drop size on the damage of the target surface. The models of impact stress wave, mean depth of penetration, and maximum depth of erosion rate (Max DER) are employed to develop various maps for NiAl alloy, including target thickness vs. drop size (diameter), rate of mean depth of penetration (MDRP) vs. drop impact velocity, and damage threshold velocity (DTV) vs. drop size.Keywords: liquid-drop erosion, NiAl alloy, oxide scale thickness, solid-particle erosion
Procedia PDF Downloads 5752295 Orientational Pair Correlation Functions Modelling of the LiCl6H2O by the Hybrid Reverse Monte Carlo: Using an Environment Dependence Interaction Potential
Authors: Mohammed Habchi, Sidi Mohammed Mesli, Rafik Benallal, Mohammed Kotbi
Abstract:
On the basis of four partial correlation functions and some geometric constraints obtained from neutron scattering experiments, a Reverse Monte Carlo (RMC) simulation has been performed in the study of the aqueous electrolyte LiCl6H2O at the glassy state. The obtained 3-dimensional model allows computing pair radial and orientational distribution functions in order to explore the structural features of the system. Unrealistic features appeared in some coordination peaks. To remedy to this, we use the Hybrid Reverse Monte Carlo (HRMC), incorporating an additional energy constraint in addition to the usual constraints derived from experiments. The energy of the system is calculated using an Environment Dependence Interaction Potential (EDIP). Ions effects is studied by comparing correlations between water molecules in the solution and in pure water at room temperature Our results show a good agreement between experimental and computed partial distribution functions (PDFs) as well as a significant improvement in orientational distribution curves.Keywords: LiCl6H2O, glassy state, RMC, HRMC
Procedia PDF Downloads 4712294 Electrochemical Treatment and Chemical Analyses of Tannery Wastewater Using Sacrificial Aluminum Electrode, Ethiopia
Authors: Dessie Tibebe, Muluken Asmare, Marye Mulugeta, Yezbie Kassa, Zerubabel Moges, Dereje Yenealem, Tarekegn Fentie, Agmas Amare
Abstract:
The performance of electrocoagulation (EC) using Aluminium electrodes for the treatment of effluent-containing chromium metal using a fixed bed electrochemical batch reactor was studied. In the present work, the efficiency evaluation of EC in removing physicochemical and heavy metals from real industrial tannery wastewater in the Amhara region, collected from Bahirdar, Debre Brihan, and Haik, was investigated. The treated and untreated samples were determined by AAS and ICP OES spectrophotometers. The results indicated that selected heavy metals were removed in all experiments with high removal percentages. The optimal results were obtained regarding both cost and electrocoagulation efficiency with initial pH = 3, initial concentration = 40 mg/L, electrolysis time = 30 min, current density = 40 mA/cm2, and temperature = 25oC favored metal removal. The maximum removal percentages of selected metals obtained were 84.42% for Haik, 92.64% for Bahir Dar and 94.90% for Debre Brihan. The sacrificial electrode and sludge were characterized by FT-IR, SEM and XRD. After treatment, some metals like chromium will be used again as a tanning agent in leather processing to promote a circular economy.Keywords: electrochemical, treatment, aluminum, tannery effluent
Procedia PDF Downloads 1102293 Numerical Study on the Performance of Upgraded Victorian Brown Coal in an Ironmaking Blast Furnace
Authors: Junhai Liao, Yansong Shen, Aibing Yu
Abstract:
A 3D numerical model is developed to simulate the complicated in-furnace combustion phenomena in the lower part of an ironmaking blast furnace (BF) while using pulverized coal injection (PCI) technology to reduce the consumption of relatively expensive coke. The computational domain covers blowpipe-tuyere-raceway-coke bed in the BF. The model is validated against experimental data in terms of gaseous compositions and coal burnout. Parameters, such as coal properties and some key operational variables, play an important role on the performance of coal combustion. Their diverse effects on different combustion characteristics are examined in the domain, in terms of gas compositions, temperature, and burnout. The heat generated by the combustion of upgraded Victorian brown coal is able to meet the heating requirement of a BF, hence making upgraded brown coal injected into BF possible. It is evidenced that the model is suitable to investigate the mechanism of the PCI operation in a BF. Prediction results provide scientific insights to optimize and control of the PCI operation. This model cuts the cost to investigate and understand the comprehensive combustion phenomena of upgraded Victorian brown coal in a full-scale BF.Keywords: blast furnace, numerical study, pulverized coal injection, Victorian brown coal
