Search results for: wastewater modelling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2743

Search results for: wastewater modelling

2083 Predicting the Potential Geographical Distribution of the Banana Aphid (Pentalonia nigronervosa) as Vector of Banana Bunchy Top Virus Using Diva-GIS

Authors: Marilyn Painagan

Abstract:

This study was conducted to predict the potential geographical distribution of the banana aphid (Pentalonia negronervosa) in North Cotabato through climate envelope approach of DIVA-GIS, a software for analyzing the distribution of organisms to elucidate geographic and ecological patterns. A WorldClim database that was based on weather conditions recorded last 1950 to 2000 with a spatial resolution of approximately 1x1 km. was used in the bioclimatic modelling, this database includes temperature, precipitation, evapotranspiration and bioclimatic variables which was measured at many different locations, a bioclimatic modelling was done in the study. The study revealed that the western part of Magpet and Arakan and the municipality of Antipas are at high potential risk of occurrence of banana aphid while it is not likely to occur in the municipalities of Aleosan, Midsayap, Pikit, M’lang and Tulunan. The result of this study can help developed strategies for monitoring and managing this serious pest of banana and to prepare a mitigation measures on those areas that are potential for future infestation.

Keywords: banana aphid, bioclimatic model, bunchy top, climatic envelope approach

Procedia PDF Downloads 254
2082 Excel-VBA as Modelling Platform for Thermodynamic Optimisation of an R290/R600a Cascade Refrigeration System

Authors: M. M. El-Awad

Abstract:

The availability of computers and educational software nowadays helps engineering students acquire better understanding of engineering principles and their applications. With these facilities, students can perform sensitivity and optimisation analyses which were not possible in the past by using slide-rules and hand calculators. Standard textbooks in engineering thermodynamics also use software such as Engineering Equation Solver (EES) and Interactive Thermodynamics (IT) for solving calculation-intensive and design problems. Unfortunately, engineering students in most developing countries do not have access to such applications which are protected by intellectual-property rights. This paper shows how Microsoft ExcelTM and VBA (Visual Basic for Applications), which are normally distributed with personal computers and laptops, can be used as an alternative modelling platform for thermodynamic analyses and optimisation. The paper describes the VBA user-defined-functions developed for determining the refrigerants properties with Excel. For illustration, the combination is used to model and optimise the intermediate temperature for a propane/iso-butane cascade refrigeration system.

Keywords: thermodynamic optimisation, engineering education, excel, VBA, cascade refrigeration system

Procedia PDF Downloads 424
2081 Piezoelectric Approach on Harvesting Acoustic Energy

Authors: Khin Fai Chen, Jee-Hou Ho, Eng Hwa Yap

Abstract:

An acoustic micro-energy harvester (AMEH) is developed to convert wasted acoustical energy into useful electrical energy. AMEH is mathematically modeled using lumped element modelling (LEM) and Euler-Bernoulli beam (EBB) modelling. An experiment is designed to validate the mathematical model and assess the feasibility of AMEH. Comparison of theoretical and experimental data on critical parameter value such as Mm, Cms, dm and Ceb showed the variances are within 1% to 6%, which is reasonably acceptable. Hence, AMEH mathematical model is validated. Then, AMEH undergoes bandwidth tuning for performance optimization for further experimental work. The AMEH successfully produces 0.9 V⁄(m⁄s^2) and 1.79 μW⁄(m^2⁄s^4) at 60Hz and 400kΩ resistive load which only show variances about 7% compared to theoretical data. By integrating a capacitive load of 200µF, the discharge cycle time of AMEH is 1.8s and the usable energy bandwidth is available as low as 0.25g. At 1g and 60Hz resonance frequency, the averaged power output is about 2.2mW which fulfilled a range of wireless sensors and communication peripherals power requirements. Finally, the design for AMEH is assessed, validated and deemed as a feasible design.

Keywords: piezoelectric, acoustic, energy harvester

Procedia PDF Downloads 278
2080 Expounding on the Role of Sustainability Values (SVs) on Consumers’ Switching Intentions Regarding Disruptive 5G Technology in China

Authors: Sayed Kifayat Shah, Tang Zhongjun, Mohammad Ahmad, Sohaib Mostafa

Abstract:

This article investigates consumer’s intention to shift to 5G in the light of disruptive technology innovation. To switch from 4G (Existing) technology to 5G (Disruptive) technology requires not just economic benefits and costs but involves other values too, which aren't yet experienced in the framework of technology innovation. This study extended the valued adaptation (VAM) model by proposing the sustainability values (SVs) construct. The model was examined on data from 361 Chinese consumers using the partial least squares-based structural equation modelling (PLS-SEM) technique. The outcomes prove the significant correlation of sustainability values (SVs) which influences consumer’s switching intentions toward 5G disruptive technology. The findings of this research will be helpful to telecoms firms in developing consumer retention strategies. Some limitations and the importance of the research for scholars and managers are also discussed.

Keywords: value adaptation model (VAM), sustainability values (SVs), disruptive 5G technology, switching intentions (SI), partial least squares-based structural equation modelling (PLS-SEM)

Procedia PDF Downloads 142
2079 Online Learning Versus Face to Face Learning: A Sentiment Analysis on General Education Mathematics in the Modern World of University of San Carlos School of Arts and Sciences Students Using Natural Language Processing

Authors: Derek Brandon G. Yu, Clyde Vincent O. Pilapil, Christine F. Peña

Abstract:

College students of Cebu province have been indoors since March 2020, and a challenge encountered is the sudden shift from face to face to online learning and with the lack of empirical data on online learning on Higher Education Institutions (HEIs) in the Philippines. Sentiments on face to face and online learning will be collected from University of San Carlos (USC), School of Arts and Sciences (SAS) students regarding Mathematics in the Modern World (MMW), a General Education (GE) course. Natural Language Processing with machine learning algorithms will be used to classify the sentiments of the students. Results of the research study are the themes identified through topic modelling and the overall sentiments of the students in USC SAS

