Search results for: moral intelligence
1349 The Station and Value of Beauty in Islam Based on the Holy Quran
Authors: Hamidreza Qaderi
Abstract:
Beauty is a part of our life and we as Muslims cannot ignore it. Furthermore, Islam did not ignore. God in Quran has used words that mean beauty many times. Zain «زین» and its synonyms are some of that words that are used 46 times in a different meaning of beauty. Some of them are mentioned to worldly beauty and not acceptable beauty and other of them are mentioned to the Moral beauty. In this article, the meaning of Zain 'beauty' in Surah Al Aaraf (The Heights) is explained and described. In fact, there are specific signs about beauty in the 31 and 32 verses of this Surah in which the station of beauty can determine. For clarification of this issue, the analytic philosophy method is used to express the relation between this word and aesthetics and beauty in this article. The results of this research show that the beauty is an important issue in Islam as much as God order to Muslims to be beautiful when they want to pray.Keywords: beauty, Quran, al zinah, Zain
Procedia PDF Downloads 2561348 Object-Oriented Multivariate Proportional-Integral-Derivative Control of Hydraulic Systems
Authors: J. Fernandez de Canete, S. Fernandez-Calvo, I. García-Moral
Abstract:
This paper presents and discusses the application of the object-oriented modelling software SIMSCAPE to hydraulic systems, with particular reference to multivariable proportional-integral-derivative (PID) control. As a result, a particular modelling approach of a double cylinder-piston coupled system is proposed and motivated, and the SIMULINK based PID tuning tool has also been used to select the proper controller parameters. The paper demonstrates the usefulness of the object-oriented approach when both physical modelling and control are tackled.Keywords: object-oriented modeling, multivariable hydraulic system, multivariable PID control, computer simulation
Procedia PDF Downloads 3491347 Strategies for Incorporating Intercultural Intelligence into Higher Education
Authors: Hyoshin Kim
Abstract:
Most post-secondary educational institutions have offered a wide variety of professional development programs and resources in order to advance the quality of education. Such programs are designed to support faculty members by focusing on topics such as course design, behavioral learning objectives, class discussion, and evaluation methods. These are based on good intentions and might help both new and experienced educators. However, the fundamental flaw is that these ‘effective methods’ are assumed to work regardless of what we teach and whom we teach. This paper is focused on intercultural intelligence and its application to education. It presents a comprehensive literature review on context and cultural diversity in terms of beliefs, values and worldviews. What has worked well with a group of homogeneous local students may not work well with more diverse and international students. It is because students hold different notions of what is means to learn or know something. It is necessary for educators to move away from certain sets of generic teaching skills, which are based on a limited, particular view of teaching and learning. The main objective of the research is to expand our teaching strategies by incorporating what students bring to the course. There have been a growing number of resources and texts on teaching international students. Unfortunately, they tend to be based on the deficiency model, which treats diversity not as strengths, but as problems to be solved. This view is evidenced by the heavy emphasis on assimilationist approaches. For example, cultural difference is negatively evaluated, either implicitly or explicitly. Therefore the pressure is on culturally diverse students. The following questions reflect the underlying assumption of deficiencies: - How can we make them learn better? - How can we bring them into the mainstream academic culture?; and - How can they adapt to Western educational systems? Even though these questions may be well-intended, there seems to be something fundamentally wrong as the assumption of cultural superiority is embedded in this kind of thinking. This paper examines how educators can incorporate intercultural intelligence into the course design by utilizing a variety of tools such as pre-course activities, peer learning and reflective learning journals. The main goal is to explore ways to engage diverse learners in all aspects of learning. This can be achieved by activities designed to understand their prior knowledge, life experiences, and relevant cultural identities. It is crucial to link course material to students’ diverse interests thereby enhancing the relevance of course content and making learning more inclusive. Internationalization of higher education can be successful only when cultural differences are respected and celebrated as essential and positive aspects of teaching and learning.Keywords: intercultural competence, intercultural intelligence, teaching and learning, post-secondary education
Procedia PDF Downloads 2111346 [Keynote Speech]: Evidence-Based Outcome Effectiveness Longitudinal Study on Three Approaches to Reduce Proactive and Reactive Aggression in Schoolchildren: Group CBT, Moral Education, Bioneurological Intervention
Authors: Annis Lai Chu Fung
Abstract:
While aggression had high stability throughout developmental stages and across generations, it should be the top priority of researchers and frontline helping professionals to develop prevention and intervention programme for aggressive children and children at risk of developing aggressive behaviours. Although there is a substantial amount of anti-bullying programmes, they gave disappointingly small effect sizes. The neglectful practical significance could be attributed to the overly simplistic categorisation of individuals involved as bullies or victims. In the past three decades, the distinction between reactive and proactive aggression has been well-proved. As children displaying reactively aggressive behaviours have distinct social-information processing pattern with those showing proactively aggressive behaviours, it is critical to identify the unique needs of the two subtypes accordingly when designing an intervention. The onset of reactive aggression and proactive aggression was observed at earliest in 4.4 and 6.8 years old respectively. Such findings called for a differential early intervention targeting these high-risk children. However, to the best of the author’s knowledge, the author was the first to establish an evidence-based intervention programme against reactive and proactive aggression. With the largest samples in the world, the author, in the past 10 years, explored three different approaches and their effectiveness against aggression quantitatively and qualitatively with longitudinal design. The three approaches presented are (a) cognitive-behavioral approach, (b) moral education, with Chinese marital arts and ethics as the medium, and (c) bioneurological measures (omega-3 supplementation). The studies adopted a multi-informant approach with repeated measures before and after the intervention, and follow-up assessment. Participants were recruited from primary and secondary schools in Hong Kong. In the cognitive-behavioral approach, 66 reactive aggressors and 63 proactive aggressors, aged from 11 to 17, were identified from 10,096 secondary-school children with questionnaire and subsequent structured interview. Participants underwent 10 group sessions specifically designed for each subtype of aggressor. Results revealed significant declines in aggression levels from the baseline to the follow-up assessment after 1 year. In moral education through the Chinese martial arts, 315 high-risk aggressive children, aged 6 to 12 years, were selected from 3,511 primary-school children and randomly assigned into four types of 10-session intervention group, namely martial-skills-only, martial-ethics-only, both martial-skills-and-ethics, and physical fitness (placebo). Results showed only the martial-skills-and-ethics group had a significant reduction in aggression after treatment and 6 months after treatment comparing with the placebo group. In the bioneurological approach, 218 children, aged from 8 to 17, were randomly assigned to the omega-3 supplement group and the placebo group. Results revealed that compared with the placebo group, the omega-3 supplement group had significant declines in aggression levels at the 6-month follow-up assessment. All three approaches were effective in reducing proactive and reactive aggression. Traditionally, intervention programmes against aggressive behaviour often adapted the cognitive and/or behavioural approach. However, cognitive-behavioural approach for children was recently challenged by its demanding requirement of cognitive ability. Traditional cognitive interventions may not be as beneficial to an older population as in young children. The present study offered an insightful perspective in aggression reduction measures.Keywords: intervention, outcome effectiveness, proactive aggression, reactive aggression
Procedia PDF Downloads 2221345 Identifying the Structural Components of Old Buildings from Floor Plans
Authors: Shi-Yu Xu
Abstract:
The top three risk factors that have contributed to building collapses during past earthquake events in Taiwan are: "irregular floor plans or elevations," "insufficient columns in single-bay buildings," and the "weak-story problem." Fortunately, these unsound structural characteristics can be directly identified from the floor plans. However, due to the vast number of old buildings, conducting manual inspections to identify these compromised structural features in all existing structures would be time-consuming and prone to human errors. This study aims to develop an algorithm that utilizes artificial intelligence techniques to automatically pinpoint the structural components within a building's floor plans. The obtained spatial information will be utilized to construct a digital structural model of the building. This information, particularly regarding the distribution of columns in the floor plan, can then be used to conduct preliminary seismic assessments of the building. The study employs various image processing and pattern recognition techniques to enhance detection efficiency and accuracy. The study enables a large-scale evaluation of structural vulnerability for numerous old buildings, providing ample time to arrange for structural retrofitting in those buildings that are at risk of significant damage or collapse during earthquakes.Keywords: structural vulnerability detection, object recognition, seismic capacity assessment, old buildings, artificial intelligence
Procedia PDF Downloads 891344 Mobile Systems: History, Technology, and Future
Authors: Shivendra Pratap Singh, Rishabh Sharma
Abstract:
The widespread adoption of mobile technology in recent years has revolutionized the way we communicate and access information. The evolution of mobile systems has been rapid and impactful, shaping our lives and changing the way we live and work. However, despite its significant influence, the history and development of mobile technology are not well understood by the general public. This research paper aims to examine the history, technology and future of mobile systems, exploring their evolution from early mobile phones to the latest smartphones and beyond. The study will analyze the technological advancements and innovations that have shaped the mobile industry, from the introduction of mobile internet and multimedia capabilities to the integration of artificial intelligence and 5G networks. Additionally, the paper will also address the challenges and opportunities facing the future of mobile technology, such as privacy concerns, battery life, and the increasing demand for high-speed internet. Finally, the paper will also provide insights into potential future developments and innovations in the mobile sector, such as foldable phones, wearable technology, and the Internet of Things (IoT). The purpose of this research paper is to provide a comprehensive overview of the history, technology, and future of mobile systems, shedding light on their impact on society and the challenges and opportunities that lie ahead.Keywords: mobile technology, artificial intelligence, networking, iot, technological advancements, smartphones
Procedia PDF Downloads 921343 Six Failure Points Innovators and Entrepreneurs Risk Falling into: An Exploratory Study of Underlying Emotions and Behaviors of Self- Perceived Failure
Authors: Katarzyna Niewiadomska
Abstract:
Many technology startups fail to achieve a worthwhile return on investment for their funders, founders, and employees. Failures in product development, to-market strategy, sales, and delivery are commonly recognized. Founder failures are not as obvious and harder to identify. This paper explores six critical failure points that entrepreneurs and innovators are susceptible to and aims to link their emotional intelligence and behavioral profile to the points at which they experienced self-perceived failure. A model of six failure points from the perspective of the technology entrepreneur ranging from pre-startup to maturity is provided. By analyzing emotional and behavioral profile data from entrepreneurs and recording in-person accounts, certain key emotional and behavioral clusters contributing to each failure point are determined, and several underlying factors are defined and discussed. Recommendations that support entrepreneurs and innovators stalling at each failure point are given. This work can enable stakeholders to evaluate founder emotional and behavioral profiles and to take risk-mitigating action, either through coaching or through more robust team creation, to avoid founder-related company failure. The paper will be of interest to investors funding startups, executives leading them and mentors supporting them.Keywords: behavior, emotional intelligence, entrepreneur, failure
Procedia PDF Downloads 2291342 Application of Intelligent City and Hierarchy Intelligent Buildings in Kuala Lumpur
Authors: Jalalludin Abdul Malek, Zurinah Tahir
Abstract:
When the Multimedia Super Corridor (MSC) was launched in 1995, it became the catalyst for the implementation of the intelligent city concept, an area that covers about 15 x 50 kilometres from Kuala Lumpur City Centre (KLCC), Putrajaya and Kuala Lumpur International Airport (KLIA). The concept of intelligent city means that the city has an advanced infrastructure and infostructure such as information technology, advanced telecommunication systems, electronic technology and mechanical technology to be utilized for the development of urban elements such as industries, health, services, transportation and communications. For example, the Golden Triangle of Kuala Lumpur has also many intelligent buildings developed by the private sector such as the KLCC Tower to implement the intelligent city concept. Consequently, the intelligent buildings in the Golden Triangle can be linked directly to the Putrajaya Intelligent City and Cyberjaya Intelligent City within the confines of the MSC. However, the reality of the situation is that there are not many intelligent buildings within the Golden Triangle Kuala Lumpur scope which can be considered of high-standard intelligent buildings as referred to by the Intelligence Quotient (IQ) building standard. This increases the need to implement the real ‘intelligent city’ concept. This paper aims to show the strengths and weaknesses of the intelligent buildings in the Golden Triangle by taking into account aspects of 'intelligence' in the areas of technology and infrastructure of buildings.Keywords: intelligent city concepts, intelligent building, Golden Triangle, Kuala Lumpur
Procedia PDF Downloads 2971341 The Relations between Language Diversity and Similarity and Adults' Collaborative Creative Problem Solving
Authors: Z. M. T. Lim, W. Q. Yow
Abstract:
Diversity in individual problem-solving approaches, culture and nationality have been shown to have positive effects on collaborative creative processes in organizational and scholastic settings. For example, diverse graduate and organizational teams consisting of members with both structured and unstructured problem-solving styles were found to have more creative ideas on a collaborative idea generation task than teams that comprised solely of members with either structured or unstructured problem-solving styles. However, being different may not always provide benefits to the collaborative creative process. In particular, speaking different languages may hinder mutual engagement through impaired communication and thus collaboration. Instead, sharing similar languages may have facilitative effects on mutual engagement in collaborative tasks. However, no