Search results for: active tuned mass damper
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6968

Search results for: active tuned mass damper

98 Establishment of Farmed Fish Welfare Biomarkers Using an Omics Approach

Authors: Pedro M. Rodrigues, Claudia Raposo, Denise Schrama, Marco Cerqueira

Abstract:

Farmed fish welfare is a very recent concept, widely discussed among the scientific community. Consumers’ interest regarding farmed animal welfare standards has significantly increased in the last years posing a huge challenge to producers in order to maintain an equilibrium between good welfare principles and productivity, while simultaneously achieve public acceptance. The major bottleneck of standard aquaculture is to impair considerably fish welfare throughout the production cycle and with this, the quality of fish protein. Welfare assessment in farmed fish is undertaken through the evaluation of fish stress responses. Primary and secondary stress responses include release of cortisol and glucose and lactate to the blood stream, respectively, which are currently the most commonly used indicators of stress exposure. However, the reliability of these indicators is highly dubious, due to a high variability of fish responses to an acute stress and the adaptation of the animal to a repetitive chronic stress. Our objective is to use comparative proteomics to identify and validate a fingerprint of proteins that can present an more reliable alternative to the already established welfare indicators. In this way, the culture conditions will improve and there will be a higher perception of mechanisms and metabolic pathway involved in the produced organism’s welfare. Due to its high economical importance in Portuguese aquaculture Gilthead seabream will be the elected species for this study. Protein extracts from Gilthead Seabream fish muscle, liver and plasma, reared for a 3 month period under optimized culture conditions (control) and induced stress conditions (Handling, high densities, and Hipoxia) are collected and used to identify a putative fish welfare protein markers fingerprint using a proteomics approach. Three tanks per condition and 3 biological replicates per tank are used for each analisys. Briefly, proteins from target tissue/fluid are extracted using standard established protocols. Protein extracts are then separated using 2D-DIGE (Difference gel electrophoresis). Proteins differentially expressed between control and induced stress conditions will be identified by mass spectrometry (LC-Ms/Ms) using NCBInr (taxonomic level - Actinopterygii) databank and Mascot search engine. The statistical analysis is performed using the R software environment, having used a one-tailed Mann-Whitney U-test (p < 0.05) to assess which proteins were differentially expressed in a statistically significant way. Validation of these proteins will be done by comparison of the RT-qPCR (Quantitative reverse transcription polymerase chain reaction) expressed genes pattern with the proteomic profile. Cortisol, glucose, and lactate are also measured in order to confirm or refute the reliability of these indicators. The identified liver proteins under handling and high densities induced stress conditions are responsible and involved in several metabolic pathways like primary metabolism (i.e. glycolysis, gluconeogenesis), ammonia metabolism, cytoskeleton proteins, signalizing proteins, lipid transport. Validition of these proteins as well as identical analysis in muscle and plasma are underway. Proteomics is a promising high-throughput technique that can be successfully applied to identify putative welfare protein biomarkers in farmed fish.

Keywords: aquaculture, fish welfare, proteomics, welfare biomarkers

Procedia PDF Downloads 117
97 Thermal Characterisation of Multi-Coated Lightweight Brake Rotors for Passenger Cars

Authors: Ankit Khurana

Abstract:

The sufficient heat storage capacity or ability to dissipate heat is the most decisive parameter to have an effective and efficient functioning of Friction-based Brake Disc systems. The primary aim of the research was to analyse the effect of multiple coatings on lightweight disk rotors surface which not only alleviates the mass of vehicle & also, augments heat transfer. This research is projected to aid the automobile fraternity with an enunciated view over the thermal aspects in a braking system. The results of the project indicate that with the advent of modern coating technologies a brake system’s thermal curtailments can be removed and together with forced convection, heat transfer processes can see a drastic improvement leading to increased lifetime of the brake rotor. Other advantages of modifying the surface of a lightweight rotor substrate will be to reduce the overall weight of the vehicle, decrease the risk of thermal brake failure (brake fade and fluid vaporization), longer component life, as well as lower noise and vibration characteristics. A mathematical model was constructed in MATLAB which encompassing the various thermal characteristics of the proposed coatings and substrate materials required to approximate the heat flux values in a free and forced convection environment; resembling to a real-time braking phenomenon which could easily be modelled into a full cum scaled version of the alloy brake rotor part in ABAQUS. The finite element of a brake rotor was modelled in a constrained environment such that the nodal temperature between the contact surfaces of the coatings and substrate (Wrought Aluminum alloy) resemble an amalgamated solid brake rotor element. The initial results obtained were for a Plasma Electrolytic Oxidized (PEO) substrate wherein the Aluminum alloy gets a hard ceramic oxide layer grown on its transitional phase. The rotor was modelled and then evaluated in real-time for a constant ‘g’ braking event (based upon the mathematical heat flux input and convective surroundings), which reflected the necessity to deposit a conducting coat (sacrificial) above the PEO layer in order to inhibit thermal degradation of the barrier coating prematurely. Taguchi study was then used to bring out certain critical factors which may influence the maximum operating temperature of a multi-coated brake disc by simulating brake tests: a) an Alpine descent lasting 50 seconds; b) an Autobahn stop lasting 3.53 seconds; c) a Six–high speed repeated stop in accordance to FMVSS 135 lasting 46.25 seconds. Thermal Barrier coating thickness and Vane heat transfer coefficient were the two most influential factors and owing to their design and manufacturing constraints a final optimized model was obtained which survived the 6-high speed stop test as per the FMVSS -135 specifications. The simulation data highlighted the merits for preferring Wrought Aluminum alloy 7068 over Grey Cast Iron and Aluminum Metal Matrix Composite in coherence with the multiple coating depositions.

Keywords: lightweight brakes, surface modification, simulated braking, PEO, aluminum

Procedia PDF Downloads 386
96 Mapping Contested Sites - Permanence Of The Temporary Mouttalos Case Study

Authors: M. Hadjisoteriou, A. Kyriacou Petrou

Abstract:

This paper will discuss ideas of social sustainability in urban design and human behavior in multicultural contested sites. It will focus on the potential of the re-reading of the “site” through mapping that acts as a research methodology and will discuss the chosen site of Mouttalos, Cyprus as a place of multiple identities. Through a methodology of mapping using a bottom up approach, a process of disassembling derives that acts as a mechanism to re-examine space and place by searching for the invisible and the non-measurable, understanding the site through its detailed inhabitation patterns. The significance of this study lies in the use of mapping as an active form of thinking rather than a passive process of representation that allows for a new site to be discovered, giving multiple opportunities for adaptive urban strategies and socially engaged design approaches. We will discuss the above thematic based on the chosen contested site of Mouttalos, a small Turkish Cypriot neighbourhood, in the old centre of Paphos (Ktima), SW of Cyprus. During the political unrest, between Greek and Turkish Cypriot communities, in 1963, the area became an enclave to the Turkish Cypriots, excluding any contact with the rest of the area. Following the Turkish invasion of 1974, the residents left their homes, plots and workplaces, resettling in the North of Cyprus. Greek Cypriot refugees moved into the area. The presence of the Greek Cypriot refugees is still considered to be a temporary resettlement. The buildings and the residents themselves exist in a state of uncertainty. The site is documented through a series of parallel investigations into the physical conditions and history of the site. Research methodologies use the process of mapping to expose the complex and often invisible layers of information that coexist. By registering the site through the subjective experiences, and everyday stories of inhabitants, a series of cartographic recordings reveals the space between: happening and narrative and especially space between different cultures and religions. Research put specific emphasis on engaging the public, promoting social interaction, identifying spatial patterns of occupation by previous inhabitants through social media. Findings exposed three main areas of interest. Firstly we identified inter-dependent relationships between permanence and temporality, characterised by elements such us, signage through layers of time, past events and periodical street festivals, unfolding memory and belonging. Secondly issues of co-ownership and occupation, found through particular narratives of exchange between the two communities and through appropriation of space. Finally formal and informal inhabitation of space, revealed through the presence of informal shared back yards, alternative paths, porous street edges and formal and informal landmarks. The importance of the above findings, was achieving a shift of focus from the built infrastructure to the soft network of multiple and complex relations of dependence and autonomy. Proposed interventions for this contested site were informed and led by a new multicultural identity where invisible qualities were revealed though the process of mapping, taking on issues of layers of time, formal and informal inhabitation and the “permanence of the temporary”.

Keywords: contested sites, mapping, social sustainability, temporary urban strategies

Procedia PDF Downloads 393
95 Encapsulated Bioflavonoids: Nanotechnology Driven Food Waste Utilization

Authors: Niharika Kaushal, Minni Singh

Abstract:

Citrus fruits fall into the category of those commercially grown fruits that constitute an excellent repository of phytochemicals with health-promoting properties. Fruits belonging to the citrus family, when processed by industries, produce tons of agriculture by-products in the form of peels, pulp, and seeds, which normally have no further usage and are commonly discarded. In spite of this, such residues are of paramount importance due to their richness in valuable compounds; therefore, agro-waste is considered a valuable bioresource for various purposes in the food sector. A range of biological properties, including anti-oxidative, anti-cancerous, anti-inflammatory, anti-allergenicity, and anti-aging activity, have been reported for these bioactive compounds. Taking advantage of these inexpensive residual sources requires special attention to extract bioactive compounds. Mandarin (Citrus nobilis X Citrus deliciosa) is a potential source of bioflavonoids with antioxidant properties, and it is increasingly regarded as a functional food. Despite these benefits, flavonoids suffer from a barrier of pre-systemic metabolism in gastric fluid, which impedes their effectiveness. Therefore, colloidal delivery systems can completely overcome the barrier in question. This study involved the extraction and identification of key flavonoids from mandarin biomass. Using a green chemistry approach, supercritical fluid extraction at 330 bar, temperature 40C, and co-solvent 10% ethanol was employed for extraction, and the identification of flavonoids was made by mass spectrometry. As flavonoids are concerned with a limitation, the obtained extract was encapsulated in polylactic-co-glycolic acid (PLGA) matrix using a solvent evaporation method. Additionally, the antioxidant potential was evaluated by the 2,2-diphenylpicrylhydrazyl (DPPH) assay. A release pattern of flavonoids was observed over time using simulated gastrointestinal fluids. From the results, it was observed that the total flavonoids extracted from the mandarin biomass were estimated to be 47.3 ±1.06 mg/ml rutin equivalents as total flavonoids. In the extract, significantly, polymethoxyflavones (PMFs), tangeretin and nobiletin were identified, followed by hesperetin and naringin. The designed flavonoid-PLGA nanoparticles exhibited a particle size between 200-250nm. In addition, the bioengineered nanoparticles had a high entrapment efficiency of nearly 80.0% and maintained stability for more than a year. Flavonoid nanoparticles showed excellent antioxidant activity with an IC50 of 0.55μg/ml. Morphological studies revealed the smooth and spherical shape of nanoparticles as visualized by Field emission scanning electron microscopy (FE-SEM). Simulated gastrointestinal studies of free extract and nanoencapsulation revealed the degradation of nearly half of the flavonoids under harsh acidic conditions in the case of free extract. After encapsulation, flavonoids exhibited sustained release properties, suggesting that polymeric encapsulates are efficient carriers of flavonoids. Thus, such technology-driven and biomass-derived products form the basis for their use in the development of functional foods with improved therapeutic potential and antioxidant properties. As a result, citrus processing waste can be considered a new resource that has high value and can be used for promoting its utilization.