Keywords: natural language processing, online learning, sentiment analysis, topic modelling

Procedia PDF Downloads 238
2078 Regulation Effect of Intestinal Microbiota by Fermented Processing Wastewater of Yuba

Authors: Ting Wu, Feiting Hu, Xinyue Zhang, Shuxin Tang, Xiaoyun Xu

Abstract:

As a by-product of yuba, processing wastewater of Yuba (PWY) contains many bioactive components such as soybean isoflavones, soybean polysaccharides and soybean oligosaccharides, which is a good source of prebiotics and has a potential of high value utilization. The use of Lactobacillus plantarum to ferment PWY can be considered as a potential biogenic element, which can regulate the balance of intestinal microbiota. In this study, firstly, Lactobacillus plantarum was used to ferment PWY to improve its content of active components and antioxidant activity. Then, the health effect of fermented processing wastewater of yuba (FPWY) was measured in vitro. Finally, microencapsulation technology was used applied to improve the sustained release of FPWY and reduce the loss of active components in the digestion process, as well as to improving the activity of FPWY. The main results are as follows: (1) FPWY presented a good antioxidant capacity with DPPH free radical scavenging ability (0.83 ± 0.01 mmol Trolox/L), ABTS free radical scavenging ability (7.47 ± 0.35 mmol Trolox/L) and iron ion reducing ability (1.11 ± 0.07 mmol Trolox/L). Compared with non-fermented processing wastewater of yuba (NFPWY), there was no significant difference in the content of total soybean isoflavones, but the content of glucoside soybean isoflavones decreased, and aglyconic soybean isoflavones increased significantly. After fermentation, PWY can effectively reduce the soluble monosaccharides, disaccharides and oligosaccharides, such as glucose, fructose, galactose, trehalose, stachyose, maltose, raffinose and sucrose. (2) FPWY can significantly enhance the growth of beneficial bacteria such as Bifidobacterium, Ruminococcus and Akkermansia, significantly inhibit the growth of harmful bacteria E.coli, regulate the structure of intestinal microbiota, and significantly increase the content of short-chain fatty acids such as acetic acid, propionic acid, butyric acid, isovaleric acid. Higher amount of lactic acid in the gut can be further broken down into short chain fatty acids. (3) In order to improve the stability of soybean isoflavones in FPWY during digestion, sodium alginate and chitosan were used as wall materials for embedding. The FPWY freeze-dried powder was embedded by the method of acute-coagulation bath. The results show that when the core wall ratio is 3:1, the concentration of chitosan is 1.5%, the concentration of sodium alginate is 2.0%, and the concentration of calcium is 3%, the embossing rate is 53.20%. In the simulated in vitro digestion stage, the release rate of microcapsules reached 59.36% at the end of gastric digestion and 82.90% at the end of intestinal digestion. Therefore, the core materials with good sustained-release performance of microcapsules were almost all released. The structural analysis results of FPWY microcapsules show that the microcapsules have good mechanical properties. Its hardness, springness, cohesiveness, gumminess, chewiness and resilience were 117.75± 0.21 g, 0.76±0.02, 0.54±0.01, 63.28±0.71 g·sec, 48.03±1.37 g·sec, 0.31±0.01, respectively. Compared with the unembedded FPWY, the infrared spectrum results showed that the microcapsules had embedded effect on the FPWY freeze-dried powder.

Keywords: processing wastewater of yuba, lactobacillus plantarum, intestinal microbiota, microcapsule

Procedia PDF Downloads 75
2077 Material Parameter Identification of Modified AbdelKarim-Ohno Model

Authors: Martin Cermak, Tomas Karasek, Jaroslav Rojicek

Abstract:

The key role in phenomenological modelling of cyclic plasticity is good understanding of stress-strain behaviour of given material. There are many models describing behaviour of materials using numerous parameters and constants. Combination of individual parameters in those material models significantly determines whether observed and predicted results are in compliance. Parameter identification techniques such as random gradient, genetic algorithm, and sensitivity analysis are used for identification of parameters using numerical modelling and simulation. In this paper genetic algorithm and sensitivity analysis are used to study effect of 4 parameters of modified AbdelKarim-Ohno cyclic plasticity model. Results predicted by Finite Element (FE) simulation are compared with experimental data from biaxial ratcheting test with semi-elliptical loading path.

Keywords: genetic algorithm, sensitivity analysis, inverse approach, finite element method, cyclic plasticity, ratcheting

Procedia PDF Downloads 446
2076 Crowdsourced Economic Valuation of the Recreational Benefits of Constructed Wetlands

Authors: Andrea Ghermandi

Abstract:

Constructed wetlands have long been recognized as sources of ancillary benefits such as support for recreational activities. To date, there is a lack of quantitative understanding of the extent and welfare impact of such benefits. Here, it is shown how geotagged, passively crowdsourced data from online social networks (e.g., Flickr and Panoramio) and Geographic Information Systems (GIS) techniques can: (1) be used to infer annual recreational visits to 273 engineered wetlands worldwide; and (2) be integrated with non-market economic valuation techniques (e.g., travel cost method) to infer the monetary value of recreation in these systems. Counts of social media photo-user-days are highly correlated with the number of observed visits in 62 engineered wetlands worldwide (Pearson’s r = 0.811; p-value < 0.001). The estimated, mean willingness to pay for access to 115 wetlands ranges between $5.3 and $374. In 50% of the investigated wetlands providing polishing treatment to advanced municipal wastewater, the present value of such benefits exceeds that of the capital, operation and maintenance costs (lifetime = 45 years; discount rate = 6%), indicating that such systems are sources of net societal benefits even before factoring in benefits derived from water quality improvement and storage. Based on the above results, it is argued that recreational benefits should be taken into account in the design and management of constructed wetlands, as well as when such green infrastructure systems are compared with conventional wastewater treatment solutions.

