Search results for: behavioral-physical and visual methods
9937 Physicochemical Characteristics and Evaluation of Main Volatile Compounds of Fresh and Dehydrated Mango
Authors: Maria Terezinha Santos Leite Neta, Mônica Silva de Jesus, Hannah Caroline Santos Araujo, Rafael Donizete Dutra Sandes, Raquel Anne Ribeiro Dos Santos, Narendra Narain
Abstract:
Mango is one of the most consumed and appreciated fruits in the world, mainly due to its peculiar and characteristic aroma. Since the fruit is perishable, it requires conservation methods to prolong its shelf life. Mango cubes were dehydrated at 40°C, 50°C and 60°C and by lyophilization, and the effect of these processes was investigated on the physicochemical characteristics (color and texture) of the products and monitoring of the main volatile compounds for the mango aroma. Volatile compounds were extracted by the SPME technique and analyzed in GC-MS system. Drying temperature at 60°C and lyophilization showed higher efficiency in retention of main volatile compounds, being 63.93% and 60.32% of the total concentration present in the fresh pulp, respectively. The freeze-drying process also presented features closer to the fresh mango in relation to color and texture, which contributes to greater acceptability.Keywords: mango, freeze drying, convection drying, aroma, GC-MS
Procedia PDF Downloads 719936 Evaluation of Diagnosis Performance Based on Pairwise Model Construction and Filtered Data
Authors: Hyun-Woo Cho
Abstract:
It is quite important to utilize right time and intelligent production monitoring and diagnosis of industrial processes in terms of quality and safety issues. When compared with monitoring task, fault diagnosis represents the task of finding process variables responsible causing a specific fault in the process. It can be helpful to process operators who should investigate and eliminate root causes more effectively and efficiently. This work focused on the active use of combining a nonlinear statistical technique with a preprocessing method in order to implement practical real-time fault identification schemes for data-rich cases. To compare its performance to existing identification schemes, a case study on a benchmark process was performed in several scenarios. The results showed that the proposed fault identification scheme produced more reliable diagnosis results than linear methods. In addition, the use of the filtering step improved the identification results for the complicated processes with massive data sets.Keywords: diagnosis, filtering, nonlinear statistical techniques, process monitoring
Procedia PDF Downloads 2489935 A Method to Identify Areas for Hydraulic Fracturing by Using Production Logging Tools
Authors: Armin Shirbazo, Hamed Lamei Ramandi, Mohammad Vahab, Jalal Fahimpour
Abstract:
Hydraulic fracturing, especially multi-stage hydraulic fracturing, is a practical solution for wells with uneconomic production. The wide range of applications is appraised appropriately to have a stable well-production. Production logging tool, which is known as PLT in the oil and gas industry, is counted as one of the most reliable methods to evaluate the efficiency of fractures jobs. This tool has a number of benefits and can be used to prevent subsequent production failure. It also distinguishes different problems that occurred during well-production. In this study, the effectiveness of hydraulic fracturing jobs is examined by using the PLT in various cases and situations. The performance of hydraulically fractured wells is investigated. Then, the PLT is employed to gives more information about the properties of different layers. The PLT is also used to selecting an optimum fracturing design. The results show that one fracture and three-stage fractures behave differently. In general, the one-stage fracture should be created in high-quality areas of the reservoir to have better performance, and conversely, in three-stage fractures, low-quality areas are a better candidate for fracturingKeywords: multi-stage fracturing, horizontal well, PLT, fracture length, number of stages
Procedia PDF Downloads 1989934 Business-Intelligence Mining of Large Decentralized Multimedia Datasets with a Distributed Multi-Agent System
Authors: Karima Qayumi, Alex Norta
Abstract:
The rapid generation of high volume and a broad variety of data from the application of new technologies pose challenges for the generation of business-intelligence. Most organizations and business owners need to extract data from multiple sources and apply analytical methods for the purposes of developing their business. Therefore, the recently decentralized data management environment is relying on a distributed computing paradigm. While data are stored in highly distributed systems, the implementation of distributed data-mining techniques is a challenge. The aim of this technique is to gather knowledge from every domain and all the datasets stemming from distributed resources. As agent technologies offer significant contributions for managing the complexity of distributed systems, we consider this for next-generation data-mining processes. To demonstrate agent-based business intelligence operations, we use agent-oriented modeling techniques to develop a new artifact for mining massive datasets.Keywords: agent-oriented modeling (AOM), business intelligence model (BIM), distributed data mining (DDM), multi-agent system (MAS)
Procedia PDF Downloads 4369933 What the Future Holds for Social Media Data Analysis
Authors: P. Wlodarczak, J. Soar, M. Ally
Abstract:
The dramatic rise in the use of Social Media (SM) platforms such as Facebook and Twitter provide access to an unprecedented amount of user data. Users may post reviews on products and services they bought, write about their interests, share ideas or give their opinions and views on political issues. There is a growing interest in the analysis of SM data from organisations for detecting new trends, obtaining user opinions on their products and services or finding out about their online reputations. A recent research trend in SM analysis is making predictions based on sentiment analysis of SM. Often indicators of historic SM data are represented as time series and correlated with a variety of real world phenomena like the outcome of elections, the development of financial indicators, box office revenue and disease outbreaks. This paper examines the current state of research in the area of SM mining and predictive analysis and gives an overview of the analysis methods using opinion mining and machine learning techniques.Keywords: social media, text mining, knowledge discovery, predictive analysis, machine learning
Procedia PDF Downloads 4299932 A Study on Good Governance: Its Elements, Models, and Goals
Authors: Ehsan Daryadel, Hamid Shakeri
Abstract:
Good governance is considered as one of the necessary prerequisites for promotion of sustainable development programs in countries. Theoretical model of good governance is going to form the best methods for administration and management of subject country. The importance of maintaining the balance between the needs of present and future generation through sustainable development caused a change in method of management and providing service for citizens that is addressed as the most efficient and effective way of administration of countries. This method is based on democratic and equal-seeking sustainable development which is trying to affect all actors in this area and also be accountable to all citizens’ needs. Meanwhile, it should be noted that good governance is a prerequisite for sustainable development. In fact, good governance means impact of all actors on administration and management of the country for fulfilling public services, general needs of citizens and establishing a balance and harmony between needs of present and future generation. In the present study, efforts have been made to present concepts, definitions, purposes and indices of good governance with a descriptive-analytical method.Keywords: accountability, efficiency and effectiveness, good governance, rule of law, transparency
Procedia PDF Downloads 3089931 Development of Tensile Stress-Strain Relationship for High-Strength Steel Fiber Reinforced Concrete
Authors: H. A. Alguhi, W. A. Elsaigh
Abstract:
This paper provides a tensile stress-strain (σ-ε) relationship for High-Strength Steel Fiber Reinforced Concrete (HSFRC). Load-deflection (P-δ) behavior of HSFRC beams tested under four-point flexural load were used with inverse analysis to calculate the tensile σ-ε relationship for various tested concrete grades (70 and 90MPa) containing 60 kg/m3 (0.76 %) of hook-end steel fibers. A first estimate of the tensile (σ-ε) relationship is obtained using RILEM TC 162-TDF and other methods available in literature, frequently used for determining tensile σ-ε relationship of Normal-Strength Concrete (NSC) Non-Linear Finite Element Analysis (NLFEA) package ABAQUS® is used to model the beam’s P-δ behavior. The results have shown that an element-size dependent tensile σ-ε relationship for HSFRC can be successfully generated and adopted for further analyzes involving HSFRC structures.Keywords: tensile stress-strain, flexural response, high strength concrete, steel fibers, non-linear finite element analysis
Procedia PDF Downloads 3629930 The Effect of Aromatherapy with Citrus aurantium Blossom Essential Oil on Premenstrual Syndrome in University Students: A Clinical Trial Study
Authors: Neda Jamalimoghadam, Naval Heydari, Maliheh Abootalebi, Maryam Kasraeian, M. Emamghoreishi , Akbarzadeh Marzieh
Abstract:
Background: The aim was to investigate the effect of aromatherapy using Citrus aurantium blossom essential oil on premenstrual syndrome in university students. Methods: In this double-blind clinical trial was controlled on 62 students from March 2016 to February 2017. The intervention with 0.5% of C. Aurantium blossom essential oil and control was inhalation of odorless sweet almond oil in the luteal phase of the menstrual cycle. The screening questionnaire (PSST) for PMSwas filled out before and also one and two months after the intervention. Results: Mean score of overall symptoms of PMS between the Bitter orange and control groups In the first (p < 0.003) and second months (p < 0.001) of the intervention was significant. Besides, decreased the mean score of psychological symptoms in the intervention group (p < 0.001), but on physical symptoms and social function were not significant (p > 0.05). Conclusion: The aromatherapy with Citrus aurantium blossom improved the symptoms of premenstrual syndrome.Keywords: aromatherapy, Citrus Aurantium, premenstrual syndrome, oil, students
Procedia PDF Downloads 2319929 Sparse-View CT Reconstruction Based on Nonconvex L1 − L2 Regularizations
Authors: Ali Pour Yazdanpanah, Farideh Foroozandeh Shahraki, Emma Regentova
Abstract:
The reconstruction from sparse-view projections is one of important problems in computed tomography (CT) limited by the availability or feasibility of obtaining of a large number of projections. Traditionally, convex regularizers have been exploited to improve the reconstruction quality in sparse-view CT, and the convex constraint in those problems leads to an easy optimization process. However, convex regularizers often result in a biased approximation and inaccurate reconstruction in CT problems. Here, we present a nonconvex, Lipschitz continuous and non-smooth regularization model. The CT reconstruction is formulated as a nonconvex constrained L1 − L2 minimization problem and solved through a difference of convex algorithm and alternating direction of multiplier method which generates a better result than L0 or L1 regularizers in the CT reconstruction. We compare our method with previously reported high performance methods which use convex regularizers such as TV, wavelet, curvelet, and curvelet+TV (CTV) on the test phantom images. The results show that there are benefits in using the nonconvex regularizer in the sparse-view CT reconstruction.Keywords: computed tomography, non-convex, sparse-view reconstruction, L1-L2 minimization, difference of convex functions
Procedia PDF Downloads 3189928 A Sociocultural View of Ethnicity of Parents and Children's Language Learning
Authors: Thapanee Musiget
Abstract:
Ethnic minority children’s language learning is believed that it can be developed through school system. However, many cases prove that these kids are left to challenge with multicultural context at school and sometimes decreased the ability to acquire new learning. Consequently, it is significant for ethnicity parents to consider that prompting their children at home before their actual school age can eliminate negative outcome of children's language acquisition. This paper discusses the approach of instructional use of parents and children language learning in the context of minority language group in Thailand. By conducting this investigation, secondary source of data was gathered with the purpose to point out some primary methods for parents and children in ethnicity. The process of language learning is based on the sociocultural theory of Vygotsky, which highlights expressive communication among individuals as the best motivating force in human development and learning. The article also highlights the role of parents as they lead the instruction approach. In the discussion part, the role of ethnic minority parents as a language instructor is offered as mediator.Keywords: ethnic minority, language learning, multicultural context, sociocultural theory
Procedia PDF Downloads 3949927 Investigating the Systematic Implications of Plastic Waste Additions to Concrete Taking a Circular Approach
Authors: Christina Cheong, Naomi Keena
Abstract:
In the face of growing urbanization the construction of new buildings is inevitable and with current construction methods leading to environmental degradation much questioning is needed around reducing the environmental impact of buildings. This paper explores the global environmental issue of concrete production in parallel with the problem of plastic waste, and questions if new solutions into plastic waste additions in concrete is a viable sustainable solution with positive systematic implications to living systems, both human and non-human. We investigate how certification programs can be used to access the sustainability of the new concrete composition. With this classification we look to the health impacts as well as reusability of such concrete in a second or third life cycle. We conclude that such an approach has benefits to the environment and that taking a circular approach to its development, in terms of the overall life cycle of the new concrete product, can help understand the nuances in terms of the material’s environmental and human health impacts.Keywords: Concrete, Plastic waste additions to concrete, sustainability ratings, sustainable materials
Procedia PDF Downloads 1549926 Application of Grasshopper Optimization Algorithm for Design and Development of Net Zero Energy Residential Building in Ahmedabad, India
Authors: Debasis Sarkar
Abstract:
This paper aims to apply the Grasshopper-Optimization-Algorithm (GOA) for designing and developing a Net-Zero-Energy residential building for a mega-city like Ahmedabad in India. The methodology implemented includes advanced tools like Revit for model creation and MATLAB for simulation, enabling the optimization of the building design. GOA has been applied in reducing cooling loads and overall energy consumption through optimized passive design features. For the attainment of a net zero energy mission, solar panels were installed on the roof of the building. It has been observed that the energy consumption of 8490 kWh was supported by the installed solar panels. Thereby only 840kWh had to be supported by non-renewable energy sources. The energy consumption was further reduced through the application of simulation and optimization methods like GOA, which further reduced the energy consumption to about 37.56 kWh per month from April to July when energy demand was at its peak. This endeavor aimed to achieve near-zero-energy consumption, showcasing the potential of renewable energy integration in building sustainability.Keywords: grasshopper optimization algorithm, net zero energy, residential building, sustainable design
Procedia PDF Downloads 449925 Reproducibility of Dopamine Transporter Density Measured with I-123-N-ω-Fluoropropyl-2β-Carbomethoxy-3β-(4-Iodophenyl)Nortropane SPECT in Phantom Studies and Parkinson’s Disease Patients
Authors: Yasuyuki Takahashi, Genta Hoshi, Kyoko Saito
Abstract:
Objectives: The objective of this study was to evaluate the reproducibility of I-123-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4- iodophenyl) nortropane (I-123 FP-CIT) SPECT by using specific binding ratio (SBR) in phantom studies and Parkinson’s Disease (PD) patients. Methods: We made striatum phantom originally and confirmed reproducibility. The phantom studies changed head position and accumulation of FP-CIT, each. And image processing confirms influence on SBR by 30 cases. 30 PD received a SPECT for 3 hours post injection of I-123 FP-CIT 167MBq. Results: SBR decreased in rotatory direction by the patient position by the phantom studies. And, SBR improved the influence after the attenuation and the scatter correction in the cases (y=0.99x+0.57 r2=0.83). However, Stage II recognized dispersion in SBR by low accumulation. Conclusion: Than the phantom studies that assumed the normal cases, the SPECT image after the attenuation and scatter correction had better reproducibility.Keywords: 123I-FP-CIT, specific binding ratio, Parkinson’s disease
Procedia PDF Downloads 4329924 Metareasoning Image Optimization Q-Learning
Authors: Mahasa Zahirnia
Abstract:
The purpose of this paper is to explore new and effective ways of optimizing satellite images using artificial intelligence, and the process of implementing reinforcement learning to enhance the quality of data captured within the image. In our implementation of Bellman's Reinforcement Learning equations, associated state diagrams, and multi-stage image processing, we were able to enhance image quality, detect and define objects. Reinforcement learning is the differentiator in the area of artificial intelligence, and Q-Learning relies on trial and error to achieve its goals. The reward system that is embedded in Q-Learning allows the agent to self-evaluate its performance and decide on the best possible course of action based on the current and future environment. Results show that within a simulated environment, built on the images that are commercially available, the rate of detection was 40-90%. Reinforcement learning through Q-Learning algorithm is not just desired but required design criteria for image optimization and enhancements. The proposed methods presented are a cost effective method of resolving uncertainty of the data because reinforcement learning finds ideal policies to manage the process using a smaller sample of images.Keywords: Q-learning, image optimization, reinforcement learning, Markov decision process
Procedia PDF Downloads 2219923 Real-Time Lane Marking Detection Using Weighted Filter
Authors: Ayhan Kucukmanisa, Orhan Akbulut, Oguzhan Urhan
Abstract:
Nowadays, advanced driver assistance systems (ADAS) have become popular, since they enable safe driving. Lane detection is a vital step for ADAS. The performance of the lane detection process is critical to obtain a high accuracy lane departure warning system (LDWS). Challenging factors such as road cracks, erosion of lane markings, weather conditions might affect the performance of a lane detection system. In this paper, 1-D weighted filter based on row filtering to detect lane marking is proposed. 2-D input image is filtered by 1-D weighted filter considering four-pixel values located symmetrically around the center of candidate pixel. Performance evaluation is carried out by two metrics which are true positive rate (TPR) and false positive rate (FPR). Experimental results demonstrate that the proposed approach provides better lane marking detection accuracy compared to the previous methods while providing real-time processing performance.Keywords: lane marking filter, lane detection, ADAS, LDWS
Procedia PDF Downloads 1979922 Application of Nanofibers in Heavy Metal (HM) Filtration
Authors: Abhijeet Kumar, Palaniswamy N. K.
Abstract:
Heavy metal contamination in water sources endangers both the environment and human health. Various water filtration techniques have been employed till now for purification and removal of hazardous metals from water. Among all the existing methods, nanofibres have emerged as a viable alternative for effective heavy metal removal in recent years because of their unique qualities, such as large surface area, interconnected porous structure, and customizable surface chemistry. Among the numerous manufacturing techniques, solution blow spinning has gained popularity as a versatile process for producing nanofibers with customized properties. This paper seeks to offer a complete overview of the use of nanofibers for heavy metal filtration, particularly those produced using solution blow spinning. The review discusses current advances in nanofiber materials, production processes, and heavy metal removal performance. Furthermore, the field's difficulties and future opportunities are examined in order to direct future research and development activities.Keywords: heavy metals, nanofiber composite, filter membranes, adsorption, impaction
Procedia PDF Downloads 719921 A Learning Automata Based Clustering Approach for Underwater Sensor Networks to Reduce Energy Consumption
Authors: Motahareh Fadaei
Abstract:
Wireless sensor networks that are used to monitor a special environment, are formed from a large number of sensor nodes. The role of these sensors is to sense special parameters from ambient and to make connection. In these networks, the most important challenge is the management of energy usage. Clustering is one of the methods that are broadly used to face this challenge. In this paper, a distributed clustering protocol based on learning automata is proposed for underwater wireless sensor networks. The proposed algorithm that is called LA-Clustering forms clusters in the same energy level, based on the energy level of nodes and the connection radius regardless of size and the structure of sensor network. The proposed approach is simulated and is compared with some other protocols with considering some metrics such as network lifetime, number of alive nodes, and number of transmitted data. The simulation results demonstrate the efficiency of the proposed approach.Keywords: clustering, energy consumption, learning automata, underwater sensor networks