Procedia PDF Downloads 2432292 Strategies to Improve Heat Stress Tolerance in Chickpea and Dissecting the Cross Talk Mechanism
Authors: Renu Yadav, Sanjeev Kumar
Abstract:
In northern India, chickpea (Cicer arietinum L.) come across with terminal high-temperature stress during reproductive stage which leads to reduced yield. Hence, stable production of chickpea will depend on the development of new methods like ‘priming’ which allow improved adaptation to the drought and heat stress. In the present experiment, 11-day chickpea seedling was primed with mild drought stress and put on recovery stage by irrigating and finally 30-day seedlings were exposed to heat stress 38°C (4 hours), 35°C (8 hours) and 32°C (12 hours). To study the effect of combinatorial stress, heat and drought stress was applied simultaneously. Analyses of various physiological parameters like membrane damage assay, photosynthetic pigments, antioxidative enzyme, total sugars were estimated at all stages. To study the effect of heat stress on the metabolites of the plants, GC-MS and HPLC were performed, while at transcriptional level Real-Time PCR of predicted heat stress-related genes was done. It was concluded that the heat stress significantly affected the chickpea plant at physiological and molecular level in all the five varieties. Results also show less damaging effect in primed plants by increasing the activity of antioxidative enzymes and increased expression of heat shock proteins and heat shock factors.Keywords: chickpea, combinatorial stress, heat stress, oxidative stress, priming, RT-PCR
Procedia PDF Downloads 1612291 Liquid-Liquid Extraction of Rare Earths Elements by Use of Ionic Liquids
Authors: C. Lopez, S. Dourdain, G. Arrachart, S. Pellet-Rostaing
Abstract:
Ionic liquids (ILs) are considered a good alternative for organic solvents in extractive processes; however, the higher or lower extraction efficiency in ILs remains difficult to predict because a lack of understanding of the extraction mechanisms in this class of diluents, making their application difficult to generalize. We have studied the extraction behavior of La(III) and Eu(III) from aqueous solution into n-dodecane and two ionic liquids (ILs), 1-ethyl-1-butylpiperidinium bis (trifluoromethylsulfonyl)imide [EBPip⁺] [NTf₂⁻] and 1-ethyl-1-octylpiperidinium bis (trifluoromethylsulfonyl)imide [EOPip⁺] [NTf₂⁻], at room temperature using N,N’- dimethyl- N,N’-dioctylhexylethoxymalonamide (DMDOHEMA) as extractant. Fe(III) was introduced to the aqueous phase in order to study the selectivity toward La(III) and Eu(III) and the effect of variation of PH was investigated by using of several HNO₃ concentrations. We found that the ionic liquid with shorter alkyl chain [EBPip⁺] [NTf₂⁻] showed a higher extraction ability than [EOPip⁺] [NTf₂⁻] and that the use of ILs as organic solvent instead n-dodecane, greatly enhanced the extraction percentage of the target metals with a good selectivity. Cation ([EBPip⁺] or [EOPip⁺]) and anion ([NTf₂⁻]) concentration in the aqueous phase, has been determined in order to elucidate the extraction mechanism.Keywords: extraction mechanism, ionic liquids, rare earths elements, solvent extraction
Procedia PDF Downloads 1182290 Viscoelastic Behaviour of Hyaluronic Acid Copolymers
Authors: Loredana Elena Nita, Maria Bercea, Aurica P. Chiriac, Iordana Neamtu
Abstract:
The paper is devoted to the behavior of gels based on poly(itaconic anhydride-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5) undecane) copolymers, with different ratio between the comonomers, and hyaluronic acid (HA). The gel formation was investigated by small-amplitude oscillatory shear measurements following the viscoelastic behavior as a function of gel composition, temperature and shear conditions. Hyaluronic acid was investigated in the same conditions and its rheological behavior is typical to viscous fluids. In the case of the copolymers, the ratio between the two comonomers influences the viscoelastic behavior, a higher content of itaconic anhydride favoring the gel formation. Also, the sol-gel transition was evaluated according to Winter-Chambon criterion that identifies the gelation point when the viscoelastic moduli (G’ and G”) behave similarly as a function of oscillation frequency. From rheological measurements, an optimum composition was evidenced for which the system presents a typical gel-like behavior at 37 °C: the elastic modulus is higher than the viscous modulus and they are not dependent on the oscillation frequency. The formation of the 3D macroporous network was also evidenced by FTIR spectra, SEM microscopy and chemical imaging. These hydrogels present a high potential as drug delivery systems.Keywords: copolymer, viscoelasticity, gelation, 3D network
Procedia PDF Downloads 2872289 A Smart Monitoring System for Preventing Gas Risks in Indoor
Authors: Gyoutae Park, Geunjun Lyu, Yeonjae Lee, Jaheon Gu, Sanguk Ahn, Hiesik Kim
Abstract:
In this paper, we propose a system for preventing gas risks through the use of wireless communication modules and intelligent gas safety appliances. Our system configuration consists of an automatic extinguishing system, detectors, a wall-pad, and a microcomputer controlled micom gas meter to monitor gas flow and pressure as well as the occurrence of earthquakes. The automatic fire extinguishing system checks for both combustible gaseous leaks and monitors the environmental temperature, while the detector array measures smoke and CO gas concentrations. Depending on detected conditions, the micom gas meter cuts off an inner valve and generates a warning, the automatic fire-extinguishing system cuts off an external valve and sprays extinguishing materials, or the sensors generate signals and take further action when smoke or CO are detected. Information on intelligent measures taken by the gas safety appliances and sensors are transmitted to the wall-pad, which in turn relays this as real time data to a server that can be monitored via an external network (BcN) connection to a web or mobile application for the management of gas safety. To validate this smart-home gas management system, we field-tested its suitability for use in Korean apartments under several scenarios.Keywords: gas sensor, leak, gas safety, gas meter, gas risk, wireless communication
Procedia PDF Downloads 4142288 Meticulous Doxorubicin Release from pH-Responsive Nanoparticles Entrapped within an Injectable Thermoresponsive Depot
Authors: Huayang Yu, Nicola Ingram, David C. Green, Paul D. Thornton
Abstract:
The dual stimuli-controlled release of doxorubicin from gel-embedded nanoparticles is reported. Non-cytotoxic polymer nanoparticles are formed from poly(ethylene glycol)-b-poly(benzyl glutamate) that, uniquely, contain a central ester link. This connection renders the nanoparticles pH-responsive, enabling extensive doxorubicin release in acidic solutions (pH 6.5), but not in solutions of physiological pH (pH 7.4). Doxorubicin loaded nanoparticles were found to be stable for at least 31 days and lethal against the three breast cancer cell lines tested. Furthermore, doxorubicin-loaded nanoparticles could be incorporated within a thermoresponsive poly(2-hydroxypropyl methacrylate) gel depot, which forms immediately upon injection of poly(2-hydroxypropyl methacrylate) into aqueous solution. The combination of the poly(2-hydroxypropyl methacrylate) gel and poly(ethylene glycol)-b-poly(benzyl glutamate) nanoparticles yields an injectable doxorubicin delivery system that facilities near-complete drug release when maintained at elevated temperatures (37 °C) in acidic solution (pH 6.5). In contrast, negligible payload release occurs when the material is stored at room temperature in a non-acidic solution (pH 7.4). The system has great potential as a vehicle for the prolonged, site-specific release of chemotherapeutics.Keywords: biodegradable, nanoparticle, polymer, thermoresponsive
Procedia PDF Downloads 1362287 Energy Efficiency Analysis of Discharge Modes of an Adiabatic Compressed Air Energy Storage System
Authors: Shane D. Inder, Mehrdad Khamooshi
Abstract:
Efficient energy storage is a crucial factor in facilitating the uptake of renewable energy resources. Among the many options available for energy storage systems required to balance imbalanced supply and demand cycles, compressed air energy storage (CAES) is a proven technology in grid-scale applications. This paper reviews the current state of micro scale CAES technology and describes a micro-scale advanced adiabatic CAES (A-CAES) system, where heat generated during compression is stored for use in the discharge phase. It will also describe a thermodynamic model, developed in EES (Engineering Equation Solver) to evaluate the performance and critical parameters of the discharge phase of the proposed system. Three configurations are explained including: single turbine without preheater, two turbines with preheaters, and three turbines with preheaters. It is shown that the micro-scale A-CAES is highly dependent upon key parameters including; regulator pressure, air pressure and volume, thermal energy storage temperature and flow rate and the number of turbines. It was found that a micro-scale AA-CAES, when optimized with an appropriate configuration, could deliver energy input to output efficiency of up to 70%.Keywords: CAES, adiabatic compressed air energy storage, expansion phase, micro generation, thermodynamic
Procedia PDF Downloads 3112286 Optimal Evaluation of Weather Risk Insurance for Wheat
Authors: Slim Amami
Abstract:
A model is developed to prevent the risks related to climate conditions in the agricultural sector. It will determine the yearly optimum premium to be paid by a farmer in order to reach his required turnover. The model is mainly based on both climatic stability and 'soft' responses of usually grown species to average climate variations at the same place and inside a safety ball which can be determined from past meteorological data. This allows the use of linear regression expression for dependence of production result in terms of driving meteorological parameters, main ones of which are daily average sunlight, rainfall and temperature. By a simple best parameter fit from the expert table drawn with professionals, optimal representation of yearly production is deduced from records of previous years, and yearly payback is evaluated from minimum yearly produced turnover. Optimal premium is then deduced, and gives the producer a useful bound for negotiating an offer by insurance companies to effectively protect their harvest. The application to wheat production in the French Oise department illustrates the reliability of the present model with as low as 6% difference between predicted and real data. The model can be adapted to almost every agricultural field by changing state parameters and calibrating their associated coefficients.Keywords: agriculture, database, meteorological factors, production model, optimal price
Procedia PDF Downloads 2222285 Comparative Study in Evaluating the Antioxidation Efficiency for Native Types Antioxidants Extracted from Crude Oil with the Synthesized Class
Authors: Mohammad Jamil Abd AlGhani
Abstract:
The natural native antioxidants N,N-P-methyl phenyl acetone and N,N-phenyl acetone were isolated from the Iraqi crude oil region of Kirkuk by ion exchange and their structure was characterized by spectral and chemical analysis methods. Tetraline was used as a liquid hydrocarbon to detect the efficiency of isolated molecules at elevated temperature (393 K) that it has physicochemical specifications and structure closed to hydrocarbons fractionated from crude oil. The synthesized universal antioxidant 2,6-ditertiaryisobutyl-p-methyl phenol (Unol) with known stochiometric coefficient of inhibition equal to (2) was used as a model for comparative evaluation at the same conditions. Modified chemiluminescence method was used to find the amount of absorbed oxygen and the induction periods in and without the existence of isolated antioxidants molecules. The results of induction periods and quantity of absorbed oxygen during the oxidation process were measured by manometric installation. It was seen that at specific equal concentrations of N,N-phenyl acetone and N, N-P-methyl phenyl acetone in comparison with Unol at 393 K were with (2) and (2.5) times efficient than do Unol. It means that they had the ability to inhibit the formation of new free radicals and prevent the chain reaction to pass from the propagation to the termination step rather than decomposition of formed hydroperoxides.Keywords: antioxidants, chemiluminescence, inhibition, Unol
Procedia PDF Downloads 2002284 Stability Indicating RP – HPLC Method Development, Validation and Kinetic Study for Amiloride Hydrochloride and Furosemide in Pharmaceutical Dosage Form
Authors: Jignasha Derasari, Patel Krishna M, Modi Jignasa G.