Keywords: citrus, agrowaste, flavonoids, nanoparticles

Procedia PDF Downloads 83
94 Impact of Interdisciplinary Therapy Allied to Online Health Education on Cardiometabolic Parameters and Inflammation Factor Rating in Obese Adolescents

Authors: Yasmin A. M. Ferreira, Ana C. K. Pelissari, Sofia De C. F. Vicente, Raquel M. Da S. Campos, Deborah C. L. Masquio, Lian Tock, Lila M. Oyama, Flavia C. Corgosinho, Valter T. Boldarine, Ana R. Dâmaso

Abstract:

The prevalence of overweight and obesity is growing around the world and currently considered a global epidemic. Food and nutrition are essential requirements for promoting health and protecting non-communicable chronic diseases, such as obesity and cardiovascular disease. Specific dietary components may modulate the inflammation and oxidative stress in obese individuals. Few studies have investigated the dietary Inflammation Factor Rating (IFR) in obese adolescents. The IFR was developed to characterize an individual´s diet on anti- to pro-inflammatory score. This evaluation contributes to investigate the effects of inflammatory diet in metabolic profile in several individual conditions. Objectives: The present study aims to investigate the effects of a multidisciplinary weight loss therapy on inflammation factor rating and cardiometabolic risk in obese adolescents. Methods: A total of 26 volunteers (14-19 y.o) were recruited and submitted to 20 weeks interdisciplinary therapy allied to health education website- Ciclo do Emagrecimento®, including clinical, nutritional, psychological counseling and exercise training. The body weight was monitored weekly by self-report and photo. The adolescents answered a test to evaluate the knowledge of the topics covered in the videos. A 24h dietary record was applied at the baseline and after 20 weeks to assess the food intake and to calculate IFR. A negative IFR suggests that diet may have inflammatory effects and a positive IFR indicates an anti-inflammatory effect. Statistical analysis was performed using the program STATISTICA version 12.5 for Windows. The adopted significant value was α ≤ 5 %. Data normality was verified with the Kolmogorov Smirnov test. Data were expressed as mean±SD values. To analyze the effects of intervention it was applied test t. Pearson´s correlations test was performed. Results: After 20 weeks of treatment, body mass index (BMI), body weight, body fat (kg and %), abdominal and waist circumferences decreased significantly. The mean of high-density lipoprotein cholesterol (HDL-c) increased after the therapy. Moreover, it was found an improvement of inflammation factor rating from -427,27±322,47 to -297,15±240,01, suggesting beneficial effects of nutritional counselling. Considering the correlations analysis, it was found that pro-inflammatory diet is associated with increase in the BMI, very low-density lipoprotein cholesterol (VLDL), triglycerides, insulin and insulin resistance index (HOMA-IR); while an anti-inflammatory diet is associated with improvement of HDL-c and insulin sensitivity Check index (QUICKI). Conclusion: The 20-week blended multidisciplinary therapy was effective to reduce body weight, anthropometric circumferences and improve inflammatory markers in obese adolescents. In addition, our results showed that an increase in inflammatory profile diet is associated with cardiometabolic parameters, suggesting the relevance to stimulate anti-inflammatory diet habits as an effective strategy to treat and control of obesity and related comorbidities. Financial Support: FAPESP (2017/07372-1) and CNPq (409943/2016-9)

Keywords: cardiometabolic risk, inflammatory diet, multidisciplinary therapy, obesity

Procedia PDF Downloads 174
93 Hydrogen Production Using an Anion-Exchange Membrane Water Electrolyzer: Mathematical and Bond Graph Modeling

Authors: Hugo Daneluzzo, Christelle Rabbat, Alan Jean-Marie

Abstract:

Water electrolysis is one of the most advanced technologies for producing hydrogen and can be easily combined with electricity from different sources. Under the influence of electric current, water molecules can be split into oxygen and hydrogen. The production of hydrogen by water electrolysis favors the integration of renewable energy sources into the energy mix by compensating for their intermittence through the storage of the energy produced when production exceeds demand and its release during off-peak production periods. Among the various electrolysis technologies, anion exchange membrane (AEM) electrolyser cells are emerging as a reliable technology for water electrolysis. Modeling and simulation are effective tools to save time, money, and effort during the optimization of operating conditions and the investigation of the design. The modeling and simulation become even more important when dealing with multiphysics dynamic systems. One of those systems is the AEM electrolysis cell involving complex physico-chemical reactions. Once developed, models may be utilized to comprehend the mechanisms to control and detect flaws in the systems. Several modeling methods have been initiated by scientists. These methods can be separated into two main approaches, namely equation-based modeling and graph-based modeling. The former approach is less user-friendly and difficult to update as it is based on ordinary or partial differential equations to represent the systems. However, the latter approach is more user-friendly and allows a clear representation of physical phenomena. In this case, the system is depicted by connecting subsystems, so-called blocks, through ports based on their physical interactions, hence being suitable for multiphysics systems. Among the graphical modelling methods, the bond graph is receiving increasing attention as being domain-independent and relying on the energy exchange between the components of the system. At present, few studies have investigated the modelling of AEM systems. A mathematical model and a bond graph model were used in previous studies to model the electrolysis cell performance. In this study, experimental data from literature were simulated using OpenModelica using bond graphs and mathematical approaches. The polarization curves at different operating conditions obtained by both approaches were compared with experimental ones. It was stated that both models predicted satisfactorily the polarization curves with error margins lower than 2% for equation-based models and lower than 5% for the bond graph model. The activation polarization of hydrogen evolution reactions (HER) and oxygen evolution reactions (OER) were behind the voltage loss in the AEM electrolyzer, whereas ion conduction through the membrane resulted in the ohmic loss. Therefore, highly active electro-catalysts are required for both HER and OER while high-conductivity AEMs are needed for effectively lowering the ohmic losses. The bond graph simulation of the polarisation curve for operating conditions at various temperatures has illustrated that voltage increases with temperature owing to the technology of the membrane. Simulation of the polarisation curve can be tested virtually, hence resulting in reduced cost and time involved due to experimental testing and improved design optimization. Further improvements can be made by implementing the bond graph model in a real power-to-gas-to-power scenario.

Keywords: hydrogen production, anion-exchange membrane, electrolyzer, mathematical modeling, multiphysics modeling

Procedia PDF Downloads 57
92 Triassic and Liassic Paleoenvironments during the Central Atlantic Magmatique Province (CAMP) Effusion in the Moroccan Coastal Meseta: The Mohammedia-Benslimane-El Gara-Berrechid Basin

Authors: Rachid Essamoud, Abdelkrim Afenzar, Ahmed Belqadi

Abstract:

During the Early Mesozoic, the northwestern part of the African continent was affected by initial fracturing associated with the early stages of the opening of the Central Atlantic (Atlantic Rift). During this rifting phase, the Moroccan Meseta experienced an extensive tectonic regime. This extension favored the formation of a set of rift-type basins, including the Mohammedia-Benslimane-ElGara-Berrechid basin. Thus, it is essential to know the nature of the deposits in this basin and their evolution over time as well as their relationship with the basaltic effusion of the Central Atlantic Magmatic Province (CAMP). These deposits are subdivided into two large series: The Lower clay-salt series attributed to the Triassic and the Upper clay-salt series attributed to the Liassic. The two series are separated by the Upper Triassic-Lower Liassic basaltic complex. The detailed sedimentological analysis made it possible to characterize four mega-sequences, fifteen types of facies and eight architectural elements and facies associations in the Triassic series. A progressive decrease observed in paleo-slope over time led to the evolution of the paleoenvironment from a proximal system of alluvial fans to a braided fluvial style, then to an anastomosed system. These environments eventually evolved into an alluvial plain associated with a coastal plain where playa lakes, mudflats and lagoons had developed. The pure and massive halitic facies at the top of the series probably indicate an evolution of the depositional environment towards a shallow subtidal environment. The presence of these evaporites indicates a climate that favored their precipitation, in this case, a fairly hot and humid climate. The sedimentological analysis of the supra-basaltic part shows that during the Lower Liassic, the paleopente after basaltic effusion remained weak with distal environments. The faciological analysis revealed the presence of four major sandstone, silty, clayey and evaporitic lithofacies organized in two mega-sequences: the sedimentation of the first rock-salt mega-sequence took place in a brine depression system free, followed by saline mudflats under continental influences. The upper clay mega-sequence displays facies documenting sea level fluctuations from the final transgression of the Tethys or the opening Atlantic. Saliferous sedimentation is therefore favored from the Upper Triassic, but experienced a sudden rupture by the emission of basaltic flows which are interstratified in the azoic salt clays of very shallow seas. This basaltic emission which belongs to the CAMP would come from a fissural volcanism probably carried out through transfer faults located in the NW and SE of the basin. Their emplacement is probably subaquatic to subaerial. From a chronological and paleogeographic point of view, this main volcanism, dated between the Upper Triassic and the Lower Liassic (180-200 MA), is linked to the fragmentation of Pangea and managed by a progressive expansion triggered in the West in close relation with the initial phases of Central Atlantic rifting and seems to coincide with the major mass extinction at the Triassic-Jurassic boundary.

Keywords: Basalt, CAMP, Liassic, sedimentology, Triassic, Morocco

Procedia PDF Downloads 45
91 Design Aspects for Developing a Microfluidics Diagnostics Device Used for Low-Cost Water Quality Monitoring

Authors: Wenyu Guo, Malachy O’Rourke, Mark Bowkett, Michael Gilchrist

Abstract:

Many devices for real-time monitoring of surface water have been developed in the past few years to provide early warning of pollutions and so to decrease the risk of environmental pollution efficiently. One of the most common methodologies used in the detection system is a colorimetric process, in which a container with fixed volume is filled with target ions and reagents to combine a colorimetric dye. The colorimetric ions can sensitively absorb a specific-wavelength radiation beam, and its absorbance rate is proportional to the concentration of the fully developed product, indicating the concentration of target nutrients in the pre-mixed water samples. In order to achieve precise and rapid detection effect, channels with dimensions in the order of micrometers, i.e., microfluidic systems have been developed and introduced into these diagnostics studies. Microfluidics technology largely reduces the surface to volume ratios and decrease the samples/reagents consumption significantly. However, species transport in such miniaturized channels is limited by the low Reynolds numbers in the regimes. Thus, the flow is extremely laminar state, and diffusion is the dominant mass transport process all over the regimes of the microfluidic channels. The objective of this present work has been to analyse the mixing effect and chemistry kinetics in a stop-flow microfluidic device measuring Nitride concentrations in fresh water samples. In order to improve the temporal resolution of the Nitride microfluidic sensor, we have used computational fluid dynamics to investigate the influence that the effectiveness of the mixing process between the sample and reagent within a microfluidic device exerts on the time to completion of the resulting chemical reaction. This computational approach has been complemented by physical experiments. The kinetics of the Griess reaction involving the conversion of sulphanilic acid to a diazonium salt by reaction with nitrite in acidic solution is set in the Laminar Finite-rate chemical reaction in the model. Initially, a methodology was developed to assess the degree of mixing of the sample and reagent within the device. This enabled different designs of the mixing channel to be compared, such as straight, square wave and serpentine geometries. Thereafter, the time to completion of the Griess reaction within a straight mixing channel device was modeled and the reaction time validated with experimental data. Further simulations have been done to compare the reaction time to effective mixing within straight, square wave and serpentine geometries. Results show that square wave channels can significantly improve the mixing effect and provides a low standard deviations of the concentrations of nitride and reagent, while for straight channel microfluidic patterns the corresponding values are 2-3 orders of magnitude greater, and consequently are less efficiently mixed. This has allowed us to design novel channel patterns of micro-mixers with more effective mixing that can be used to detect and monitor levels of nutrients present in water samples, in particular, Nitride. Future generations of water quality monitoring and diagnostic devices will easily exploit this technology.