Keywords: constructed wetlands, cultural ecosystem services, ecological engineering, social media

Procedia PDF Downloads 126
2075 RBF Modelling and Optimization Control for Semi-Batch Reactors

Authors: Magdi M. Nabi, Ding-Li Yu

Abstract:

This paper presents a neural network based model predictive control (MPC) strategy to control a strongly exothermic reaction with complicated nonlinear kinetics given by Chylla-Haase polymerization reactor that requires a very precise temperature control to maintain product uniformity. In the benchmark scenario, the operation of the reactor must be guaranteed under various disturbing influences, e.g., changing ambient temperatures or impurity of the monomer. Such a process usually controlled by conventional cascade control, it provides a robust operation, but often lacks accuracy concerning the required strict temperature tolerances. The predictive control strategy based on the RBF neural model is applied to solve this problem to achieve set-point tracking of the reactor temperature against disturbances. The result shows that the RBF based model predictive control gives reliable result in the presence of some disturbances and keeps the reactor temperature within a tight tolerance range around the desired reaction temperature.

Keywords: Chylla-Haase reactor, RBF neural network modelling, model predictive control, semi-batch reactors

Procedia PDF Downloads 466
2074 Improving the Performance of Proton Exchange Membrane Using Fuzzy Logic

Authors: Sadık Ata, Kevser Dincer

Abstract:

In this study, the performance of proton exchange membrane (PEM) fuel cell was experimentally investigated and modelled with Rule-Based Mamdani-Type Fuzzy (RBMTF) modelling technique. Coating on the anode side of the PEM fuel cell was accomplished with the spin method by using Yttria-stabilized zirconia (YSZ). Input-output parameters were described by RBMTF if-then rules. Numerical parameters of input and output variables were fuzzificated as linguistic variables: Very Very Low (L1), Very Low (L2), Low (L3), Negative Medium (L4), Medium (L5), Positive Medium (L6),High (L7), Very High (L8) and Very Very High (L9) linguistic classes. The comparison between experimental data and RBMTF is done by using statistical methods like absolute fraction of variance (R2). The actual values and RBMTF results indicated that RBMTF can be successfully used for the analysis of performance PEM fuel cell.

Keywords: proton exchange membrane (PEM), fuel cell, rule-based mamdani-type fuzzy (RMBTF) modelling, Yttria-stabilized zirconia (YSZ)

Procedia PDF Downloads 237
2073 Valorization of Banana Peels for Mercury Removal in Environmental Realist Conditions

Authors: E. Fabre, C. Vale, E. Pereira, C. M. Silva

Abstract:

Introduction: Mercury is one of the most troublesome toxic metals responsible for the contamination of the aquatic systems due to its accumulation and bioamplification along the food chain. The 2030 agenda for sustainable development of United Nations promotes the improving of water quality by reducing water pollution and foments an enhance in wastewater treatment, encouraging their recycling and safe water reuse globally. Sorption processes are widely used in wastewater treatments due to their many advantages such as high efficiency and low operational costs. In these processes the target contaminant is removed from the solution by a solid sorbent. The more selective and low cost is the biosorbent the more attractive becomes the process. Agricultural wastes are especially attractive approaches for sorption. They are largely available, have no commercial value and require little or no processing. In this work, banana peels were tested for mercury removal from low concentrated solutions. In order to investigate the applicability of this solid, six water matrices were used increasing the complexity from natural waters to a real wastewater. Studies of kinetics and equilibrium were also performed using the most known models to evaluate the viability of the process In line with the concept of circular economy, this study adds value to this by-product as well as contributes to liquid waste management. Experimental: The solutions were prepared with Hg(II) initial concentration of 50 µg L-1 in natural waters, at 22 ± 1 ºC, pH 6, magnetically stirring at 650 rpm and biosorbent mass of 0.5 g L-1. NaCl was added to obtain the salt solutions, seawater was collected from the Portuguese coast and the real wastewater was kindly provided by ISQ - Instituto de Soldadura e qualidade (Welding and Quality Institute) and diluted until the same concentration of 50 µg L-1. Banana peels were previously freeze-drying, milled, sieved and the particles < 1 mm were used. Results: Banana peels removed more than 90% of Hg(II) from all the synthetic solutions studied. In these cases, the enhance in the complexity of the water type promoted a higher mercury removal. In salt waters, the biosorbent showed removals of 96%, 95% and 98 % for 3, 15 and 30 g L-1 of NaCl, respectively. The residual concentration of Hg(II) in solution achieved the level of drinking water regulation (1 µg L-1). For real matrices, the lower Hg(II) elimination (93 % for seawater and 81 % for the real wastewaters), can be explained by the competition between the Hg(II) ions and the other elements present in these solutions for the sorption sites. Regarding the equilibrium study, the experimental data are better described by the Freundlich isotherm (R ^ 2=0.991). The Elovich equation provided the best fit to the kinetic points. Conclusions: The results exhibited the great ability of the banana peels to remove mercury. The environmental realist conditions studied in this work, highlight their potential usage as biosorbents in water remediation processes.

Keywords: banana peels, mercury removal, sorption, water treatment

Procedia PDF Downloads 151
2072 Fused Deposition Modelling as the Manufacturing Method of Fully Bio-Based Water Purification Filters

Authors: Natalia Fijol, Aji P. Mathew

Abstract:

We present the processing and characterisation of three-dimensional (3D) monolith filters based on polylactic acid (PLA) reinforced with various nature-derived nanospecies such as hydroxyapatite, modified cellulose fibers and chitin fibers. The nanospecies of choice were dispersed in PLA through Thermally Induced Phase Separation (TIPS) method. The biocomposites were developed via solvent-assisted blending and the obtained pellets were further single-screw extruded into 3D-printing filaments and processed into various geometries using Fused Deposition Modelling (FDM) technique. The printed prototypes included cubic, cylindrical and hour-glass shapes with diverse patterns of printing infill as well as varying pore structure including uniform and multiple level gradual pore structure. The pores and channel structure as well as overall shape of the prototypes were designed in attempt to optimize the flux and maximize the adsorption-active time. FDM is a cost and energy-efficient method, which does not require expensive tools and elaborated post-processing maintenance. Therefore, FDM offers the possibility to produce customized, highly functional water purification filters with tuned porous structures suitable for removal of wide range of common water pollutants. Moreover, as 3D printing becomes more and more available worldwide, it allows producing portable filters at the place and time where they are most needed. The study demonstrates preparation route for the PLA-based, fully biobased composite and their processing via FDM technique into water purification filters, addressing water treatment challenges on an industrial scale.