Procedia PDF Downloads 3209920 Overview of Constructed Wetlands System for Greywater Treatment: Challenges, Advantages, and Sustainable Analysis
Authors: Iga Maliga
Abstract:
As developing country, Indonesia, retreatment for greywater is an important factor that guaranteeing water sustainability? But, its still not familiar in Indonesian society. Because they still use their old habit for wasting the water without retreatment. Differently, with industry wastewater, effect of domestic wastewater is not directly looked with naked eyes. Domestic wastewater that not gets treatment directly can affect pollution in water body or river. Its affected by accumulation many pollutants that include on water. This paper is trying to analyze the challenges and advantages on greywater treatment system based on Constructed Wetlands (CWs) system in Bandung, one of the biggest cities in Indonesia. Aside that, this paper also is trying to analyze sustainability aspects. There is economic, social and of course environment with two methods. The first, study literature is used to see the advantages and challenges that faced by Indonesia when CWs are applied. Secondly, quantitative method is used to get the society perception about retreatment of greywater. Then, it will get a conclusion that this technique not only good in theoretically but also practically.Keywords: greywater, constructed wetlands, advantages, challenges, Bandung, sustainability analysis
Procedia PDF Downloads 2809919 The Effect of Fast Food Globalisation on Students’ Food Choice
Authors: Ijeoma Chinyere Ukonu
Abstract:
This research seeks to investigate how the globalisation of fast food has affected students’ food choice. A mixed method approach was used in this research; basically involving quantitative and qualitative methods. The quantitative method uses a self-completion questionnaire to randomly sample one hundred and four students; while the qualitative method uses a semi structured interview technique to survey four students on their knowledge and choice to consume fast food. A cross tabulation of variables and the Kruskal Wallis nonparametric test were used to analyse the quantitative data; while the qualitative data was analysed through deduction of themes, and trends from the interview transcribe. The findings revealed that globalisation has amplified the evolution of fast food, popularising it among students. Its global presence has affected students’ food choice and preference. Price, convenience, taste, and peer influence are some of the major factors affecting students’ choice of fast food. Though, students are familiar with the health effect of fast food and the significance of using food information labels for healthy choice making, their preference of fast food is more than homemade food.Keywords: fast food, food choice, globalisation, students
Procedia PDF Downloads 2959918 The Formulation of Inference Fuzzy System as a Valuation Subsidiary Based Particle Swarm Optimization for Solves the Issue of Decision Making in Middle Size Soccer Robot League
Authors: Zahra Abdolkarimi, Naser Zouri
Abstract:
The actual purpose of RoboCup is creating independent team of robots in 2050 based of FiFa roles to bring the victory in compare of world star team. There is unbelievable growing of Robots created a collection of complex and motivate subject in robotic and intellectual ornate, also it made a mechatronics style base of theoretical and technical way in Robocop. Decision making of robots depends to environment reaction, self-player and rival player with using inductive Fuzzy system valuation subsidiary to solve issue of robots in land game. The measure of selection in compare with other methods depends to amount of victories percentage in the same team that plays accidentally.Keywords: particle swarm optimization, chaos theory, inference fuzzy system, simulation environment rational fuzzy system, mamdani and assilian, deffuzify
Procedia PDF Downloads 3909917 Survey of Intrusion Detection Systems and Their Assessment of the Internet of Things
Authors: James Kaweesa
Abstract:
The Internet of Things (IoT) has become a critical component of modern technology, enabling the connection of numerous devices to the internet. The interconnected nature of IoT devices, along with their heterogeneous and resource-constrained nature, makes them vulnerable to various types of attacks, such as malware, denial-of-service attacks, and network scanning. Intrusion Detection Systems (IDSs) are a key mechanism for protecting IoT networks and from attacks by identifying and alerting administrators to suspicious activities. In this review, the paper will discuss the different types of IDSs available for IoT systems and evaluate their effectiveness in detecting and preventing attacks. Also, examine the various evaluation methods used to assess the performance of IDSs and the challenges associated with evaluating them in IoT environments. The review will highlight the need for effective and efficient IDSs that can cope with the unique characteristics of IoT networks, including their heterogeneity, dynamic topology, and resource constraints. The paper will conclude by indicating where further research is needed to develop IDSs that can address these challenges and effectively protect IoT systems from cyber threats.Keywords: cyber-threats, iot, intrusion detection system, networks