Keywords: nitride detection, computational fluid dynamics, chemical kinetics, mixing effect

Procedia PDF Downloads 180
90 Analytical Model of Locomotion of a Thin-Film Piezoelectric 2D Soft Robot Including Gravity Effects

Authors: Zhiwu Zheng, Prakhar Kumar, Sigurd Wagner, Naveen Verma, James C. Sturm

Abstract:

Soft robots have drawn great interest recently due to a rich range of possible shapes and motions they can take on to address new applications, compared to traditional rigid robots. Large-area electronics (LAE) provides a unique platform for creating soft robots by leveraging thin-film technology to enable the integration of a large number of actuators, sensors, and control circuits on flexible sheets. However, the rich shapes and motions possible, especially when interacting with complex environments, pose significant challenges to forming well-generalized and robust models necessary for robot design and control. In this work, we describe an analytical model for predicting the shape and locomotion of a flexible (steel-foil-based) piezoelectric-actuated 2D robot based on Euler-Bernoulli beam theory. It is nominally (unpowered) lying flat on the ground, and when powered, its shape is controlled by an array of piezoelectric thin-film actuators. Key features of the models are its ability to incorporate the significant effects of gravity on the shape and to precisely predict the spatial distribution of friction against the contacting surfaces, necessary for determining inchworm-type motion. We verified the model by developing a distributed discrete element representation of a continuous piezoelectric actuator and by comparing its analytical predictions to discrete-element robot simulations using PyBullet. Without gravity, predicting the shape of a sheet with a linear array of piezoelectric actuators at arbitrary voltages is straightforward. However, gravity significantly distorts the shape of the sheet, causing some segments to flatten against the ground. Our work includes the following contributions: (i) A self-consistent approach was developed to exactly determine which parts of the soft robot are lifted off the ground, and the exact shape of these sections, for an arbitrary array of piezoelectric voltages and configurations. (ii) Inchworm-type motion relies on controlling the relative friction with the ground surface in different sections of the robot. By adding torque-balance to our model and analyzing shear forces, the model can then determine the exact spatial distribution of the vertical force that the ground is exerting on the soft robot. Through this, the spatial distribution of friction forces between ground and robot can be determined. (iii) By combining this spatial friction distribution with the shape of the soft robot, in the function of time as piezoelectric actuator voltages are changed, the inchworm-type locomotion of the robot can be determined. As a practical example, we calculated the performance of a 5-actuator system on a 50-µm thick steel foil. Piezoelectric properties of commercially available thin-film piezoelectric actuators were assumed. The model predicted inchworm motion of up to 200 µm per step. For independent verification, we also modelled the system using PyBullet, a discrete-element robot simulator. To model a continuous thin-film piezoelectric actuator, we broke each actuator into multiple segments, each of which consisted of two rigid arms with appropriate mass connected with a 'motor' whose torque was set by the applied actuator voltage. Excellent agreement between our analytical model and the discrete-element simulator was shown for both for the full deformation shape and motion of the robot.

Keywords: analytical modeling, piezoelectric actuators, soft robot locomotion, thin-film technology

Procedia PDF Downloads 144
89 Mapping Iron Content in the Brain with Magnetic Resonance Imaging and Machine Learning

Authors: Gabrielle Robertson, Matthew Downs, Joseph Dagher

Abstract:

Iron deposition in the brain has been linked with a host of neurological disorders such as Alzheimer’s, Parkinson’s, and Multiple Sclerosis. While some treatment options exist, there are no objective measurement tools that allow for the monitoring of iron levels in the brain in vivo. An emerging Magnetic Resonance Imaging (MRI) method has been recently proposed to deduce iron concentration through quantitative measurement of magnetic susceptibility. This is a multi-step process that involves repeated modeling of physical processes via approximate numerical solutions. For example, the last two steps of this Quantitative Susceptibility Mapping (QSM) method involve I) mapping magnetic field into magnetic susceptibility and II) mapping magnetic susceptibility into iron concentration. Process I involves solving an ill-posed inverse problem by using regularization via injection of prior belief. The end result from Process II highly depends on the model used to describe the molecular content of each voxel (type of iron, water fraction, etc.) Due to these factors, the accuracy and repeatability of QSM have been an active area of research in the MRI and medical imaging community. This work aims to estimate iron concentration in the brain via a single step. A synthetic numerical model of the human head was created by automatically and manually segmenting the human head on a high-resolution grid (640x640x640, 0.4mm³) yielding detailed structures such as microvasculature and subcortical regions as well as bone, soft tissue, Cerebral Spinal Fluid, sinuses, arteries, and eyes. Each segmented region was then assigned tissue properties such as relaxation rates, proton density, electromagnetic tissue properties and iron concentration. These tissue property values were randomly selected from a Probability Distribution Function derived from a thorough literature review. In addition to having unique tissue property values, different synthetic head realizations also possess unique structural geometry created by morphing the boundary regions of different areas within normal physical constraints. This model of the human brain is then used to create synthetic MRI measurements. This is repeated thousands of times, for different head shapes, volume, tissue properties and noise realizations. Collectively, this constitutes a training-set that is similar to in vivo data, but larger than datasets available from clinical measurements. This 3D convolutional U-Net neural network architecture was used to train data-driven Deep Learning models to solve for iron concentrations from raw MRI measurements. The performance was then tested on both synthetic data not used in training as well as real in vivo data. Results showed that the model trained on synthetic MRI measurements is able to directly learn iron concentrations in areas of interest more effectively than other existing QSM reconstruction methods. For comparison, models trained on random geometric shapes (as proposed in the Deep QSM method) are less effective than models trained on realistic synthetic head models. Such an accurate method for the quantitative measurement of iron deposits in the brain would be of important value in clinical studies aiming to understand the role of iron in neurological disease.

Keywords: magnetic resonance imaging, MRI, iron deposition, machine learning, quantitative susceptibility mapping

Procedia PDF Downloads 101
88 Effects of Gym-Based and Audio-Visual Guided Home-Based Exercise Programmes on Some Anthropometric and Cardiovascular Parameters Among Overweight and Obese College Students

Authors: Abiodun Afolabi, Rufus Adesoji Adedoyin

Abstract:

This study investigated and compared the effects of gym-based exercise programme (GEBP) and audio-visual guided home-based exercise programme (AVGHBEP) on selected Anthropometric variables (Weight (W), Body Mass Index (BMI), Waist Circumference (WC), Hip Circumference (HC), Thigh Circumference (TC), Waist-Hip-Ratio (WHR), Waist-Height-Ratio (WHtR), Waist-Thigh-Ratio (WTR), Biceps Skinfold Thickness (BSFT), Triceps Skinfold Thickness (TSFT), Suprailliac Skinfold Thickness (SISFT), Subscapular Skinfold Thickness (SSSFT) and Percent Body Fat (PBF)); and Cardiovasular variables (Systolic Blood Pressure (SBP), Diastolic Blood Pressure (DBP) and Heart Rate (HR)) of overweight and obese students of Federal College of Education (Special), Oyo, Oyo State, Nigeria, with a view to providing information and evidence for GBEP and AVGHBEP in reducing overweight and obesity for promoting cardiovascular fitness. Eighty overweight and obese students (BMI ≥ 25 Kg/m²) were involved in this pretest-posttest quasi experimental study. Participants were randomly assigned into GBEP (n = 40) and AVGBBEP (n = 40) groups. Anthropometric and cardiovascular variables were measured using a weighing scale, height meter, tape measure, skinfold caliper and electronic sphygmomanometer following standard protocols. GBEP and AVGHBEP were implemented following a circuit training (aerobic and resistance training) pattern with a duration of 40-60 minutes, thrice weekly for twelve weeks. GBEP consisted of gymnasium supervised exercise programme while AVGHBEP is a Visual Display guided exercise programme conducted at the home setting. Data were analyzed by Descriptive and Inferential Statistics. The mean ages of the participants were 22.55 ± 2.55 and 23.65 ± 2.89 years for the GBEP group and AVGHBEP group, respectively. Findings showed that in the GBEP group, there were significant reductions in anthropometric variables and adiposity measures of Weight, BMI, BSFT, TSFT, SISFT, SSSFT, WC, HC, TC, WHtR, and PBF at week 12 of the study. Similarly, in the AVGHBEP group, there were significant reductions in Weight, BMI, BSFT, TSFT, SISFT, SSSFT, WC, HC, TC, WHtR and PBF at the 12th week of intervention. Comparison of the effects of GEBP and AVGHBEP on anthropometric variables and measures of adiposity showed that there was no significant difference between the two groups in weight, BMI, BSFT, TSFT, SISFT, SSSFT, WC, HC, TC, WHR, WHtR, WTR and PBF between the two groups at week 12 of the study. Furthermore, findings on the effects of exercise on programmes on cardiovascular variables revealed that significant reductions occurred in SBP in GBEP group and AVGHBEP group respectively. Comparison of the effects of GBEP and AVGHBEP on cardiovascular variables showed that there was no significant difference in SBP, DBP and HR between the two groups at week 12 of the study. It was concluded that the Audio-Visual Guided Home-based Exercise Programme was as effective as the Gym-Based Exercise Programme in causing a significant reduction in anthropometric variables and body fat among college students who are overweight and obese over a period of twelve weeks. Both Gymnasium-Based Exercise Programme and Audio-Visual Guided Home-Based Exercise Programme led to significant reduction in Systolic Blood Pressure over a period of weeks. Audio-Visual Guided Home-Based Exercise Programme can, therefore, be used as an alternative therapy in the non-pharmacological management of people who are overweight and obese.