Keywords: fused deposition modelling, water treatment, biomaterials, 3D printing, nanocellulose, nanochitin, polylactic acid

Procedia PDF Downloads 113
2071 Algal/Bacterial Membrane Bioreactor for Bioremediation of Chemical Industrial Wastewater Containing 1,4 Dioxane

Authors: Ahmed Tawfik

Abstract:

Oxidation of 1,4 dioxane produces metabolites by-products involving glycolaldehyde and acids that have geno- and cytotoxicity impact on microbial degradation. Thereby, the incorporation of algae with bacteria in the treatment system would eliminate and overcome the accumulation of metabolites that are utilized as a carbon source for the build-up of biomass. Therefore, the aim of the present study is to assess the potential of algae/bacteria-based membrane bioreactor (AB-MBR) for biodegradation of 1,4 dioxane-rich wastewater at a high imposed loading rate. Three identical reactors, i.e., AB-MBR1, AB-MBR2, and AB-MBR3, were operated in parallel at 1,4 dioxane loading rates of 641.7, 320.9, and 160.4 mg/L. d., and HRTs of 6.0, 12 and 24 h. respectively. The AB-MBR1 achieved 1,4 dioxane removal rate of 263.7 mg/L.d., where the residual value in the treated effluent amounted to 94.4±22.9 mg/L. Reducing the 1,4 dioxane loading rate (LR) to 320.9 mg/L.d in the AB-MBR2 maximized the removal rate efficiency of 265.9 mg/L.d., with a removal efficiency of 82.8±3.2%. The minimum value of 1,4 dioxane of 17.3±1.8 mg/L in the treated effluent of AB-MBR3 was obtained at an HRT of 24.0 h and loading rate of 160.4 mg/L.d. The mechanism of 1,4 dioxane degradation in AB-MBR was a combination of volatilization (8.03±0.6%), UV oxidation (14.1±0.9%), microbial biodegradation (49.1±3.9%) and absorption/uptake and assimilation by algae (28.8±2.%). Further, the Thioclava, Afipia, and Mycobacterium genera oxidized and produced the required enzymes for hydrolysis and cleavage of the dioxane ring into 2-hydroxy-1,4 dioxane. Moreover, the fungi, i.e., Basidiomycota and Cryptomycota, played a big role in the degradation of the 1,4 dioxane into 2-hydroxy-1,4 dioxane. Xanthobacter and Mesorhizobium were involved in the metabolism process by secreting alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), and glycolate oxidase. Bacteria and fungi produced dehydrogenase (DH) for the transformation of 2-hydroxy-1,4 dioxane into 2-hydroxy-ethoxyacetaldehyde. The latter is converted into Ethylene glycol by Aldehyde hydrogenase (ALDH). Ethylene glycol is oxidized into acids using Alcohol hydrogenase (ADH). The Diatomea, Chlorophyta, and Streptophyta utilize the metabolites for biomass assimilation and produce the required oxygen for further oxidation of the dioxane and its metabolites by-products of bacteria and fungi. The major portion of metabolites (ethylene glycol, glycolic acid, and oxalic acid were removed due to uptake and absorption by algae (43±4.3%), followed by adsorption (18.4±0.9%). The volatilization and UV oxidation contribution for the degradation of metabolites were 8.7±0.7% and 12.3±0.8%, respectively. The capabilities of genera Defluviimonas, Thioclava, Luteolibacter, and Afipia. The genera of Defluviimonas, Thioclava, Luteolibacter, and Mycobacterium were grown under a high 1,4 dioxane LR of 641.7 mg/L.d. The Chlorophyta (4.1-43.6%), Streptophyta (2.5-21.7%), and Diatomea (0.8-1.4%) phyla were dominant for degradation of 1,4 dioxane. The results of this study strongly demonstrated that the bioremediation and bioaugmentation process can safely remove 1,4 dioxane from industrial wastewater while minimizing environmental concerns and reducing economic costs.

Keywords: wastewater, membrane bioreactor, bacterial community, algal community

Procedia PDF Downloads 41
2070 Assessment of Land Use Land Cover Change-Induced Climatic Effects

Authors: Mahesh K. Jat, Ankan Jana, Mahender Choudhary

Abstract:

Rapid population and economic growth resulted in changes in large-scale land use land cover (LULC) changes. Changes in the biophysical properties of the Earth's surface and its impact on climate are of primary concern nowadays. Different approaches, ranging from location-based relationships or modelling earth surface - atmospheric interaction through modelling techniques like surface energy balance (SEB) are used in the recent past to examine the relationship between changes in Earth surface land cover and climatic characteristics like temperature and precipitation. A remote sensing-based model i.e., Surface Energy Balance Algorithm for Land (SEBAL), has been used to estimate the surface heat fluxes over Mahi Bajaj Sagar catchment (India) from 2001 to 2020. Landsat ETM and OLI satellite data are used to model the SEB of the area. Changes in observed precipitation and temperature, obtained from India Meteorological Department (IMD) have been correlated with changes in surface heat fluxes to understand the relative contributions of LULC change in changing these climatic variables. Results indicate a noticeable impact of LULC changes on climatic variables, which are aligned with respective changes in SEB components. Results suggest that precipitation increases at a rate of 20 mm/year. The maximum and minimum temperature decreases and increases at 0.007 ℃ /year and 0.02 ℃ /year, respectively. The average temperature increases at 0.009 ℃ /year. Changes in latent heat flux and sensible heat flux positively correlate with precipitation and temperature, respectively. Variation in surface heat fluxes influences the climate parameters and is an adequate reason for climate change. So, SEB modelling is helpful to understand the LULC change and its impact on climate.