Procedia PDF Downloads 849916 A 3-Year Evaluation Study on Fine Needle Aspiration Cytology and Corresponding Histology
Authors: Amjad Al Shammari, Ashraf Ibrahim, Laila Seada
Abstract:
Background and Objectives: Incidence of thyroid carcinoma has been increasing world-wide. In the present study, we evaluated diagnostic accuracy of Fine needle aspiration (FNA) and its efficiency in early detecting neoplastic lesions of thyroid gland over a 3-year period. Methods: Data have been retrieved from pathology files in King Khalid Hospital. For each patient, age, gender, FNA, site & size of nodule and final histopathologic diagnosis were recorded. Results: Study included 490 cases where 419 of them were female and 71 male. Male to female ratio was 1:6. Mean age was 43 years for males and 38 for females. Cases with confirmed histopathology were 131. In 101/131 (77.1%), concordance was found between FNA and histology. In 30/131 (22.9%), there was discrepancy in diagnosis. Total malignant cases were 43, out of which 14 (32.5%) were true positive and 29 (67.44%) were false negative. No false positive cases could be found in our series. Conclusion: FNA could diagnose benign nodules in all cases, however, in malignant cases, ultrasound findings have to be taken into consideration to avoid missing of a microcarcinoma in the contralateral lobe.Keywords: FNA, hail, histopathology, thyroid
Procedia PDF Downloads 3439915 Screening of New Antimicrobial Agents from Heterocyclic Derivatives
Authors: W. Mazari, K. Boucherit, Z. Boucherit-Otmani, M. N. Rahmoun, M. Benabdallah
Abstract:
The hospital or any other establishment of care can be considered as an ecosystem where the patient comes into contact with a frightening microbial universe and a risk to contract infection that is referred to as nosocomial or health care-associated. In these last years, the incidence of these infections has risen sharply. Several microorganisms are the cause of these nosocomial infections and the emergence of resistance of the microbial strains against antibiotics creates a danger to public health. The search for new antimicrobial agents to overcome this problem has produced interesting compounds through chemical synthesis, which plays a very important role in the research and discovery of new drugs. It is in this framework that our study was conducted at our laboratory and it involves evaluating the antibacterial activity of thirteen 2-pyridone derivatives synthesized by two methods, the diffusion disc method and the dilution method against eight Gram negative bacterial strains. The results seem interesting especially for two products that have shown the best activities against Escherichia coli ATCC 25922 and Enterobacter cloacae ATCC 13047 with CMI of 512µg/ml.Keywords: heterocyclic derivatives, chemical synthesis, antimicrobial activity, biotechnology
Procedia PDF Downloads 3739914 Preventing Farmer-Herder Conflicts in Ghana: A Constellation of Local Strategies and Solutions
Authors: Abdulai Abubakari
Abstract:
The rollercoaster relationship between farmers and herders in Sub-Saharan Africa has compelled most governments to undertake different mitigating strategies. Over the past two decades, the expulsion of migrant herdsmen, the killing of cattle and human beings, and fines have been used by the state and aggrieved individuals to resolve the conflicts. Unlike this paper, most of the research conducted on this subject matter has been largely theoretical and lacks practical solutions to the conflicts. This paper is unique because it focuses on concrete strategies and practical solutions to ending the century-old phenomenon of farmer-herder conflicts in Ghana. The paper employed power or compete (fight) theory as well as compromise and negotiation theories in the analyses. The paper employed, basically, socio-anthropological methods: interviews, focus group discussions, and observations to gather data. The paper found that compromises through negotiation with the stakeholders are the best ways of resolving these conflicts. Through this, we support the compromise and negotiation approach rather than expulsion to resolve farmer-herder conflicts.Keywords: farmer-herder, conflict, prevention, strategies, stakeholders
Procedia PDF Downloads 619913 Hypoglycemic Coma in Elderly Patients with Diabetes mellitus
Authors: D. Furuya, H. Ryujin, S. Takahira, Y. Sekine, Y. Oya, K. Sonoda, H. Ogawa, Y. Nomura, R. Maruyama, H. Kim, T. Kudo, A. Nakano, T. Saruta, S. Sugita, M. Nemoto, N. Tanahashi
Abstract:
Purpose: To study the clinical characteristics of hypoglycemic coma in adult patients with type 1 or type 2 diabetes mellitus (DM). Methods: Participants in this retrospective study comprised 91 patients (54 men, 37 women; mean age ± standard deviation, 71.5 ± 12.6 years; range, 42-97 years) brought to our emergency department by ambulance with disturbance of consciousness in the 7 years from April 2007 to March 2014. Patients with hypoglycemia caused by alcoholic ketoacidosis, nutrition disorder, malignancies and psychological disorder were excluded. Results: Patients with type 1 (8 of 91) or type 2 DM (83 of 91) were analyzed. Mean blood sugar level was 31.6 ± 10.4 in all patients. A sulfonylurea (SU) was more commonly used in elderly (>75 years old; n=44)(70.5%) than in younger patients (36.2%, p < 0.05). Cases showing prolonged unconsciousness (range, 1 hour to 21 days; n=30) included many (p < 0.05) patients with dementia (13.3%; 0.5% without dementia) and fewer (p < 0.05) patients with type 1 DM (0%; 13.1% in type 2 DM). Specialists for DM (n=33) used SU less often (24.2%) than general physicians (69.0%, p < 0.05). Conclusion: In cases of hypoglycemic coma, SU was frequently used in elderly patients with DM.Keywords: hypoglycemic coma, Diabetes mellitus, unconsciousness, elderly patients