Keywords: gym-based exercises, audio-visual guided home-based exercises, anthropometric parameters, cardiovascular parameters, overweight students, obese students

Procedia PDF Downloads 12
87 Recent Findings of Late Bronze Age Mining and Archaeometallurgy Activities in the Mountain Region of Colchis (Southern Lechkhumi, Georgia)

Authors: Rusudan Chagelishvili, Nino Sulava, Tamar Beridze, Nana Rezesidze, Nikoloz Tatuashvili

Abstract:

The South Caucasus is one of the most important centers of prehistoric metallurgy, known for its Colchian bronze culture. Modern Lechkhumi – historical Mountainous Colchis where the existence of prehistoric metallurgy is confirmed by the discovery of many artifacts is a part of this area. Studies focused on prehistoric smelting sites, related artefacts, and ore deposits have been conducted during last ten years in Lechkhumi. More than 20 prehistoric smelting sites and artefacts associated with metallurgical activities (ore roasting furnaces, slags, crucible, and tuyères fragments) have been identified so far. Within the framework of integrated studies was established that these sites were operating in 13-9 centuries B.C. and used for copper smelting. Palynological studies of slags revealed that chestnut (Castanea sativa) and hornbeam (Carpinus sp.) wood were used as smelting fuel. Geological exploration-analytical studies revealed that copper ore mining, processing, and smelting sites were distributed close to each other. Despite recent complex data, the signs of prehistoric mines (trenches) haven’t been found in this part of the study area so far. Since 2018 the archaeological-geological exploration has been focused on the southern part of Lechkhumi and covered the areas of villages Okureshi and Opitara. Several copper smelting sites (Okureshi 1 and 2, Opitara 1), as well as a Colchian Bronze culture settlement, have been identified here. Three mine workings have been found in the narrow gorge of the river Rtkhmelebisgele in the vicinities of the village Opitara. In order to establish a link between the Opitara-Okureshi archaeometallurgical sites, Late Bronze Age settlements, and mines, various scientific analytical methods -mineralized rock and slags petrography and atomic absorption spectrophotometry (AAS) analysis have been applied. The careful examination of Opitara mine workings revealed that there is a striking difference between the mine #1 on the right bank of the river and mines #2 and #3 on the left bank. The first one has all characteristic features of the Soviet period mine working (e. g. high portal with angular ribs and roof showing signs of blasting). In contrast, mines #2 and #3, which are located very close to each other, have round-shaped portals/entrances, low roofs, and fairly smooth ribs and are filled with thick layers of river sediments and collapsed weathered rock mass. A thorough review of the publications related to prehistoric mine workings revealed some striking similarities between mines #2 and #3 with their worldwide analogues. Apparently, the ore extraction from these mines was conducted by fire-setting applying primitive tools. It was also established that mines are cut in Jurassic mineralized volcanic rocks. Ore minerals (chalcopyrite, pyrite, galena) are related to calcite and quartz veins. The results obtained through the petrochemical and petrography studies of mineralized rock samples from Opitara mines and prehistoric slags are in complete correlation with each other, establishing the direct link between copper mining and smelting within the study area. Acknowledgment: This work was supported by the Shota Rustaveli National Science Foundation of Georgia (grant # FR-19-13022).

Keywords: archaeometallurgy, Mountainous Colchis, mining, ore minerals

Procedia PDF Downloads 156
86 Accumulation of Trace Metals in Leaf Vegetables Cultivated in High Traffic Areas in Ghent, Belgium

Authors: Veronique Troch, Wouter Van der Borght, Véronique De Bleeker, Bram Marynissen, Nathan Van der Eecken, Gijs Du Laing

Abstract:

Among the challenges associated with increased urban food production are health risks from food contamination, due to the higher pollution loads in urban areas, compared to rural sites. Therefore, the risks posed by industrial or traffic pollution of locally grown food, was defined as one of five high-priority issues of urban agriculture requiring further investigation. The impact of air pollution on urban horticulture is the subject of this study. More particular, this study focuses on the atmospheric deposition of trace metals on leaf vegetables cultivated in the city of Ghent, Belgium. Ghent is a particularly interesting study site as it actively promotes urban agriculture. Plants accumulate heavy metals by absorption from contaminated soils and through deposition on parts exposed to polluted air. Accumulation of trace metals in vegetation grown near roads has been shown to be significantly higher than those grown in rural areas due to traffic-related contaminants in the air. Studies of vegetables demonstrated, that the uptake and accumulation of trace metals differed among crop type, species, and among plant parts. Studies on vegetables and fruit trees in Berlin, Germany, revealed significant differences in trace metal concentrations depending on local traffic, crop species, planting style and parameters related to barriers between sampling site and neighboring roads. This study aims to supplement this scarce research on heavy metal accumulation in urban horticulture. Samples from leaf vegetables were collected from different sites, including allotment gardens, in Ghent. Trace metal contents on these leaf vegetables were analyzed by ICP-MS (inductively coupled plasma mass spectrometry). In addition, precipitation on each sampling site was collected by NILU-type bulk collectors and similarly analyzed for trace metals. On one sampling site, different parameters which might influence trace metal content in leaf vegetables were analyzed in detail. These parameters are distance of planting site to the nearest road, barriers between planting site and nearest road, and type of leaf vegetable. For comparison, a rural site, located farther from city traffic and industrial pollution, was included in this study. Preliminary results show that there is a high correlation between trace metal content in the atmospheric deposition and trace metal content in leaf vegetables. Moreover, a significant higher Pb, Cu and Fe concentration was found on spinach collected from Ghent, compared to spinach collected from a rural site. The distance of planting site to the nearest road significantly affected the accumulation of Pb, Cu, Mo and Fe on spinach. Concentrations of those elements on spinach increased with decreasing distance between planting site and the nearest road. Preliminary results did not show a significant effect of barriers between planting site and the nearest road on accumulation of trace metals on leaf vegetables. The overall goal of this study is to complete and refine existing guidelines for urban gardening to exclude potential health risks from food contamination. Accordingly, this information can help city governments and civil society in the professionalization and sustainable development of urban agriculture.

Keywords: atmospheric deposition, leaf vegetables, trace metals, traffic pollution, urban agriculture

Procedia PDF Downloads 211
85 Voices of Dissent: Case Study of a Digital Archive of Testimonies of Political Oppression

Authors: Andrea Scapolo, Zaya Rustamova, Arturo Matute Castro

Abstract:

The “Voices in Dissent” initiative aims at collecting and making available in a digital format, testimonies, letters, and other narratives produced by victims of political oppression from different geographical spaces across the Atlantic. By recovering silenced voices behind the official narratives, this open-access online database will provide indispensable tools for rewriting the history of authoritarian regimes from the margins as memory debates continue to provoke controversy among academic and popular transnational circles. In providing an extensive database of non-hegemonic discourses in a variety of political and social contexts, the project will complement the existing European and Latin-American studies, and invite further interdisciplinary and trans-national research. This digital resource will be available to academic communities and the general audience and will be organized geographically and chronologically. “Voices in Dissent” will offer a first comprehensive study of these personal accounts of persecution and repression against determined historical backgrounds and their impact on collective memory formation in contemporary societies. The digitalization of these texts will allow to run metadata analyses and adopt comparatist approaches for a broad range of research endeavors. Most of the testimonies included in our archive are testimonies of trauma: the trauma of exile, imprisonment, torture, humiliation, censorship. The research on trauma has now reached critical mass and offers a broad spectrum of critical perspectives. By putting together testimonies from different geographical and historical contexts, our project will provide readers and scholars with an extraordinary opportunity to investigate how culture shapes individual and collective memories and provides or denies resources to make sense and cope with the trauma. For scholars dealing with the epistemological and rhetorical analysis of testimonies, an online open-access archive will prove particularly beneficial to test theories on truth status and the formation of belief as well as to study the articulation of discourse. An important aspect of this project is also its pedagogical applications since it will contribute to the creation of Open Educational Resources (OER) to support students and educators worldwide. Through collaborations with our Library System, the archive will form part of the Digital Commons database. The texts collected in this online archive will be made available in the original languages as well as in English translation. They will be accompanied by a critical apparatus that will contextualize them historically by providing relevant background information and bibliographical references. All these materials can serve as a springboard for a broad variety of educational projects and classroom activities. They can also be used to design specific content courses or modules. In conclusion, the desirable outcomes of the “Voices in Dissent” project are: 1. the collections and digitalization of political dissent testimonies; 2. the building of a network of scholars, educators, and learners involved in the design, development, and sustainability of the digital archive; 3. the integration of the content of the archive in both research and teaching endeavors, such as publication of scholarly articles, design of new upper-level courses, and integration of the materials in existing courses.

Keywords: digital archive, dissent, open educational resources, testimonies, transatlantic studies

Procedia PDF Downloads 91
84 Holistic Urban Development: Incorporating Both Global and Local Optimization

Authors: Christoph Opperer

Abstract:

The rapid urbanization of modern societies and the need for sustainable urban development demand innovative solutions that meet both individual and collective needs while addressing environmental concerns. To address these challenges, this paper presents a study that explores the potential of spatial and energetic/ecological optimization to enhance the performance of urban settlements, focusing on both architectural and urban scales. The study focuses on the application of biological principles and self-organization processes in urban planning and design, aiming to achieve a balance between ecological performance, architectural quality, and individual living conditions. The research adopts a case study approach, focusing on a 10-hectare brownfield site in the south of Vienna. The site is surrounded by a small-scale built environment as an appropriate starting point for the research and design process. However, the selected urban form is not a prerequisite for the proposed design methodology, as the findings can be applied to various urban forms and densities. The methodology used in this research involves dividing the overall building mass and program into individual small housing units. A computational model has been developed to optimize the distribution of these units, considering factors such as solar exposure/radiation, views, privacy, proximity to sources of disturbance (such as noise), and minimal internal circulation areas. The model also ensures that existing vegetation and buildings on the site are preserved and incorporated into the optimization and design process. The model allows for simultaneous optimization at two scales, architectural and urban design, which have traditionally been addressed sequentially. This holistic design approach leads to individual and collective benefits, resulting in urban environments that foster a balance between ecology and architectural quality. The results of the optimization process demonstrate a seemingly random distribution of housing units that, in fact, is a densified hybrid between traditional garden settlements and allotment settlements. This urban typology is selected due to its compatibility with the surrounding urban context, although the presented methodology can be extended to other forms of urban development and density levels. The benefits of this approach are threefold. First, it allows for the determination of ideal housing distribution that optimizes solar radiation for each building density level, essentially extending the concept of sustainable building to the urban scale. Second, the method enhances living quality by considering the orientation and positioning of individual functions within each housing unit, achieving optimal views and privacy. Third, the algorithm's flexibility and robustness facilitate the efficient implementation of urban development with various stakeholders, architects, and construction companies without compromising its performance. The core of the research is the application of global and local optimization strategies to create efficient design solutions. By considering both, the performance of individual units and the collective performance of the urban aggregation, we ensure an optimal balance between private and communal benefits. By promoting a holistic understanding of urban ecology and integrating advanced optimization strategies, our methodology offers a sustainable and efficient solution to the challenges of modern urbanization.