Keywords: LULC, sensible heat flux, latent heat flux, SEBAL, landsat, precipitation, temperature

Procedia PDF Downloads 114
2069 Development and Characterization of Acoustic Energy Harvesters for Low Power Wireless Sensor Network

Authors: Waheed Gul, Muhammad Zeeshan, Ahmad Raza Khan, Muhammad Khurram

Abstract:

Wireless Sensor Nodes (WSNs) have developed significantly over the years and have significant potential in diverse applications in the fields of science and technology. The inadequate energy accompanying WSNs is a key constraint of WSN skills. To overcome this main restraint, the development and expansion of effective and reliable energy harvesting systems for WSN atmospheres are being discovered. In this research, low-power acoustic energy harvesters are designed and developed by applying different techniques of energy transduction from the sound available in the surroundings. Three acoustic energy harvesters were developed based on the piezoelectric phenomenon, electromagnetic transduction, and hybrid, respectively. The CAD modelling, lumped modelling and Finite Element Analysis of the harvesters were carried out. The voltages were obtained using FEA for each Acoustic Harvester. Characterization of all three harvesters was carried out and the power generated by the piezoelectric harvester, electromagnetic harvester and Hybrid Acoustic Energy harvester are 2.25x10-9W, 0.0533W and 0.0232W, respectively.

Keywords: energy harvesting, WSNs, piezoelectric, electromagnetic, power

Procedia PDF Downloads 66
2068 Magnetic Biomaterials for Removing Organic Pollutants from Wastewater

Authors: L. Obeid, A. Bee, D. Talbot, S. Abramson, M. Welschbillig

Abstract:

The adsorption process is one of the most efficient methods to remove pollutants from wastewater provided that suitable adsorbents are used. In order to produce environmentally safe adsorbents, natural polymers have received increasing attention in recent years. Thus, alginate and chitosane are extensively used as inexpensive, non-toxic and efficient biosorbents. Alginate is an anionic polysaccharide extracted from brown seaweeds. Chitosan is an amino-polysaccharide; this cationic polymer is obtained by deacetylation of chitin the major constituent of crustaceans. Furthermore, it has been shown that the encapsulation of magnetic materials in alginate and chitosan beads facilitates their recovery from wastewater after the adsorption step, by the use of an external magnetic field gradient, obtained with a magnet or an electromagnet. In the present work, we have studied the adsorption affinity of magnetic alginate beads and magnetic chitosan beads (called magsorbents) for methyl orange (MO) (an anionic dye), methylene blue (MB) (a cationic dye) and p-nitrophenol (PNP) (a hydrophobic pollutant). The effect of different parameters (pH solution, contact time, pollutant initial concentration…) on the adsorption of pollutant on the magnetic beads was investigated. The adsorption of anionic and cationic pollutants is mainly due to electrostatic interactions. Consequently methyl orange is highly adsorbed by chitosan beads in acidic medium and methylene blue by alginate beads in basic medium. In the case of a hydrophobic pollutant, which is weakly adsorbed, we have shown that the adsorption is enhanced by adding a surfactant. Cetylpyridinium chloride (CPC), a cationic surfactant, was used to increase the adsorption of PNP by magnetic alginate beads. Adsorption of CPC by alginate beads occurs through two mechanisms: (i) electrostatic attractions between cationic head groups of CPC and negative carboxylate functions of alginate; (ii) interaction between the hydrocarbon chains of CPC. The hydrophobic pollutant is adsolubilized within the surface aggregated structures of surfactant. Figure c shows that PNP can reach up to 95% of adsorption in presence of CPC. At highest CPC concentrations, desorption occurs due to the formation of micelles in the solution. Our magsorbents appear to efficiently remove ionic and hydrophobic pollutants and we hope that this fundamental research will be helpful for the future development of magnetically assisted processes in water treatment plants.

Keywords: adsorption, alginate, chitosan, magsorbent, magnetic, organic pollutant

Procedia PDF Downloads 251
2067 A Case Study of Low Head Hydropower Opportunities at Existing Infrastructure in South Africa

Authors: Ione Loots, Marco van Dijk, Jay Bhagwan

Abstract:

Historically, South Africa had various small-scale hydropower installations in remote areas that were not incorporated in the national electricity grid. Unfortunately, in the 1960s most of these plants were decommissioned when Eskom, the national power utility, rapidly expanded its grid and capability to produce cheap, reliable, coal-fired electricity. This situation persisted until 2008, when rolling power cuts started to affect all citizens. This, together with the rising monetary and environmental cost of coal-based power generation, has sparked new interest in small-scale hydropower development, especially in remote areas or at locations (like wastewater treatment works) that could not afford to be without electricity for long periods at a time. Even though South Africa does not have the same, large-scale, hydropower potential as some other African countries, significant potential for micro- and small-scale hydropower is hidden in various places. As an example, large quantities of raw and potable water are conveyed daily under either pressurized or gravity conditions over large distances and elevations. Due to the relative water scarcity in the country, South Africa also has more than 4900 registered dams of varying capacities. However, institutional capacity and skills have not been maintained in recent years and therefore the identification of hydropower potential, as well as the development of micro- and small-scale hydropower plants has not gained significant momentum. An assessment model and decision support system for low head hydropower development has been developed to assist designers and decision makers with first-order potential analysis. As a result, various potential sites were identified and many of these sites were situated at existing infrastructure like weirs, barrages or pipelines. One reason for the specific interest in existing infrastructure is the fact that capital expenditure could be minimized and another is the reduced negative environmental impact compared to greenfield sites. This paper will explore the case study of retrofitting an unconventional and innovative hydropower plant to the outlet of a wastewater treatment works in South Africa.