Abstract:
Chemical stability of pharmaceutical molecules is a matter of great concern as it affects the safety and efficacy of the drug product.Stability testing data provides the basis to understand how the quality of a drug substance and drug product changes with time under the influence of various environmental factors. Besides this, it also helps in selecting proper formulation and package as well as providing proper storage conditions and shelf life, which is essential for regulatory documentation. The ICH guideline states that stress testing is intended to identify the likely degradation products which further help in determination of the intrinsic stability of the molecule and establishing degradation pathways, and to validate the stability indicating procedures. A simple, accurate and precise stability indicating RP- HPLC method was developed and validated for simultaneous estimation of Amiloride Hydrochloride and Furosemide in tablet dosage form. Separation was achieved on an Phenomenexluna ODS C18 (250 mm × 4.6 mm i.d., 5 µm particle size) by using a mobile phase consisting of Ortho phosphoric acid: Acetonitrile (50:50 %v/v) at a flow rate of 1.0 ml/min (pH 3.5 adjusted with 0.1 % TEA in Water) isocratic pump mode, Injection volume 20 µl and wavelength of detection was kept at 283 nm. Retention time for Amiloride Hydrochloride and Furosemide was 1.810 min and 4.269 min respectively. Linearity of the proposed method was obtained in the range of 40-60 µg/ml and 320-480 µg/ml and Correlation coefficient was 0.999 and 0.998 for Amiloride hydrochloride and Furosemide, respectively. Forced degradation study was carried out on combined dosage form with various stress conditions like hydrolysis (acid and base hydrolysis), oxidative and thermal conditions as per ICH guideline Q2 (R1). The RP- HPLC method has shown an adequate separation for Amiloride hydrochloride and Furosemide from its degradation products. Proposed method was validated as per ICH guidelines for specificity, linearity, accuracy; precision and robustness for estimation of Amiloride hydrochloride and Furosemide in commercially available tablet dosage form and results were found to be satisfactory and significant. The developed and validated stability indicating RP-HPLC method can be used successfully for marketed formulations. Forced degradation studies help in generating degradants in much shorter span of time, mostly a few weeks can be used to develop the stability indicating method which can be applied later for the analysis of samples generated from accelerated and long term stability studies. Further, kinetic study was also performed for different forced degradation parameters of the same combination, which help in determining order of reaction.Keywords: amiloride hydrochloride, furosemide, kinetic study, stability indicating RP-HPLC method validation
Procedia PDF Downloads 4642283 Geospatial and Statistical Evidences of Non-Engineered Landfill Leachate Effects on Groundwater Quality in a Highly Urbanised Area of Nigeria
Authors: David A. Olasehinde, Peter I. Olasehinde, Segun M. A. Adelana, Dapo O. Olasehinde
Abstract:
An investigation was carried out on underground water system dynamics within Ilorin metropolis to monitor the subsurface flow and its corresponding pollution. Africa population growth rate is the highest among the regions of the world, especially in urban areas. A corresponding increase in waste generation and a change in waste composition from predominantly organic to non-organic waste has also been observed. Percolation of leachate from non-engineered landfills, the chief means of waste disposal in many of its cities, constitutes a threat to the underground water bodies. Ilorin city, a transboundary town in southwestern Nigeria, is a ready microcosm of Africa’s unique challenge. In spite of the fact that groundwater is naturally protected from common contaminants such as bacteria as the subsurface provides natural attenuation process, groundwater samples have been noted to however possesses relatively higher dissolved chemical contaminants such as bicarbonate, sodium, and chloride which poses a great threat to environmental receptors and human consumption. The Geographic Information System (GIS) was used as a tool to illustrate, subsurface dynamics and the