Keywords: sustainable development, self-organization, ecological performance, solar radiation and exposure, daylight, visibility, accessibility, spatial distribution, local and global optimization

Procedia PDF Downloads 39
83 Effects of Combined Lewis Acid and Ultrasonic Pretreatment on the Physicochemical Properties of Heat-Treated Moso Bamboo

Authors: Tianfang Zhang, Luxi He, Zhengbin He, Songlin Yi

Abstract:

Moso bamboo is a common non-wood forest resource in Asia that is widely used in construction, furniture, and other fields. Influenced by the heterogeneous structure and various hygroscopic groups of bamboo, the deformation occurs as moisture absorption and desorption when the environment temperature and humidity conditions change. Thermal modification is a well-established commercial technology for improving the dimensional stability of bamboo. However, the higher energy consumption and carbon emissions limit its further development. Previous studies have indicated that inorganic salt-assisted thermal modification could lead to significant reductions in moisture absorption and energy consumption. Represented by metal chlorides, it could show Lewis acid properties when dissolved in water, generating metal ion ligand complexes. In addition, ultrasonic treatment, as an efficient and environmentally friendly physical treatment method, improved the accessibility of pretreatment chemical impregnation agents and intensified mass and heat transfer during reactions. To save energy and reduce deformation, this study elucidates the influence of zinc chloride-ultrasonic treatment on the physicochemical properties of heat-treated bamboo, and the details of the bamboo deformation mechanism with Lewis acid are explained. Three sets of parameters (inorganic salt concentration, ultrasonic frequency and heat treatment temperature) were designed, and an optimized process was proposed to clarify this scientific question, that is: 5% (w/w) zinc chloride solution, 40 kHz ultrasonic waves and heat treatment at 160 °C. The samples were characterized by different means to analyze changes in their macroscopic features, pore structure, chemical structure and chemical composition. The results suggested that the maximum weight loss rate was reduced by at least 19.75%. The maximum thermal degradation peak of hemicellulose was significantly shifted forward. The hygroscopicity was reduced by 10.15%, the relative crystallinity was increased by 4.4%, the surface contact angle was increased by 25.2%, and the color change was increased by 23.60 in the optimal condition. From the electron microscope observation, the treated surface became rougher, and cracks appeared in some weaker areas, accelerating starch loss and removing granular attachments around the pits. By ion diffusion, zinc ions diffused into hemicellulose and a partial amorphous region of cellulose. Parts of the cell wall structure were subjected to swelling and degradation, leading to the broken state of parenchyma cells. From the Raman spectrum, compared to conventional thermal modifications, hemicellulose thermal degradation and lignin migration is promoted by Lewis acid under dilute acid-thermal condition. As shown in this work, the combined Lewis acid and ultrasonic pretreatment as an environmentally friendly, safe, and efficient physic-chemical combined pretreatment method improved the dimensional stability of Moso bamboo and lowered the thermal degradation conditions. This method has great potential for development in the field of bamboo heat treatment, and it might provide some guidance for making dark bamboo flooring.

Keywords: Moso bamboo, Lewis acid, ultrasound, heat treatment

Procedia PDF Downloads 43
82 An Intelligence-Led Methodologly for Detecting Dark Actors in Human Trafficking Networks

Authors: Andrew D. Henshaw, James M. Austin

Abstract:

Introduction: Human trafficking is an increasingly serious transnational criminal enterprise and social security issue. Despite ongoing efforts to mitigate the phenomenon and a significant expansion of security scrutiny over past decades, it is not receding. This is true for many nations in Southeast Asia, widely recognized as the global hub for trafficked persons, including men, women, and children. Clearly, human trafficking is difficult to address because there are numerous drivers, causes, and motivators for it to persist, such as non-military and non-traditional security challenges, i.e., climate change, global warming displacement, and natural disasters. These make displaced persons and refugees particularly vulnerable. The issue is so large conservative estimates put a dollar value at around $150 billion-plus per year (Niethammer, 2020) spanning sexual slavery and exploitation, forced labor, construction, mining and in conflict roles, and forced marriages of girls and women. Coupled with corruption throughout military, police, and civil authorities around the world, and the active hands of powerful transnational criminal organizations, it is likely that such figures are grossly underestimated as human trafficking is misreported, under-detected, and deliberately obfuscated to protect those profiting from it. For example, the 2022 UN report on human trafficking shows a 56% reduction in convictions in that year alone (UNODC, 2022). Our Approach: To better understand this, our research utilizes a bespoke methodology. Applying a JAM (Juxtaposition Assessment Matrix), which we previously developed to detect flows of dark money around the globe (Henshaw, A & Austin, J, 2021), we now focus on the human trafficking paradigm. Indeed, utilizing a JAM methodology has identified key indicators of human trafficking not previously explored in depth. Being a set of structured analytical techniques that provide panoramic interpretations of the subject matter, this iteration of the JAM further incorporates behavioral and driver indicators, including the employment of Open-Source Artificial Intelligence (OS-AI) across multiple collection points. The extracted behavioral data was then applied to identify non-traditional indicators as they contribute to human trafficking. Furthermore, as the JAM OS-AI analyses data from the inverted position, i.e., the viewpoint of the traffickers, it examines the behavioral and physical traits required to succeed. This transposed examination of the requirements of success delivers potential leverage points for exploitation in the fight against human trafficking in a new and novel way. Findings: Our approach identified new innovative datasets that have previously been overlooked or, at best, undervalued. For example, the JAM OS-AI approach identified critical 'dark agent' lynchpins within human trafficking that are difficult to detect and harder to connect to actors and agents within a network. Our preliminary data suggests this is in part due to the fact that ‘dark agents’ in extant research have been difficult to detect and potentially much harder to directly connect to the actors and organizations in human trafficking networks. Our research demonstrates that using new investigative techniques such as OS-AI-aided JAM introduces a powerful toolset to increase understanding of human trafficking and transnational crime and illuminate networks that, to date, avoid global law enforcement scrutiny.

Keywords: human trafficking, open-source intelligence, transnational crime, human security, international human rights, intelligence analysis, JAM OS-AI, Dark Money

Procedia PDF Downloads 54
81 Influence of Atmospheric Pollutants on Child Respiratory Disease in Cartagena De Indias, Colombia

Authors: Jose A. Alvarez Aldegunde, Adrian Fernandez Sanchez, Matthew D. Menden, Bernardo Vila Rodriguez

Abstract:

Up to five statistical pre-processings have been carried out considering the pollutant records of the stations present in Cartagena de Indias, Colombia, also taking into account the childhood asthma incidence surveys conducted in hospitals in the city by the Health Ministry of Colombia for this study. These pre-processings have consisted of different techniques such as the determination of the quality of data collection, determination of the quality of the registration network, identification and debugging of errors in data collection, completion of missing data and purified data, as well as the improvement of the time scale of records. The characterization of the quality of the data has been conducted by means of density analysis of the pollutant registration stations using ArcGis Software and through mass balance techniques, making it possible to determine inconsistencies in the records relating the registration data between stations following the linear regression. The results obtained in this process have highlighted the positive quality in the pollutant registration process. Consequently, debugging of errors has allowed us to identify certain data as statistically non-significant in the incidence and series of contamination. This data, together with certain missing records in the series recorded by the measuring stations, have been completed by statistical imputation equations. Following the application of these prior processes, the basic series of incidence data for respiratory disease and pollutant records have allowed the characterization of the influence of pollutants on respiratory diseases such as, for example, childhood asthma. This characterization has been carried out using statistical correlation methods, including visual correlation, simple linear regression correlation and spectral analysis with PAST Software which identifies maximum periodicity cycles and minimums under the formula of the Lomb periodgram. In relation to part of the results obtained, up to eleven maximums and minimums considered contemporary between the incidence records and the particles have been identified taking into account the visual comparison. The spectral analyses that have been performed on the incidence and the PM2.5 have returned a series of similar maximum periods in both registers, which are at a maximum during a period of one year and another every 25 days (0.9 and 0.07 years). The bivariate analysis has managed to characterize the variable "Daily Vehicular Flow" in the ninth position of importance of a total of 55 variables. However, the statistical correlation has not obtained a favorable result, having obtained a low value of the R2 coefficient. The series of analyses conducted has demonstrated the importance of the influence of pollutants such as PM2.5 in the development of childhood asthma in Cartagena. The quantification of the influence of the variables has been able to determine that there is a 56% probability of dependence between PM2.5 and childhood respiratory asthma in Cartagena. Considering this justification, the study could be completed through the application of the BenMap Software, throwing a series of spatial results of interpolated values of the pollutant contamination records that exceeded the established legal limits (represented by homogeneous units up to the neighborhood level) and results of the impact on the exacerbation of pediatric asthma. As a final result, an economic estimate (in Colombian Pesos) of the monthly and individual savings derived from the percentage reduction of the influence of pollutants in relation to visits to the Hospital Emergency Room due to asthma exacerbation in pediatric patients has been granted.

Keywords: Asthma Incidence, BenMap, PM2.5, Statistical Analysis

Procedia PDF Downloads 88
80 Optimized Electron Diffraction Detection and Data Acquisition in Diffraction Tomography: A Complete Solution by Gatan

Authors: Saleh Gorji, Sahil Gulati, Ana Pakzad

Abstract:

Continuous electron diffraction tomography, also known as microcrystal electron diffraction (MicroED) or three-dimensional electron diffraction (3DED), is a powerful technique, which in combination with cryo-electron microscopy (cryo-ED), can provide atomic-scale 3D information about the crystal structure and composition of different classes of crystalline materials such as proteins, peptides, and small molecules. Unlike the well-established X-ray crystallography method, 3DED does not require large single crystals and can collect accurate electron diffraction data from crystals as small as 50 – 100 nm. This is a critical advantage as growing larger crystals, as required by X-ray crystallography methods, is often very difficult, time-consuming, and expensive. In most cases, specimens studied via 3DED method are electron beam sensitive, which means there is a limitation on the maximum amount of electron dose one can use to collect the required data for a high-resolution structure determination. Therefore, collecting data using a conventional scintillator-based fiber coupled camera brings additional challenges. This is because of the inherent noise introduced during the electron-to-photon conversion in the scintillator and transfer of light via the fibers to the sensor, which results in a poor signal-to-noise ratio and requires a relatively higher and commonly specimen-damaging electron dose rates, especially for protein crystals. As in other cryo-EM techniques, damage to the specimen can be mitigated if a direct detection camera is used which provides a high signal-to-noise ratio at low electron doses. In this work, we have used two classes of such detectors from Gatan, namely the K3® camera (a monolithic active pixel sensor) and Stela™ (that utilizes DECTRIS hybrid-pixel technology), to address this problem. The K3 is an electron counting detector optimized for low-dose applications (like structural biology cryo-EM), and Stela is also a counting electron detector but optimized for diffraction applications with high speed and high dynamic range. Lastly, data collection workflows, including crystal screening, microscope optics setup (for imaging and diffraction), stage height adjustment at each crystal position, and tomogram acquisition, can be one of the other challenges of the 3DED technique. Traditionally this has been all done manually or in a partly automated fashion using open-source software and scripting, requiring long hours on the microscope (extra cost) and extensive user interaction with the system. We have recently introduced Latitude® D in DigitalMicrograph® software, which is compatible with all pre- and post-energy-filter Gatan cameras and enables 3DED data acquisition in an automated and optimized fashion. Higher quality 3DED data enables structure determination with higher confidence, while automated workflows allow these to be completed considerably faster than before. Using multiple examples, this work will demonstrate how to direct detection electron counting cameras enhance 3DED results (3 to better than 1 Angstrom) for protein and small molecule structure determination. We will also show how Latitude D software facilitates collecting such data in an integrated and fully automated user interface.