Keywords: low head hydropower, retrofitting, small-scale hydropower, wastewater treatment works

Procedia PDF Downloads 249
2066 Synthesis of Mesoporous In₂O₃-TiO₂ Nanocomposites as Efficient Photocatalyst for Treatment Industrial Wastewater under Visible Light and UV Illumination

Authors: Ibrahim Abdelfattah, Adel Ismail, Ahmed Helal, Mohamed Faisal

Abstract:

Advanced oxidation technologies are an environment friendly approach for the remediation of industrial wastewaters. Here, one pot synthesis of mesoporous In₂O₃-TiO₂ nanocomposites at different In₂O₃ contents (0-3 wt%) have been synthesized through a facile sol-gel method to evaluate their photocatalytic performance for the degradation of the imazapyr herbicide and phenol under visible light and UV illumination compared with commercially available either Degussa P-25 or UV-100 Hombikat. The prepared mesoporous In₂O₃-TiO₂ nanocomposites were characterized by TEM, STEM, XRD, Raman FT-IR, Raman spectra and diffuse reflectance UV-visible. The bandgap energy of the prepared photocatalysts was derived from the diffuse reflectance spectra. XRD Raman's spectra confirmed that highly crystalline anatase TiO₂ phase was formed. TEM images show TiO₂ particles are quite uniform with 10±2 nm sizes with mesoporous structure. The mesoporous TiO₂ exhibits large pore volumes of 0.267 cm³g⁻¹ and high surface areas of 178 m²g⁻¹, but they become reduced to 0.211 cm³g⁻¹ and 112 m²g⁻¹, respectively upon In₂O₃ incorporation, with tunable mesopore diameter in the range of 5 - 7 nm. The 0.5% In₂O₃-TiO₂ nanocomposite is considered to be the optimum photocatalyst which is able to degrade 90% of imazapyr herbicide and phenol along 180 min and 60 min respectively. The proposed mechanism of this system and the role of In₂O₃ are explained by details.

Keywords: In₂O₃-TiO₂ nanocomposites, sol-gel method, visible light illumination, UV illumination, herbicide and phenol wastewater, removal

Procedia PDF Downloads 291
2065 Iodine-Doped Carbon Dots as a Catalyst for Water Remediation Application

Authors: Anurag Kumar Pandey, Tapan Kumar Nath, Santanu Dhara

Abstract:

Polluted water by industrial effluents or dyes has become a major global concern, particularly in developing countries. Such environmental contaminants constitute a serious threat to biodiversity, ecosystems, and human health worldwide; thus, their treatment is critical. The usage of nanoparticles has been discovered to be a potential water treatment method with high efficiency, cheap manufacturing costs, and green synthesis. Carbon dots have attracted the interest of researchers due to their unique properties, such as high water solubility, ease of production, great electron-donating ability, and low toxicity. In this context, we synthesized iodine-doped clove buds-derived carbon dots (I-CCDs) for the Fenton-like degradation of environmental contaminants in water (such as methylene blue (MB) and rhodamine-B (Rh-B) dye). The formation of I-CCDs has been confirmed using various spectroscopy techniques. I-CCDs have demonstrated remarkable optical, cytocompatibility, and antibacterial capabilities. The C-dots that were synthesized were found to be an effective catalyst for the reduction of MB and Rh-B utilizing NaBH4 as a reducing agent. UV-visible spectroscopy was used to construct a detailed pathway for dye reduction step by step. As-prepared I-CCDs have the potential to be a promising solution for wastewater purification and treatment systems.

Keywords: iodine-doped carbon dots, wastewater treatment and purification, environmental friendly, antibacterial

Procedia PDF Downloads 76
2064 Modelling the Dynamics of Corporate Bonds Spreads with Asymmetric GARCH Models

Authors: Sélima Baccar, Ephraim Clark

Abstract:

This paper can be considered as a new perspective to analyse credit spreads. A comprehensive empirical analysis of conditional variance of credit spreads indices is performed using various GARCH models. Based on a comparison between traditional and asymmetric GARCH models with alternative functional forms of the conditional density, we intend to identify what macroeconomic and financial factors have driven daily changes in the US Dollar credit spreads in the period from January 2011 through January 2013. The results provide a strong interdependence between credit spreads and the explanatory factors related to the conditions of interest rates, the state of the stock market, the bond market liquidity and the exchange risk. The empirical findings support the use of asymmetric GARCH models. The AGARCH and GJR models outperform the traditional GARCH in credit spreads modelling. We show, also, that the leptokurtic Student-t assumption is better than the Gaussian distribution and improves the quality of the estimates, whatever the rating or maturity.

Keywords: corporate bonds, default risk, credit spreads, asymmetric garch models, student-t distribution

Procedia PDF Downloads 470
2063 Behavior of Helical Piles as Foundation of Photovoltaic Panels in Tropical Soils

Authors: Andrea J. Alarcón, Maxime Daulat, Raydel Lorenzo, Renato P. Da Cunha, Pierre Breul

Abstract:

Brazil has increased the use of renewable energy during the last years. Due to its sunshine and large surface area, photovoltaic panels founded in helical piles have been used to produce solar energy. Since Brazilian territory is mainly cover by highly porous structured tropical soils, when the helical piles are installed this structure is broken and its soil properties are modified. Considering the special characteristics of these soils, helical foundations behavior must be extensively studied. The first objective of this work is to determine the most suitable method to estimate the tensile capacity of helical piles in tropical soils. The second objective is to simulate the behavior of these piles in tropical soil. To obtain the rupture to assess load-displacement curves and the ultimate load, also a numerical modelling using Plaxis software was conducted. Lastly, the ultimate load and the load-displacements curves are compared with experimental values to validate the implemented model.

Keywords: finite element, helical piles, modelling, tropical soil, uplift capacity

Procedia PDF Downloads 166
2062 A Case for Introducing Thermal-Design Optimisation Using Excel Spreadsheet

Authors: M. M. El-Awad

Abstract:

This paper deals with the introduction of thermal-design optimisation to engineering students by using Microsoft's Excel as a modelling platform. Thermal-design optimisation is an iterative process which involves the evaluation of many thermo-physical properties that vary with temperature and/or pressure. Therefore, suitable modelling software, such as Engineering Equation Solver (EES) or Interactive Thermodynamics (IT), is usually used for this purpose. However, such proprietary applications may not be available to many educational institutions in developing countries. This paper presents a simple thermal-design case that demonstrates how the principles of thermo-fluids and economics can be jointly applied so as to find an optimum solution to a thermal-design problem. The paper describes the solution steps and provides all the equations needed to solve the case with Microsoft Excel. The paper also highlights the advantage of using VBA (Visual Basic for Applications) for developing user-defined functions when repetitive or complex calculations are met. VBA makes Excel a powerful, yet affordable, the computational platform for introducing various engineering principles.