Procedia PDF Downloads 4949912 Comparison of Various Control Methods for an Industrial Multiproduct Fractionator
Authors: Merve Aygün Esastürk, Deren Ataç Yılmaz, Görkem Oğur, Emre Özgen Kuzu, Sadık Ödemiş
Abstract:
Hydrocracker plants are one of the most complicated and most profitable units in the refinery process. It takes long chain paraffinic hydrocarbons as feed and turns them into smaller and more valuable products, mainly kerosene and diesel under high pressure with the excess amount of hydrogen. Controlling the product qualities well directly contributes to the unit profit. Control of a plant is mainly based on PID and MPC controllers. Controlling the reaction section is important in terms of reaction severity. However, controlling the fractionation section is more crucial since the end products are separated in fractionation section. In this paper, the importance of well-configured base layer control mechanism, composed of PID controllers, is highlighted. For this purpose, two different base layer control scheme is applied in a hydrocracker fractionator column performances of schemes, which is a direct contribution to better product quality, are compared.Keywords: controller, distillation, configuration selection, hydrocracker, model predictive controller, proportional-integral-derivative controller
Procedia PDF Downloads 4429911 Longitudinal Examination of Depressive Symptoms among U.S. Parents who Gave Birth During the COVID-19 Pandemic
Authors: Amy Claridge, Tishra Beeson
Abstract:
Background: Maternal depression is a serious health concern impacting between 10-16% of birthing persons. It is associated with difficulty in emotional interaction and the formation of attachment bonds between parent and infant. Longitudinally, maternal depression can have severe, lasting impacts on both parent and child, increasing the risk for mental, social, and physical health issues. Rates of prenatal depression have been higher among individuals who were pregnant during the first year of the COVID-19 pandemic. Pregnant persons are considered a high-risk group for poor clinical outcomes from COVID-19 infection and may also have faced or continue to face additional stressors such as financial burdens, loss of income or employment, and the benefits accompanying employment, especially among those in the United States (U.S.). It is less clear whether individuals who gave birth during the pandemic continue to experience high levels of depressive symptoms or whether symptoms have been reduced as a pandemic response has shifted. The current study examined longitudinal reports of depressive symptoms among individuals in the U.S. who gave birth between March 2020 and September 2021. Methods: This mixed-method study involved surveys and interviews with birthing persons (18-45 years old) in their third trimester of pregnancy and at 8 weeks postpartum. Participants also completed a follow-up survey at 12-18 months postpartum. Participants were recruited using convenience methods via an online survey. Survey participants included 242 U.S. women who self-reported depressive symptoms (10-item Edinburgh Postnatal Depression Scale) at each data collection wave. A subset of 23 women participated in semi-structured prenatal and 8-week postpartum qualitative interviews. Follow-up interviews are currently underway and will be integrated into the presentation. Preliminary Results: Prenatal depressive symptoms were significantly positively correlated to 8-week and 12-18-month postpartum depressive symptoms. Participants who reported clinical levels of depression prenatally were 3.29 times (SE = .32, p < .001) more likely to report clinical levels of depression at 18 months postpartum. Those who reported clinical depression at 8-weeks postpartum were 6.52 times (SE = .41, p < .001) more likely to report clinical levels of depression at 18 months postpartum. Participants who gave birth earlier in the pandemic reported significantly higher prenatal (t(103) = 2.84, p < .01) and 8-week postpartum depressive symptoms (t(126) = 3.31, p < .001). Data from qualitative interviews contextualize the findings. Participants reported negative emotions during pregnancy, including sadness, grief, and anxiety. They attributed this in part to their experiences of pregnancy during the pandemic and uncertainty related to the birth experience and postpartum period. Postpartum interviews revealed some stressors specific to childbirth during the COVID-19 pandemic; however, most women reflected on positive experiences of birth and postpartum. Conclusions: Taken together, findings reveal a pattern of persistent depressive symptoms among U.S. parents who gave birth during the pandemic. Depressive symptoms are of significant concern for the health of parents and children, and the findings of this study suggest a need for continued mental health intervention for parents who gave birth during the pandemic. Policy and practice implications will be discussed.Keywords: maternal mental health, perinatal depression, postpartum depression, covid-19 pandemic
Procedia PDF Downloads 809910 Would Intra-Individual Variability in Attention to Be the Indicator of Impending the Senior Adults at Risk of Cognitive Decline: Evidence from Attention Network Test(ANT)
Authors: Hanna Lu, Sandra S. M. Chan, Linda C. W. Lam
Abstract:
Objectives: Intra-individual variability (IIV) has been considered as a biomarker of healthy ageing. However, the composite role of IIV in attention, as an impending indicator for neurocognitive disorders warrants further exploration. This study aims to investigate the IIV, as well as their relationships with attention network functions in adults with neurocognitive disorders (NCD). Methods: 36adults with NCD due to Alzheimer’s disease(NCD-AD), 31adults with NCD due to vascular disease (NCD-vascular), and 137 healthy controls were recruited. Intraindividual standard deviations (iSD) and intraindividual coefficient of variation of reaction time (ICV-RT) were used to evaluate the IIV. Results: NCD groups showed greater IIV (iSD: F= 11.803, p < 0.001; ICV-RT:F= 9.07, p < 0.001). In ROC analyses, the indices of IIV could differentiateNCD-AD (iSD: AUC value = 0.687, p= 0.001; ICV-RT: AUC value = 0.677, p= 0.001) and NCD-vascular (iSD: AUC value = 0.631, p= 0.023;ICV-RT: AUC value = 0.615, p= 0.045) from healthy controls. Moreover, the processing speed could distinguish NCD-AD from NCD-vascular (AUC value = 0.647, p= 0.040). Discussion: Intra-individual variability in attention provides a stable measure of cognitive performance, and seems to help distinguish the senior adults with different cognitive status.Keywords: intra-individual variability, attention network, neurocognitive disorders, ageing
Procedia PDF Downloads 4819909 Sonochemically Prepared Non-Noble Metal Oxide Catalysts for Methane Catalytic Combustion
Authors: Przemyslaw J. Jodlowski, Roman J. Jedrzejczyk, Damian K. Chlebda, Anna Dziedzicka, Lukasz Kuterasinski, Anna Gancarczyk, Maciej Sitarz
Abstract:
The aim of this study was to obtain highly active catalysts based on non-noble metal oxides supported on zirconia prepared via a sonochemical method. In this study, the influence of the stabilizers addition during the preparation step was checked. The final catalysts were characterized by using such characterization methods as X-ray Diffraction (XRD), nitrogen adsorption, X-ray fluorescence (XRF), scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and µRaman. The proposed preparation method allowed to obtain uniformly dispersed metal-oxide nanoparticles at the support’s surface. The catalytic activity of prepared catalyst samples was measured in a methane combustion reaction. The activity of the catalysts prepared by the sonochemical method was considerably higher than their counterparts prepared by the incipient wetness method.Keywords: methane catalytic combustion, nanoparticles, non-noble metals, sonochemistry
Procedia PDF Downloads 2239908 Optimization of Metal Pile Foundations for Solar Power Stations Using Cone Penetration Test Data
Authors: Adrian Priceputu, Elena Mihaela Stan
Abstract:
Our research addresses a critical challenge in renewable energy: improving efficiency and reducing the costs associated with the installation of ground-mounted photovoltaic (PV) panels. The most commonly used foundation solution is metal piles - with various sections adapted to soil conditions and the structural model of the panels. However, direct foundation systems are also sometimes used, especially in brownfield sites. Although metal micropiles are generally the first design option, understanding and predicting their bearing capacity, particularly under varied soil conditions, remains an open research topic. CPT Method and Current Challenges: Metal piles are favored for PV panel foundations due to their adaptability, but existing design methods rely heavily on costly and time-consuming in situ tests. The Cone Penetration Test (CPT) offers a more efficient alternative by providing valuable data on soil strength, stratification, and other key characteristics with reduced resources. During the test, a cone-shaped probe is pushed into the ground at a constant rate. Sensors within the probe measure the resistance of the soil to penetration, divided into cone penetration resistance and shaft friction resistance. Despite some existing CPT-based design approaches for metal piles, these methods are often cumbersome and difficult to apply. They vary significantly due to soil type and foundation method, and traditional approaches like the LCPC method involve complex calculations and extensive empirical data. The method was developed by testing 197 piles on a wide range of ground conditions, but the tested piles were very different from the ones used for PV pile foundations, making the method less accurate and practical for steel micropiles. Project Objectives and Methodology: Our research aims to develop a calculation method for metal micropile foundations using CPT data, simplifying the complex relationships involved. The goal is to estimate the pullout bearing capacity of piles without additional laboratory tests, streamlining the design process. To achieve this, a case study was selected which will serve for the development of an 80ha solar power station. Four testing locations were chosen spread throughout the site. At each location, two types of steel profiles (H160 and C100) were embedded into the ground at various depths (1.5m and 2.0m). The piles were tested for pullout capacity under natural and inundated soil conditions. CPT tests conducted nearby served as calibration points. The results served for the development of a preliminary equation for estimating pullout capacity. Future Work: The next phase involves validating and refining the proposed equation on additional sites by comparing CPT-based forecasts with in situ pullout tests. This validation will enhance the accuracy and reliability of the method, potentially transforming the foundation design process for PV panels.Keywords: cone penetration test, foundation optimization, solar power stations, steel pile foundations
Procedia PDF Downloads 60