Keywords: continuous electron diffraction tomography, direct detection, diffraction, Latitude D, Digitalmicrograph, proteins, small molecules

Procedia PDF Downloads 68
79 Fuzzy Multi-Objective Approach for Emergency Location Transportation Problem

Authors: Bidzina Matsaberidze, Anna Sikharulidze, Gia Sirbiladze, Bezhan Ghvaberidze

Abstract:

In the modern world emergency management decision support systems are actively used by state organizations, which are interested in extreme and abnormal processes and provide optimal and safe management of supply needed for the civil and military facilities in geographical areas, affected by disasters, earthquakes, fires and other accidents, weapons of mass destruction, terrorist attacks, etc. Obviously, these kinds of extreme events cause significant losses and damages to the infrastructure. In such cases, usage of intelligent support technologies is very important for quick and optimal location-transportation of emergency service in order to avoid new losses caused by these events. Timely servicing from emergency service centers to the affected disaster regions (response phase) is a key task of the emergency management system. Scientific research of this field takes the important place in decision-making problems. Our goal was to create an expert knowledge-based intelligent support system, which will serve as an assistant tool to provide optimal solutions for the above-mentioned problem. The inputs to the mathematical model of the system are objective data, as well as expert evaluations. The outputs of the system are solutions for Fuzzy Multi-Objective Emergency Location-Transportation Problem (FMOELTP) for disasters’ regions. The development and testing of the Intelligent Support System were done on the example of an experimental disaster region (for some geographical zone of Georgia) which was generated using a simulation modeling. Four objectives are considered in our model. The first objective is to minimize an expectation of total transportation duration of needed products. The second objective is to minimize the total selection unreliability index of opened humanitarian aid distribution centers (HADCs). The third objective minimizes the number of agents needed to operate the opened HADCs. The fourth objective minimizes the non-covered demand for all demand points. Possibility chance constraints and objective constraints were constructed based on objective-subjective data. The FMOELTP was constructed in a static and fuzzy environment since the decisions to be made are taken immediately after the disaster (during few hours) with the information available at that moment. It is assumed that the requests for products are estimated by homeland security organizations, or their experts, based upon their experience and their evaluation of the disaster’s seriousness. Estimated transportation times are considered to take into account routing access difficulty of the region and the infrastructure conditions. We propose an epsilon-constraint method for finding the exact solutions for the problem. It is proved that this approach generates the exact Pareto front of the multi-objective location-transportation problem addressed. Sometimes for large dimensions of the problem, the exact method requires long computing times. Thus, we propose an approximate method that imposes a number of stopping criteria on the exact method. For large dimensions of the FMOELTP the Estimation of Distribution Algorithm’s (EDA) approach is developed.

Keywords: epsilon-constraint method, estimation of distribution algorithm, fuzzy multi-objective combinatorial programming problem, fuzzy multi-objective emergency location/transportation problem

Procedia PDF Downloads 293
78 Horticulture Therapy: A Healing Tool for Combating Depression

Authors: Eric Spruth, Lindsey Herbert, Danielle DiCristofano, Isis Violet Spruth, Drake Von Spruth

Abstract:

Turning dreams into reality, the lifelong passion of Mr. Spruth and the company is to transform garbage-filled courtyards into flourishing flower and vegetable gardens, bringing light, hope, and wellness to not just the space but to the populations served within these public and private spaces. As an Expressive Art Therapist at Cook County Jail, Eric Spruth has implemented gardening projects, mobile radish carts, plant fostering systems, and large-scale murals. Lindsey Herbert, the Manager of Operations and Events at the International Museum of Surgical Science, supports gardening projects with Mr. Spruth along the front lawn of the museum, which will eventually accumulate into a community wellness garden. Mr. Spruth and Ms. Herbert both have dedicated efforts towards fostering awareness of hope and help and accountability for physical and mental wellbeing. Medicinal plants can rightfully be called one of nature’s wonderful healing tools with therapeutic powers. They can inhibit and kill bacteria, lower blood pressure, blood cholesterol, and blood sugar, prevent blood clotting, boost the immune system, and serve as a digestive aid. Some plants have the ability to stimulate the lymphatic system, which expedites the removal of waste products from the body to fight off evil toxins. Many plants are considered effective antioxidants to protect cells against free radical damage, serving to prevent some forms of cancer, heart disease, strokes, and viral infections. Garlic alone can provide us with over two hundred unusual chemicals that have the capability of protecting the human body from a wide variety of diseases. Besides the medicinal qualities of plants, plant and vegetable gardens also have an echoing effect on non-participants to look at something beautiful rather than a concrete courtyard or an unkempt lawn in front of a beautiful building. Plants also purify spaces and affect mood with color therapy. Collective gardening can foster a sense of community and purpose. Additionally, by recognizing the ever-evolving planet with global warming, horticulture therapy teaches important lessons in responsibility, accountability, and sustainability. Growing local food provides an opportunity to be involved in your own mental and physical health and gives you a chance for your own self-resilience, combating depression and a lack of nutrition. In adolescents, the process of watering and caring for plants can teach important life lessons that transcend beyond the garden by providing knowledge on how to care for yourself and how to be an active member of society. It also gives a sense of purpose and pride in transforming a small seed into a plant that can be consumed or enjoyed by others. Mr. Spruth and Ms. Herbert recognize the importance of bringing more green spaces to urban areas, both to serve a nutritional benefit and provide a beautiful transformation to underutilized areas. Gardens can bring beauty, wellness, and hope to dark spaces and provide immeasurable benefits for all.

Keywords: growth, hope, mental health, sustainability, transformation, wellness

Procedia PDF Downloads 65
77 Computer-Integrated Surgery of the Human Brain, New Possibilities

Authors: Ugo Galvanetto, Pirto G. Pavan, Mirco Zaccariotto

Abstract:

The discipline of Computer-integrated surgery (CIS) will provide equipment able to improve the efficiency of healthcare systems and, which is more important, clinical results. Surgeons and machines will cooperate in new ways that will extend surgeons’ ability to train, plan and carry out surgery. Patient specific CIS of the brain requires several steps: 1 - Fast generation of brain models. Based on image recognition of MR images and equipped with artificial intelligence, image recognition techniques should differentiate among all brain tissues and segment them. After that, automatic mesh generation should create the mathematical model of the brain in which the various tissues (white matter, grey matter, cerebrospinal fluid …) are clearly located in the correct positions. 2 – Reliable and fast simulation of the surgical process. Computational mechanics will be the crucial aspect of the entire procedure. New algorithms will be used to simulate the mechanical behaviour of cutting through cerebral tissues. 3 – Real time provision of visual and haptic feedback A sophisticated human-machine interface based on ergonomics and psychology will provide the feedback to the surgeon. The present work will address in particular point 2. Modelling the cutting of soft tissue in a structure as complex as the human brain is an extremely challenging problem in computational mechanics. The finite element method (FEM), that accurately represents complex geometries and accounts for material and geometrical nonlinearities, is the most used computational tool to simulate the mechanical response of soft tissues. However, the main drawback of FEM lies in the mechanics theory on which it is based, classical continuum Mechanics, which assumes matter is a continuum with no discontinuity. FEM must resort to complex tools such as pre-defined cohesive zones, external phase-field variables, and demanding remeshing techniques to include discontinuities. However, all approaches to equip FEM computational methods with the capability to describe material separation, such as interface elements with cohesive zone models, X-FEM, element erosion, phase-field, have some drawbacks that make them unsuitable for surgery simulation. Interface elements require a-priori knowledge of crack paths. The use of XFEM in 3D is cumbersome. Element erosion does not conserve mass. The Phase Field approach adopts a diffusive crack model instead of describing true tissue separation typical of surgical procedures. Modelling discontinuities, so difficult when using computational approaches based on classical continuum Mechanics, is instead easy for novel computational methods based on Peridynamics (PD). PD is a non-local theory of mechanics formulated with no use of spatial derivatives. Its governing equations are valid at points or surfaces of discontinuity, and it is, therefore especially suited to describe crack propagation and fragmentation problems. Moreover, PD does not require any criterium to decide the direction of crack propagation or the conditions for crack branching or coalescence; in the PD-based computational methods, cracks develop spontaneously in the way which is the most convenient from an energy point of view. Therefore, in PD computational methods, crack propagation in 3D is as easy as it is in 2D, with a remarkable advantage with respect to all other computational techniques.

Keywords: computational mechanics, peridynamics, finite element, biomechanics

Procedia PDF Downloads 52
76 Non-Mammalian Pattern Recognition Receptor from Rock Bream (Oplegnathus fasciatus): Genomic Characterization and Transcriptional Profile upon Bacterial and Viral Inductions

Authors: Thanthrige Thiunuwan Priyathilaka, Don Anushka Sandaruwan Elvitigala, Bong-Soo Lim, Hyung-Bok Jeong, Jehee Lee

Abstract:

Toll like receptors (TLRs) are a phylogeneticaly conserved family of pattern recognition receptors, which participates in the host immune responses against various pathogens and pathogen derived mitogen. TLR21, a non-mammalian type, is almost restricted to the fish species even though those can be identified rarely in avians and amphibians. Herein, this study was carried out to identify and characterize TLR21 from rock bream (Oplegnathus fasciatus) designated as RbTLR21, at transcriptional and genomic level. In this study, the full length cDNA and genomic sequence of RbTLR21 was identified using previously constructed cDNA sequence database and BAC library, respectively. Identified RbTLR21 sequence was characterized using several bioinformatics tools. The quantitative real time PCR (qPCR) experiment was conducted to determine tissue specific expressional distribution of RbTLR21. Further, transcriptional modulation of RbTLR21 upon the stimulation with Streptococcus iniae (S. iniae), rock bream iridovirus (RBIV) and Edwardsiella tarda (E. tarda) was analyzed in spleen tissues. The complete coding sequence of RbTLR21 was 2919 bp in length which can encode a protein consisting of 973 amino acid residues with molecular mass of 112 kDa and theoretical isoelectric point of 8.6. The anticipated protein sequence resembled a typical TLR domain architecture including C-terminal ectodomain with 16 leucine rich repeats, a transmembrane domain, cytoplasmic TIR domain and signal peptide with 23 amino acid residues. Moreover, protein folding pattern prediction of RbTLR21 exhibited well-structured and folded ectodomain, transmembrane domain and cytoplasmc TIR domain. According to the pair wise sequence analysis data, RbTLR21 showed closest homology with orange-spotted grouper (Epinephelus coioides) TLR21with 76.9% amino acid identity. Furthermore, our phylogenetic analysis revealed that RbTLR21 shows a close evolutionary relationship with its ortholog from Danio rerio. Genomic structure of RbTLR21 consisted of single exon similar to its ortholog of zebra fish. Sevaral putative transcription factor binding sites were also identified in 5ʹ flanking region of RbTLR21. The RBTLR 21 was ubiquitously expressed in all the tissues we tested. Relatively, high expression levels were found in spleen, liver and blood tissues. Upon induction with rock bream iridovirus, RbTLR21 expression was upregulated at the early phase of post induction period even though RbTLR21 expression level was fluctuated at the latter phase of post induction period. Post Edwardsiella tarda injection, RbTLR transcripts were upregulated throughout the experiment. Similarly, Streptococcus iniae induction exhibited significant upregulations of RbTLR21 mRNA expression in the spleen tissues. Collectively, our findings suggest that RbTLR21 is indeed a homolog of TLR21 family members and RbTLR21 may be involved in host immune responses against bacterial and DNA viral infections.