corresponding pollutant indicators. Forty-four sampling points were selected around known groundwater pollutant, major old dumpsites without landfill liners. The results of the groundwater flow directions and the corresponding contaminant transport were presented using expert geospatial software. The experimental results were subjected to four descriptive statistical analyses, namely: principal component analysis, Pearson correlation analysis, scree plot analysis, and Ward cluster analysis. Regression model was also developed aimed at finding functional relationships that can adequately relate or describe the behaviour of water qualities and the hypothetical factors landfill characteristics that may influence them namely; distance of source of water body from dumpsites, static water level of groundwater, subsurface permeability (inferred from hydraulic gradient), and soil infiltration. The regression equations developed were validated using the graphical approach. Underground water seems to flow from the northern portion of Ilorin metropolis down southwards transporting contaminants. Pollution pattern in the study area generally assumed a bimodal pattern with the major concentration of the chemical pollutants in the underground watershed and the recharge. The correlation between contaminant concentrations and the spread of pollution indicates that areas of lower subsurface permeability display a higher concentration of dissolved chemical content. The principal component analysis showed that conductivity, suspended solids, calcium hardness, total dissolved solids, total coliforms, and coliforms were the chief contaminant indicators in the underground water system in the study area. Pearson correlation revealed a high correlation of electrical conductivity for many parameters analyzed. In the same vein, the regression models suggest that the heavier the molecular weight of a chemical contaminant of a pollutant from a point source, the greater the pollution of the underground water system at a short distance. The study concludes that the associative properties of landfill have a significant effect on groundwater quality in the study area.Keywords: dumpsite, leachate, groundwater pollution, linear regression, principal component
Procedia PDF Downloads 1172282 Assessing the Effect of Freezing and Thawing of Coverzone of Ground Granulated Blast-Furnace Slag Concrete
Authors: Abdulkarim Mohammed Iliyasu, Mahmud Abba Tahir
Abstract:
Freezing and thawing are considered to be one of the major causes of concrete deterioration in the cold regions. This study aimed at assessing the freezing and thawing of concrete within the cover zone by monitoring the formation of ice and melting at different temperatures using electrical measurement technique. A multi-electrode array system was used to obtain the resistivity of ice formation and melting at discrete depths within the cover zone of the concrete. A total number of four concrete specimens (250 mm x 250 mm x 150 mm) made of ordinary Portland cement concrete and ordinary Portland cement replaced by 65% ground granulated blast furnace slag (GGBS) is investigated. Water/binder ratios of 0.35 and 0.65 were produced and ponded with water to ensure full saturation and then subjected to freezing and thawing process in a refrigerator within a temperature range of -30 0C and 20 0C over a period of time 24 hours. The data were collected and analysed. The obtained results show that the addition of GGBS changed the pore structure of the concrete which resulted in the decrease in conductance. It was recommended among others that, the surface of the concrete structure should be protected as this will help to prevent the instantaneous propagation of ice trough the rebar and to avoid corrosion and subsequent damage.Keywords: concrete, conductance, deterioration, freezing and thawing
Procedia PDF Downloads 4172281 Solid-Liquid-Polymer Mixed Matrix Membrane Using Liquid Additive Adsorbed on Activated Carbon Dispersed in Polymeric Membrane for CO2/CH4 Separation
Authors: P. Chultheera, T. Rirksomboon, S. Kulprathipanja, C. Liu, W. Chinsirikul, N. Kerddonfag
Abstract:
Gas separation by selective transport through polymeric membranes is one of the rapid growing branches of membrane technology. However, the tradeoff between the permeability and selectivity is one of the critical challenges encountered by pure polymer membranes, which in turn limits their large-scale application. To enhance gas separation performances, mixed matrix membranes (MMMs) have been developed. In this study, MMMs were prepared by a solution-coating method and tested for CO2/CH4 separation through permeability and selectivity using a membrane testing unit at room temperature and a pressure of 100 psig. The fabricated MMMs were composed of silicone rubber dispersed with the activated carbon individually absorbed with polyethylene glycol (PEG) as a liquid additive. PEG emulsified silicone rubber MMMs showed superior gas separation on cellulose acetate membrane with both high permeability and selectivity compared with silicone rubber membrane and alone support membrane. However, the MMMs performed limited stability resulting from the undesirable PEG leakage. To stabilize the MMMs, PEG was then incorporated into activated carbon by adsorption. It was found that the incorporation of solid and liquid was effective to improve the separation performance of MMMs.Keywords: mixed matrix membrane, membrane, CO₂/CH₄ separation, activated carbon
Procedia PDF Downloads 3422280 Effects of Rice Husk Ash on the Properties of Scrap Tyre Steel Fiber Reinforced High Performance Concrete (RHA-STSFRHAC)
Authors: Isyaka Abdulkadir, Egbe-Ngu Ntui Ogork
Abstract:
This research aims to investigate the effect of Rice Husk Ash (RHA) on Scrap Tyre Steel Fiber Reinforced High Performance Concrete (STSFRHPC). RHA was obtained by control burning of rice husk in a kiln to a temperature of 650-700oC and when cooled sieved through 75µm sieve and characterized. The effect of RHA were investigated on grade 50 STSFRHPC of 1:1.28:1.92 with water cement ratio of 0.39 at additions of Scrap Tyre Steel Fiber (STSF) of 1.5% by volume of concrete and partial replacement of cement with RHA at percentages of 0, 5, 10, 15 and 20. The fresh concrete was tested for slump while the hardened concrete was tested for compressive and splitting tensile strengths respectively at curing ages of 3, 7, 28 and 56 days in accordance with standard procedure. Results of RHA-STSFRHPC indicated a reduction in slump and compressive strength with increase in RHA content, while splitting tensile strength increased with RHA replacement up to 10% and reduction in strength above 10% RHA content. The 28 days compressive strength of RHA-STSFRHPC with up to 10% RHA attained the desired characteristic strength of 50N/mm2 and therefore up to 10% RHA is considered as the optimum replacement dosage in STSFRHPC-RHA.Keywords: compressive strength, high performance concrete, rice husk ash, scrap tyre steel fibers
Procedia PDF Downloads 3382279 Si3N4-SiC Composites Produced by Using C Black and Sic Powder
Authors: Nilgun Kuskonmaz, Zeynep Taslıcukur Ozturk, Cem Sahin
Abstract:
In this study, Si3N4-SiC composites were synthesized by using different raw materials. In the first method, Si3N4 and C black powder mixtures were used to fabricate Si3N4-SiC composites by in-situ carbothermal reduction process. The percentage of C black was only changed. The effects of carbon black percentage in the mixtures were analysed by characterization of SiC particles which were obtained in the Si3N4 matrix. In the second method, SiC particles were added to the matrix in different weight ratios. The composites were pressed by cold isostatic method under 150 MPa pressure and pressureless sintered at 1700-1850 °C during 1 hour in the argon atmosphere. AlN and Y2O3 were used as sintering additives. Sintering temperature, time and all the effects on in-situ reaction were studied. The densification and microstructure properties of the produced ceramics were analysed. Density was one of the main subjects in these reactions. It is very important during porous SiC sintering. Green density and relative density were measured higher for CIP samples. Samples which were added carbon black were more porous than SiC added samples. The increase in the carbon black, makes increase in porosity. The outcome of the experiments was SiC powders which were obtained at the grain boundries of β-Si3N4 particles.Keywords: silicon nitride, silicon carbide, carbon black, cold isostatic press, sintering
Procedia PDF Downloads 309