Keywords: engineering education, thermal design, Excel, VBA, user-defined functions

Procedia PDF Downloads 372
2061 Impact of Pulsing and Trickle Flow on Catalytic Wet Air Oxidation of Phenolic Compounds in Waste Water at High Pressure

Authors: Safa'a M. Rasheed, Saba A. Gheni, Wadood T. Mohamed

Abstract:

Phenolic compounds are the most carcinogenic pollutants in waste water in effluents of refineries and pulp industry. Catalytic wet air oxidation is an efficient industrial treatment process to oxidize phenolic compounds into unharmful organic compounds. Mode of flow of the fluid to be treated is a dominant factor in determining effectiveness of the catalytic process. The present study aims to obtain a mathematical model describing the conversion of phenolic compounds as a function of the process variables; mode of flow (trickling and pulsing), temperature, pressure, along with a high concentration of phenols and a platinum supported alumina catalyst. The model was validated with the results of experiments obtained in a fixed bed reactor. High pressure and temperature were employed at 8 bar and 140 °C. It has been found that conversion of phenols is highly influenced by mode of flow and the change is caused by changes occurred in hydrodynamic regime at the time of pulsing flow mode, thereby a temporal variation in wetting efficiency of platinum prevails; which in turn increases and/or decreases contact time with phenols in wastewater. The model obtained was validated with experimental results, and it is found that the model is a good agreement with the experimental results.

Keywords: wastewater, phenol, pulsing flow, wet oxidation, high pressure

Procedia PDF Downloads 135
2060 Empirical Investigation of Antecedents of Perceived Recovery Service Quality: Evidence from Retail Banking in United Arab Emirates

Authors: Vimi Jham

Abstract:

The banking sector has undergone tremendous change in all forms of service it provides to its customers. The efforts of the banks is to avoid customer defection and lead to customer satisfaction. The purpose of the study was to examine the linkages among the constructs such as customer perceived service quality, perceived service recovery quality and customer satisfaction in the banking industry. The moderating effect of negative brand perception due to service failure on recovery satisfaction were investigated. Random sampling methods are used to draw the sample from the population. Data was collected from 262 banking customers and were analyzed with the help of structural equation modelling approach using Smart PLS to understand the relationship among variables being studied. The results of the study contribute to the research by proving that customer service recovery satisfaction is dependent on customer perceived service quality and the moderating effect of negative brand perception due to service failure was insignificant.

Keywords: service recovery satisfaction, perceived service recovery quality, perceived service quality, structural equation modelling

Procedia PDF Downloads 280
2059 Experimental, Computational Fluid Dynamics and Theoretical Study of Cyclone Performance Based on Inlet Velocity and Particle Loading Rate

Authors: Sakura Ganegama Bogodage, Andrew Yee Tat Leung

Abstract:

This paper describes experimental, Computational Fluid Dynamics (CFD) and theoretical analysis of a cyclone performance, operated 1.0 g/m3 solid loading rate, at two different inlet velocities (5 m/s and 10 m/s). Comparing experimental results with theoretical and CFD simulation results, it is pronounced that the influence of solid in processing flow is significant than expected. Experimental studies based on gas- solid flows of cyclone separators are complicated as they required advanced sensitive measuring techniques, especially flow characteristics. Thus, CFD modelling and theoretical analysis are economical in analyzing cyclone separator performance but detailed clarifications of the application of these in cyclone separator performance evaluation is not yet discussed. The present study shows the limitations of influencing parameters of CFD and theoretical considerations, comparing experimental results and flow characteristics from CFD modelling.

Keywords: cyclone performance, inlet velocity, pressure drop, solid loading rate

Procedia PDF Downloads 233
2058 Phytoremediation Waste Processing of Coffee in Various Concentration of Organic Materials Plant Using Kiambang

Authors: Siti Aminatu Zuhria

Abstract:

On wet coffee processing can improve the quality of coffee, but the coffee liquid waste that can pollute the environment. Liquid waste a lot of coffee resulting from the stripping and washing the coffee. This research will be carried out the process of handling liquid waste stripping coffee from the coffee skin with media phytoremediation using plants kiambang. The purpose of this study was to determine the characteristics of the coffee liquid waste and plant phytoremediation kiambang as agent in various concentrations of liquid waste coffee as well as determining the most optimal concentration in the improved quality of waste water quality standard approach. This research will be conducted through two stages, namely the preliminary study and the main study. In a preliminary study aims to determine the ability of the plant life kiambang as phytoremediation agent in the media well water, distilled water and liquid waste coffee. The main study will be conducted wastewater dilution and coffee will be obtained COD concentration variations. Results are expected at this research that can determine the ability of plants kiambang as an agent for phytoremediation in wastewater treatment with various concentrations of waste and the most optimal concentration in the improved quality of waste water quality standard approach.