Keywords: rock bream, toll like receptor 21 (TLR21), pattern recognition receptor, genomic characterization

Procedia PDF Downloads 521
75 Identifying Effective Strategies to Promote Vietnamese Fashion Brands in an Internationally Dominated Market

Authors: Lam Hong Lan, Gabor Sarlos

Abstract:

It is hard to search for best practices in promotion for local fashion brands in Vietnam as the industry is still very young. Local fashion start-ups have grown quickly in the last five years, thanks in part to the internet and social media. However, local designer/owners can face a huge challenge when competing with international brands in the Vietnamese market – and few local case studies are available for guidance. In response, this paper studied how local small- to medium-sized enterprises (SMEs) promote to their target customers in order to compete with international brands. Knowledge of both successful and unsuccessful approaches generated by this study is intended to both contribute to the academic literature on local fashion in Vietnam as well as to help local designers to learn from and improve their brand-building strategy. The primary study featured qualitative data collection via semi-structured depth interviews. Transcription and data analysis were conducted manually in order to identify success factors that local brands should consider as part of their promotion strategy. Purposive sampling of SMEs identified five designers in Ho Chi Minh City (the biggest city in Vietnam) and three designers in Hanoi (the second biggest) as interviewees. Participant attributes included: born in the 1980s or 1990s; familiar with internet and social media; designer/owner of a successful local fashion brand in the key middle market and/or mass market segments (which are crucial to the growth of local brands). A secondary study was conducted using social listening software to gather further qualitative data on what were considered to be successful or unsuccessful approaches to local fashion brand promotion on social media. Both the primary and secondary studies indicated that local designers had maximized their promotion budget by using owned media and earned media instead of paid media. Findings from the qualitative interviews indicate that internet and social media have been used as effective promotion platforms by local fashion start-ups. Facebook and Instagram were the most popular social networks used by the SMEs interviewed, and these social platforms were believed to offer a more affordable promotional strategy than traditional media such as TV and/or print advertising. Online stores were considered an important factor in helping the SMEs to reach customers beyond the physical store. Furthermore, a successful online store allowed some SMEs to reduce their business rental costs by maintaining their physical store in a cheaper, less central city area as opposed to a more traditional city center store location. In addition, the small comparative size of the SMEs allowed them to be more attentive to their customers, leading to higher customer satisfaction and rate of return. In conclusion, this study found that these kinds of cost savings helped the SMEs interviewed to focus their scarce resources on producing unique, high-quality collections in order to differentiate themselves from international brands. Facebook and Instagram were the main platforms used for promotion and brand-building. The main challenge to this promotion strategy identified by the SMEs interviewed was to continue to find innovative ways to maximize the impact of a limited marketing budget.

Keywords: Vietnam, SMEs, fashion brands, promotion, marketing, social listening

Procedia PDF Downloads 102
74 Pharmacokinetics of First-Line Tuberculosis Drugs in South African Patients from Kwazulu-Natal: Effects of Pharmacogenetic Variation on Rifampicin and Isoniazid Concentrations

Authors: Anushka Naidoo, Veron Ramsuran, Maxwell Chirehwa, Paolo Denti, Kogieleum Naidoo, Helen McIlleron, Nonhlanhla Yende-Zuma, Ravesh Singh, Sinaye Ngcapu, Nesri Padayatachi

Abstract:

Background: Despite efforts to introduce new drugs and shorter drug regimens for drug-susceptible tuberculosis (TB), the standard first-line treatment has not changed in over 50 years. Rifampicin, isoniazid, and pyrazinamide are critical components of the current standard treatment regimens. Some studies suggest that microbiologic failure and acquired drug resistance are primarily driven by low drug concentrations that result from pharmacokinetic (PK) variability independent of adherence to treatment. Wide between-patient pharmacokinetic variability for rifampin, isoniazid, and pyrazinamide has been reported in prior studies. There may be several reasons for this variability. However, genetic variability in genes coding for drug metabolizing and transporter enzymes have been shown to be a contributing factor for variable tuberculosis drug exposures. Objective: We describe the pharmacokinetics of first-line TB drugs rifampicin, isoniazid, and pyrazinamide and assess the effect of genetic variability in relevant selected drug metabolizing and transporter enzymes on pharmacokinetic parameters of isoniazid and rifampicin. Methods: We conducted the randomized-controlled Improving retreatment success TB trial in Durban, South Africa. The drug regimen included rifampicin, isoniazid, and pyrazinamide. Drug concentrations were measured in plasma, and concentration-time data were analysed using nonlinear-mixed-effects models to quantify the effects of relevant covariates and single nucleotide polymorphisms (SNP’s) of drug metabolizing and transporter genes on rifampicin, isoniazid and pyrazinamide exposure. A total of 25 SNP’s: four NAT2 (used to determine acetylator status), four SLCO1B1, three Pregnane X receptor (NR1), six ABCB1 and eight UGT1A, were selected for analysis in this study. Genotypes were determined for each of the SNP’s using a TaqMan® Genotyping OpenArray™. Results: Among fifty-eight patients studied; 41 (70.7%) were male, 97% black African, 42 (72.4%) HIV co-infected and 40 (95%) on efavirenz-based ART. Median weight, fat-free mass (FFM), and age at baseline were 56.9 kg (interquartile range, IQR: 51.1-65.2), 46.8 kg (IQR: 42.5-50.3) and 37 years (IQR: 31-42), respectively. The pharmacokinetics of rifampicin and pyrazinamide was best described using one-compartment models with first-order absorption and elimination, while for isoniazid two-compartment disposition was used. The median (interquartile range: IQR) AUC (h·mg/L) and Cmax (mg/L) for rifampicin, isoniazid, and pyrazinamide were; 25.62 (23.01-28.53) and 4.85 (4.36-5.40), 10.62 (9.20-12.25) and 2.79 (2.61-2.97), 345.74 (312.03-383.10) and 28.06 (25.01-31.52), respectively. Eighteen percent of patients were classified as rapid acetylators, and 34% and 43% as slow and intermediate acetylators, respectively. Rapid and intermediate acetylator status based on NAT 2 genotype resulted in 2.3 and 1.6 times higher isoniazid clearance than slow acetylators. We found no effects of the SLCO1B1 genotypes on rifampicin pharmacokinetics. Conclusion: Plasma concentrations of rifampicin, isoniazid, and pyrazinamide were low overall in our patients. Isoniazid clearance was high overall and as expected higher in rapid and intermediate acetylators resulting in lower drug exposures. In contrast to reports from previous South African or Ugandan studies, we did not find any effects of the SLCO1B1 or other genotypes tested on rifampicin PK. However, our findings are in keeping with more recent studies from Malawi and India emphasizing the need for geographically diverse and adequately powered studies. The clinical relevance of the low tuberculosis drug concentrations warrants further investigation.

Keywords: rifampicin, isoniazid pharmacokinetics, genetics, NAT2, SLCO1B1, tuberculosis

Procedia PDF Downloads 159
73 Sensing Study through Resonance Energy and Electron Transfer between Föster Resonance Energy Transfer Pair of Fluorescent Copolymers and Nitro-Compounds

Authors: Vishal Kumar, Soumitra Satapathi

Abstract:

Föster Resonance Energy Transfer (FRET) is a powerful technique used to probe close-range molecular interactions. Physically, the FRET phenomenon manifests as a dipole–dipole interaction between closely juxtaposed fluorescent molecules (10–100 Å). Our effort is to employ this FRET technique to make a prototype device for highly sensitive detection of environment pollutant. Among the most common environmental pollutants, nitroaromatic compounds (NACs) are of particular interest because of their durability and toxicity. That’s why, sensitive and selective detection of small amounts of nitroaromatic explosives, in particular, 2,4,6-trinitrophenol (TNP), 2,4-dinitrotoluene (DNT) and 2,4,6-trinitrotoluene (TNT) has been a critical challenge due to the increasing threat of explosive-based terrorism and the need of environmental monitoring of drinking and waste water. In addition, the excessive utilization of TNP in several other areas such as burn ointment, pesticides, glass and the leather industry resulted in environmental accumulation, and is eventually contaminating the soil and aquatic systems. To the date, high number of elegant methods, including fluorimetry, gas chromatography, mass, ion-mobility and Raman spectrometry have been successfully applied for explosive detection. Among these efforts, fluorescence-quenching methods based on the mechanism of FRET show good assembly flexibility, high selectivity and sensitivity. Here, we report a FRET-based sensor system for the highly selective detection of NACs, such as TNP, DNT and TNT. The sensor system is composed of a copolymer Poly [(N,N-dimethylacrylamide)-co-(Boc-Trp-EMA)] (RP) bearing tryptophan derivative in the side chain as donor and dansyl tagged copolymer P(MMA-co-Dansyl-Ala-HEMA) (DCP) as an acceptor. Initially, the inherent fluorescence of RP copolymer is quenched by non-radiative energy transfer to DCP which only happens once the two molecules are within Förster critical distance (R0). The excellent spectral overlap (Jλ= 6.08×10¹⁴ nm⁴M⁻¹cm⁻¹) between donors’ (RP) emission profile and acceptors’ (DCP) absorption profile makes them an exciting and efficient FRET pair i.e. further confirmed by the high rate of energy transfer from RP to DCP i.e. 0.87 ns⁻¹ and lifetime measurement by time correlated single photon counting (TCSPC) to validate the 64% FRET efficiency. This FRET pair exhibited a specific fluorescence response to NACs such as DNT, TNT and TNP with 5.4, 2.3 and 0.4 µM LODs, respectively. The detection of NACs occurs with high sensitivity by photoluminescence quenching of FRET signal induced by photo-induced electron transfer (PET) from electron-rich FRET pair to electron-deficient NAC molecules. The estimated stern-volmer constant (KSV) values for DNT, TNT and TNP are 6.9 × 10³, 7.0 × 10³ and 1.6 × 104 M⁻¹, respectively. The mechanistic details of molecular interactions are established by time-resolved fluorescence, steady-state fluorescence and absorption spectroscopy confirmed that the sensing process is of mixed type, i.e. both dynamic and static quenching as lifetime of FRET system (0.73 ns) is reduced to 0.55, 0.57 and 0.61 ns DNT, TNT and TNP, respectively. In summary, the simplicity and sensitivity of this novel FRET sensor opens up the possibility of designing optical sensor of various NACs in one single platform for developing multimodal sensor for environmental monitoring and future field based study.

Keywords: FRET, nitroaromatic, stern-Volmer constant, tryptophan and dansyl tagged copolymer

Procedia PDF Downloads 108
72 Chronic Impact of Silver Nanoparticle on Aerobic Wastewater Biofilm

Authors: Sanaz Alizadeh, Yves Comeau, Arshath Abdul Rahim, Sunhasis Ghoshal

Abstract:

The application of silver nanoparticles (AgNPs) in personal care products, various household and industrial products has resulted in an inevitable environmental exposure of such engineered nanoparticles (ENPs). Ag ENPs, released via household and industrial wastes, reach water resource recovery facilities (WRRFs), yet the fate and transport of ENPs in WRRFs and their potential risk in the biological wastewater processes are poorly understood. Accordingly, our main objective was to elucidate the impact of long-term continuous exposure to AgNPs on biological activity of aerobic wastewater biofilm. The fate, transport and toxicity of 10 μg.L-1and 100 μg.L-1 PVP-stabilized AgNPs (50 nm) were evaluated in an attached growth biological treatment process, using lab-scale moving bed bioreactors (MBBRs). Two MBBR systems for organic matter removal were fed with a synthetic influent and operated at a hydraulic retention time (HRT) of 180 min and 60% volumetric filling ratio of Anox-K5 carriers with specific surface area of 800 m2/m3. Both reactors were operated for 85 days after reaching steady state conditions to develop a mature biofilm. The impact of AgNPs on the biological performance of the MBBRs was characterized over a period of 64 days in terms of the filtered biodegradable COD (SCOD) removal efficiency, the biofilm viability and key enzymatic activities (α-glucosidase and protease). The AgNPs were quantitatively characterized using single-particle inductively coupled plasma mass spectroscopy (spICP-MS), determining simultaneously the particle size distribution, particle concentration and dissolved silver content in influent, bioreactor and effluent samples. The generation of reactive oxygen species and the oxidative stress were assessed as the proposed toxicity mechanism of AgNPs. Results indicated that a low concentration of AgNPs (10 μg.L-1) did not significantly affect the SCOD removal efficiency whereas a significant reduction in treatment efficiency (37%) was observed at 100 μg.L-1AgNPs. Neither the viability nor the enzymatic activities of biofilm were affected at 10 μg.L-1AgNPs but a higher concentration of AgNPs induced cell membrane integrity damage resulting in 31% loss of viability and reduced α-glucosidase and protease enzymatic activities by 31% and 29%, respectively, over the 64-day exposure period. The elevated intercellular ROS in biofilm at a higher AgNPs concentration over time was consistent with a reduced biological biofilm performance, confirming the occurrence of a nanoparticle-induced oxidative stress in the heterotrophic biofilm. The spICP-MS analysis demonstrated a decrease in the nanoparticles concentration over the first 25 days, indicating a significant partitioning of AgNPs into the biofilm matrix in both reactors. The concentration of nanoparticles increased in effluent of both reactors after 25 days, however, indicating a decreased retention capacity of AgNPs in biofilm. The observed significant detachment of biofilm also contributed to a higher release of nanoparticles due to cell-wall destabilizing properties of AgNPs as an antimicrobial agent. The removal efficiency of PVP-AgNPs and the biofilm biological responses were a function of nanoparticle concentration and exposure time. This study contributes to a better understanding of the fate and behavior of AgNPs in biological wastewater processes, providing key information that can be used to predict the environmental risks of ENPs in aquatic ecosystems.

Keywords: biofilm, silver nanoparticle, single particle ICP-MS, toxicity, wastewater

Procedia PDF Downloads 248
71 Intrigues of Brand Activism versus Brand Antagonism in Rival Online Football Brand Communities: The Case of the Top Two Premier Football Clubs in Ghana

Authors: Joshua Doe, George Amoako

Abstract:

Purpose: In an increasingly digital world, the realm of sports fandom has extended its borders, creating a vibrant ecosystem of online communities centered around football clubs. This study ventures into the intricate interplay of motivations that drive football fans to respond to brand activism and its profound implications for brand antagonism and engagement among two of Ghana's most revered premier football clubs. Methods: A sample of 459 fervent fans from these two rival clubs were engaged through self-administered questionnaires expertly distributed via social media and online platforms. Data was analysed, using PLS-SEM. Findings: The tapestry of motivations that weave through these online football communities is as diverse as the fans themselves. It becomes apparent that fans are propelled by a spectrum of incentives. They seek education, yearn for information, revel in entertainment, embrace socialization, and fortify their self-esteem through their interactions within these digital spaces. Yet, it is the nuanced distinction in these motivations that shapes the trajectory of brand antagonism and engagement. Surprisingly, the study reveals a remarkable pattern. Football fans, despite their fierce rivalries, do not engage in brand antagonism based on educational pursuits, information-seeking endeavors, or socialization. Instead, it is motivations rooted in entertainment and self-esteem that serve as the fertile grounds for brand antagonism. Paradoxically, it is these very motivations coupled with the desire for socialization that nurture brand engagement, manifesting as active support and advocacy for their chosen club brand. Originality: Our research charters new waters by extending the boundaries of existing theories in the field. The Technology Acceptance Uses and Gratifications Theory, and Social Identity Theory all find new dimensions within the context of online brand community engagement. This not only deepens our understanding of the multifaceted world of online football fandom but also invites us to explore the implications these insights carry within the digital realm. Contribution to Practice: For marketers, our findings offer a treasure trove of actionable insights. They beckon the development of targeted content strategies that resonate with fan motivations. The implementation of brand advocacy programs, fostering opportunities for socialization, and the effective management of brand antagonism emerge as pivotal strategies. Furthermore, the utilization of data-driven insights is poised to refine consumer engagement strategies and strengthen brand affinity. Future Studies: For future studies, we advocate for longitudinal, cross-cultural, and qualitative studies that could shed further light on this topic. Comparative analyses across different types of online brand communities, an exploration of the role of brand community leaders, and inquiries into the factors that contribute to brand community dissolution all beckon the research community. Furthermore, understanding motivation-specific antagonistic behaviors and the intricate relationship between information-seeking and engagement present exciting avenues for further exploration. This study unfurls a vibrant tapestry of fan motivations, brand activism, and rivalry within online football communities. It extends a hand to scholars and marketers alike, inviting them to embark on a journey through this captivating digital realm, where passion, rivalry, and engagement harmonize to shape the world of sports fandom as we know it.

Keywords: online brand engagement, football fans, brand antagonism, motivations

Procedia PDF Downloads 39
70 A Fresh Approach to Learn Evidence-Based Practice, a Prospective Interventional Study

Authors: Ebtehal Qulisy, Geoffrey Dougherty, Kholoud Hothan, Mylene Dandavino

Abstract:

Background: For more than 200 years, journal clubs (JCs) have been used to teach the fundamentals of critical appraisal and evidence-based practice (EBP). However, JCs curricula face important challenges, including poor sustainability, insufficient time to prepare for and conduct the activities, and lack of trainee skills and self-efficacy with critical appraisal. Andragogy principles and modern technology could help EBP be taught in more relevant, modern, and interactive ways. Method: We propose a fresh educational activity to teach EBP. Educational sessions are designed to encourage collaborative and experiential learning and do not require advanced preparation by the participants. Each session lasts 60 minutes and is adaptable to in-person, virtual, or hybrid contexts. Sessions are structured around a worksheet and include three educational objectives: “1. Identify a Clinical Conundrum”, “2. Compare and Contrast Current Guidelines”, and “3. Choose a Recent Journal Article”. Sessions begin with a short presentation by a facilitator of a clinical scenario highlighting a “grey-zone” in pediatrics. Trainees are placed in groups of two to four (based on the participants’ number) of varied training levels. The first task requires the identification of a clinical conundrum (a situation where there is no clear answer but only a reasonable solution) related to the scenario. For the second task, trainees must identify two or three clinical guidelines. The last task requires trainees to find a journal article published in the last year that reports an update regarding the scenario’s topic. Participants are allowed to use their electronic devices throughout the session. Our university provides full-text access to major journals, which facilitated this exercise. Results: Participants were a convenience sample of trainees in the inpatient services at the Montréal Children’s Hospital, McGill University. Sessions were conducted as a part of an existing weekly academic activity and facilitated by pediatricians with experience in critical appraisal. There were 28 participants in 4 sessions held during Spring 2022. Time was allocated at the end of each session to collect participants’ feedback via a self-administered online survey. There were 22 responses, were 41%(n=9) pediatric residents, 22.7%(n=5) family medicine residents, 31.8%(n=7) medical students, and 4.5%(n=1) nurse practitioner. Four respondents participated in more than one session. The “Satisfied” rates were 94.7% for session format, 100% for topic selection, 89.5% for time allocation, and 84.3% for worksheet structure. 60% of participants felt that including the sessions during the clinical ward rotation was “Feasible.” As per self-efficacy, participants reported being “Confident” for the tasks as follows: 89.5% for the ability to identify a relevant conundrum, 94.8% for the compare and contrast task, and 84.2% for the identification of a published update. The perceived effectiveness to learn EBP was reported as “Agreed” by all participants. All participants would recommend this session for further teaching. Conclusion: We developed a modern approach to teach EBP, enjoyed by all levels of participants, who also felt it was a useful learning experience. Our approach addresses known JCs challenges by being relevant to clinical care, fostering active engagement but not requiring any preparation, using available technology, and being adaptable to hybrid contexts.

Keywords: medical education, journal clubs, post-graduate teaching, andragogy, experiential learning, evidence-based practice

Procedia PDF Downloads 91
69 Experimental Characterisation of Composite Panels for Railway Flooring

Authors: F. Pedro, S. Dias, A. Tadeu, J. António, Ó. López, A. Coelho

Abstract:

Railway transportation is considered the most economical and sustainable way to travel. However, future mobility brings important challenges to railway operators. The main target is to develop solutions that stimulate sustainable mobility. The research and innovation goals for this domain are efficient solutions, ensuring an increased level of safety and reliability, improved resource efficiency, high availability of the means (train), and satisfied passengers with the travel comfort level. These requirements are in line with the European Strategic Agenda for the 2020 rail sector, promoted by the European Rail Research Advisory Council (ERRAC). All these aspects involve redesigning current equipment and, in particular, the interior of the carriages. Recent studies have shown that two of the most important requirements for passengers are reasonable ticket prices and comfortable interiors. Passengers tend to use their travel time to rest or to work, so train interiors and their systems need to incorporate features that meet these requirements. Among the various systems that integrate train interiors, the flooring system is one of the systems with the greatest impact on passenger safety and comfort. It is also one of the systems that takes more time to install on the train, and which contributes seriously to the weight (mass) of all interior systems. Additionally, it presents a strong impact on manufacturing costs. The design of railway floor, in the development phase, is usually made relying on a design software that allows to draw and calculate several solutions in a short period of time. After obtaining the best solution, considering the goals previously defined, experimental data is always necessary and required. This experimental phase has such great significance, that its outcome can provoke the revision of the designed solution. This paper presents the methodology and some of the results of an experimental characterisation of composite panels for railway application. The mechanical tests were made for unaged specimens and for specimens that suffered some type of aging, i.e. heat, cold and humidity cycles or freezing/thawing cycles. These conditionings aim to simulate not only the time effect, but also the impact of severe environmental conditions. Both full solutions and separated components/materials were tested. For the full solution, (panel) these were: four-point bending tests, tensile shear strength, tensile strength perpendicular to the plane, determination of the spreading of water, and impact tests. For individual characterisation of the components, more specifically for the covering, the following tests were made: determination of the tensile stress-strain properties, determination of flexibility, determination of tear strength, peel test, tensile shear strength test, adhesion resistance test and dimensional stability. The main conclusions were that experimental characterisation brings a huge contribution to understand the behaviour of the materials both individually and assembled. This knowledge contributes to the increase the quality and improvements of premium solutions. This research work was framed within the POCI-01-0247-FEDER-003474 (coMMUTe) Project funded by Portugal 2020 through the COMPETE 2020.

Keywords: durability, experimental characterization, mechanical tests, railway flooring system

Procedia PDF Downloads 133