Keywords: wet coffee processing, phytoremediation, Kiambang plant, variation concentration liquid waste

Procedia PDF Downloads 302
2057 Analysis of Pangasinan State University: Bayambang Students’ Concerns Through Social Media Analytics and Latent Dirichlet Allocation Topic Modelling Approach

Authors: Matthew John F. Sino Cruz, Sarah Jane M. Ferrer, Janice C. Francisco

Abstract:

COVID-19 pandemic has affected more than 114 countries all over the world since it was considered a global health concern in 2020. Different sectors, including education, have shifted to remote/distant setups to follow the guidelines set to prevent the spread of the disease. One of the higher education institutes which shifted to remote setup is the Pangasinan State University (PSU). In order to continue providing quality instructions to the students, PSU designed Flexible Learning Model to still provide services to its stakeholders amidst the pandemic. The model covers the redesigning of delivering instructions in remote setup and the technology needed to support these adjustments. The primary goal of this study is to determine the insights of the PSU – Bayambang students towards the remote setup implemented during the pandemic and how they perceived the initiatives employed in relation to their experiences in flexible learning. In this study, the topic modelling approach was implemented using Latent Dirichlet Allocation. The dataset used in the study. The results show that the most common concern of the students includes time and resource management, poor internet connection issues, and difficulty coping with the flexible learning modality. Furthermore, the findings of the study can be used as one of the bases for the administration to review and improve the policies and initiatives implemented during the pandemic in relation to remote service delivery. In addition, further studies can be conducted to determine the overall sentiment of the other stakeholders in the policies implemented at the University.

Keywords: COVID-19, topic modelling, students’ sentiment, flexible learning, Latent Dirichlet allocation

Procedia PDF Downloads 118
2056 Potential Climate Change Impacts on the Hydrological System of the Harvey River Catchment

Authors: Hashim Isam Jameel Al-Safi, P. Ranjan Sarukkalige

Abstract:

Climate change is likely to impact the Australian continent by changing the trends of rainfall, increasing temperature, and affecting the accessibility of water quantity and quality. This study investigates the possible impacts of future climate change on the hydrological system of the Harvey River catchment in Western Australia by using the conceptual modelling approach (HBV mode). Daily observations of rainfall and temperature and the long-term monthly mean potential evapotranspiration, from six weather stations, were available for the period (1961-2015). The observed streamflow data at Clifton Park gauging station for 33 years (1983-2015) in line with the observed climate variables were used to run, calibrate and validate the HBV-model prior to the simulation process. The calibrated model was then forced with the downscaled future climate signals from a multi-model ensemble of fifteen GCMs of the CMIP3 model under three emission scenarios (A2, A1B and B1) to simulate the future runoff at the catchment outlet. Two periods were selected to represent the future climate conditions including the mid (2046-2065) and late (2080-2099) of the 21st century. A control run, with the reference climate period (1981-2000), was used to represent the current climate status. The modelling outcomes show an evident reduction in the mean annual streamflow during the mid of this century particularly for the A1B scenario relative to the control run. Toward the end of the century, all scenarios show a relatively high reduction trends in the mean annual streamflow, especially the A1B scenario, compared to the control run. The decline in the mean annual streamflow ranged between 4-15% during the mid of the current century and 9-42% by the end of the century.

Keywords: climate change impact, Harvey catchment, HBV model, hydrological modelling, GCMs, LARS-WG

Procedia PDF Downloads 257
2055 Minimizing Unscheduled Maintenance from an Aircraft and Rolling Stock Maintenance Perspective: Preventive Maintenance Model

Authors: Adel A. Ghobbar, Varun Raman

Abstract:

The Corrective maintenance of components and systems is a problem plaguing almost every industry in the world today. Train operators’ and the maintenance repair and overhaul subsidiary of the Dutch railway company is also facing this problem. A considerable portion of the maintenance activities carried out by the company are unscheduled. This, in turn, severely stresses and stretches the workforce and resources available. One possible solution is to have a robust preventive maintenance plan. The other possible solution is to plan maintenance based on real-time data obtained from sensor-based ‘Health and Usage Monitoring Systems.’ The former has been investigated in this paper. The preventive maintenance model developed for train operator will subsequently be extended, to tackle the unscheduled maintenance problem also affecting the aerospace industry. The extension of the model to the aerospace sector will be dealt with in the second part of the research, and it would, in turn, validate the soundness of the model developed. Thus, there are distinct areas that will be addressed in this paper, including the mathematical modelling of preventive maintenance and optimization based on cost and system availability. The results of this research will help an organization to choose the right maintenance strategy, allowing it to save considerable sums of money as opposed to overspending under the guise of maintaining high asset availability. The concept of delay time modelling was used to address the practical problem of unscheduled maintenance in this paper. The delay time modelling can be used to help with support planning for a given asset. The model was run using MATLAB, and the results are shown that the ideal inspection intervals computed using the extended from a minimal cost perspective were 29 days, and from a minimum downtime, perspective was 14 days. Risk matrix integration was constructed to represent the risk in terms of the probability of a fault leading to breakdown maintenance and its consequences in terms of maintenance cost. Thus, the choice of an optimal inspection interval of 29 days, resulted in a cost of approximately 50 Euros and the corresponding value of b(T) was 0.011. These values ensure that the risk associated with component X being maintained at an inspection interval of 29 days is more than acceptable. Thus, a switch in maintenance frequency from 90 days to 29 days would be optimal from the point of view of cost, downtime and risk.

Keywords: delay time modelling, unscheduled maintenance, reliability, maintainability, availability

Procedia PDF Downloads 130
2054 A Proposal to Integrate Spatially Explicit Ecosystem Services with Urban Metabolic Modelling

Authors: Thomas Elliot, Javier Babi Almenar, Benedetto Rugani

Abstract:

The integration of urban metabolism (UM) with spatially explicit ecosystem service (ES) stocks has the potential to advance sustainable urban development. It will correct the lack of spatially specificity of current urban metabolism models. Furthermore, it will include into UM not only the physical properties of material and energy stocks and flows, but also the implications to the natural capital that provides and maintains human well-being. This paper presents the first stages of a modelling framework by which urban planners can assess spatially the trade-offs of ES flows resulting from urban interventions of different character and scale. This framework allows for a multi-region assessment which takes into account sustainability burdens consequent to an urban planning event occurring elsewhere in the environment. The urban boundary is defined as the Functional Urban Audit (FUA) method to account for trans-administrative ES flows. ES are mapped using CORINE land use within the FUA. These stocks and flows are incorporated into a UM assessment method to demonstrate the transfer and flux of ES arising from different urban planning implementations.

Keywords: ecological economics, ecosystem services, spatial planning, urban metabolism

Procedia PDF Downloads 325