studies have explored the relations between language diversity and adults’ collaborative creative problem solving. Sixty-four Singaporean English-speaking bilingual undergraduates were paired up into similar or dissimilar language pairs based on the second language they spoke (e.g., for similar language pairs, both participants spoke English-Mandarin; for dissimilar language pairs, one participant spoke English-Mandarin and the other spoke English-Korean). Each participant completed the Ravens Progressive Matrices Task individually. Next, they worked in pairs to complete a collaborative divergent thinking task where they used mind-mapping techniques to brainstorm ideas on a given problem together (e.g., how to keep insects out of the house). Lastly, the pairs worked on a collaborative insight problem-solving task (Triangle of Coins puzzle) where they needed to flip a triangle of ten coins around by moving only three coins. Pairs who had prior knowledge of the Triangle of Coins puzzle were asked to complete an equivalent Matchstick task instead, where they needed to make seven squares by moving only two matchsticks based on a given array of matchsticks. Results showed that, after controlling for intelligence, similar language pairs completed the collaborative insight problem-solving task faster than dissimilar language pairs. Intelligence also moderated these relations. Among adults of lower intelligence, similar language pairs solved the insight problem-solving task faster than dissimilar language pairs. These differences in speed were not found in adults with higher intelligence. No differences were found in the number of ideas generated in the collaborative divergent thinking task between similar language and dissimilar language pairs. In conclusion, sharing similar languages seem to enrich collaborative creative processes. These effects were especially pertinent to pairs with lower intelligence. This provides guidelines for the formation of groups based on shared languages in collaborative creative processes. However, the positive effects of shared languages appear to be limited to the insight problem-solving task and not the divergent thinking task. This could be due to the facilitative effects of other factors of diversity as found in previous literature. Background diversity, for example, may have a larger facilitative effect on the divergent thinking task as compared to the insight problem-solving task due to the varied experiences individuals bring to the task. In conclusion, this study contributes to the understanding of the effects of language diversity in collaborative creative processes and challenges the general positive effects that diversity has on these processes.Keywords: bilingualism, diversity, creativity, collaboration
Procedia PDF Downloads 3171340 Object-Oriented Modeling Simulation and Control of Activated Sludge Process
Authors: J. Fernandez de Canete, P. Del Saz Orozco, I. Garcia-Moral, A. Akhrymenka
Abstract:
Object-oriented modeling is spreading in current simulation of wastewater treatments plants through the use of the individual components of the process and its relations to define the underlying dynamic equations. In this paper, we describe the use of the free-software OpenModelica simulation environment for the object-oriented modeling of an activated sludge process under feedback control. The performance of the controlled system was analyzed both under normal conditions and in the presence of disturbances. The object-oriented described approach represents a valuable tool in teaching provides a practical insight in wastewater process control field.Keywords: object-oriented programming, activated sludge process, OpenModelica, feedback control
Procedia PDF Downloads 3861339 AI Software Algorithms for Drivers Monitoring within Vehicles Traffic - SiaMOTO
Authors: Ioan Corneliu Salisteanu, Valentin Dogaru Ulieru, Mihaita Nicolae Ardeleanu, Alin Pohoata, Bogdan Salisteanu, Stefan Broscareanu
Abstract:
Creating a personalized statistic for an individual within the population using IT systems, based on the searches and intercepted spheres of interest they manifest, is just one 'atom' of the artificial intelligence analysis network. However, having the ability to generate statistics based on individual data intercepted from large demographic areas leads to reasoning like that issued by a human mind with global strategic ambitions. The DiaMOTO device is a technical sensory system that allows the interception of car events caused by a driver, positioning them in time and space. The device's connection to the vehicle allows the creation of a source of data whose analysis can create psychological, behavioural profiles of the drivers involved. The SiaMOTO system collects data from many vehicles equipped with DiaMOTO, driven by many different drivers with a unique fingerprint in their approach to driving. In this paper, we aimed to explain the software infrastructure of the SiaMOTO system, a system designed to monitor and improve driver driving behaviour, as well as the criteria and algorithms underlying the intelligent analysis process.Keywords: artificial intelligence, data processing, driver behaviour, driver monitoring, SiaMOTO
Procedia PDF Downloads 911338 The Role of Marketing Information System on Decision-Making: An Applied Study on Algeria Telecoms Mobile "MOBILIS"
Authors: Benlakhdar Mohamed Larbi, Yagoub Asma
Abstract:
Purpose: This study aims at highlighting the significance and importance of utilizing marketing information system (MKIS) on decision-making, by clarifying the need for quick and efficient decision-making due to time saving and preventing of duplication of work. Design, methodology, approach: The study shows the roles of each part of MKIS for developing marketing strategy, which present a real challenge to individuals and institutions in an era characterized by uncertainty and clarifying the importance of each part separately, depending on decision type and the nature of the situation. The empirical research method was evaluated by specialized experts, conducted by means of questionnaires. Correlation analysis was employed to test the validity of the procedure. Results: The empirical study findings confirmed positive relationships between the level of utilizing and adopting ‘decision support system and marketing intelligence’ and the success of an organizational decision-making, and provide the organization with a competitive advantage as it allows the organization to solve problems. Originality/value: The study offer better understanding of performance- increasing market share as an organizational decision making based on marketing information system.Keywords: database, marketing research, marketing intelligence, decision support system, decision-making
Procedia PDF Downloads 3301337 Leveraging Natural Language Processing for Legal Artificial Intelligence: A Longformer Approach for Taiwanese Legal Cases
Abstract:
Legal artificial intelligence (LegalAI) has been increasing applications within legal systems, propelled by advancements in natural language processing (NLP). Compared with general documents, legal case documents are typically long text sequences with intrinsic logical structures. Most existing language models have difficulty understanding the long-distance dependencies between different structures. Another unique challenge is that while the Judiciary of Taiwan has released legal judgments from various levels of courts over the years, there remains a significant obstacle in the lack of labeled datasets. This deficiency makes it difficult to train models with strong generalization capabilities, as well as accurately evaluate model performance. To date, models in Taiwan have yet to be specifically trained on judgment data. Given these challenges, this research proposes a Longformer-based pre-trained language model explicitly devised for retrieving similar judgments in Taiwanese legal documents. This model is trained on a self-constructed dataset, which this research has independently labeled to measure judgment similarities, thereby addressing a void left by the lack of an existing labeled dataset for Taiwanese judgments. This research adopts strategies such as early stopping and gradient clipping to prevent overfitting and manage gradient explosion, respectively, thereby enhancing the model's performance. The model in this research is evaluated using both the dataset and the Average Entropy of Offense-charged Clustering (AEOC) metric, which utilizes the notion of similar case scenarios within the same type of legal cases. Our experimental results illustrate our model's significant advancements in handling similarity comparisons within extensive legal judgments. By enabling more efficient retrieval and analysis of legal case documents, our model holds the potential to facilitate legal research, aid legal decision-making, and contribute to the further development of LegalAI in Taiwan.Keywords: legal artificial intelligence, computation and language, language model, Taiwanese legal cases
Procedia PDF Downloads 721336 Getting to Know the Enemy: Utilization of Phone Record Analysis Simulations to Uncover a Target’s Personal Life Attributes
Authors: David S. Byrne
Abstract:
The purpose of this paper is to understand how phone record analysis can enable identification of subjects in communication with a target of a terrorist plot. This study also sought to understand the advantages of the implementation of simulations to develop the skills of future intelligence analysts to enhance national security. Through the examination of phone reports which in essence consist of the call traffic of incoming and outgoing numbers (and not by listening to calls or reading the content of text messages), patterns can be uncovered that point toward members of a criminal group and activities planned. Through temporal and frequency analysis, conclusions were drawn to offer insights into the identity of participants and the potential scheme being undertaken. The challenge lies in the accurate identification of the users of the phones in contact with the target. Often investigators rely on proprietary databases and open sources to accomplish this task, however it is difficult to ascertain the accuracy of the information found. Thus, this paper poses two research questions: how effective are freely available web sources of information at determining the actual identification of callers? Secondly, does the identity of the callers enable an understanding of the lifestyle and habits of the target? The methodology for this research consisted of the analysis of the call detail records of the author’s personal phone activity spanning the period of a year combined with a hypothetical theory that the owner of said phone was a leader of terrorist cell. The goal was to reveal the identity of his accomplices and understand how his personal attributes can further paint a picture of the target’s intentions. The results of the study were interesting, nearly 80% of the calls were identified with over a 75% accuracy rating via datamining of open sources. The suspected terrorist’s inner circle was recognized including relatives and potential collaborators as well as financial institutions [money laundering], restaurants [meetings], a sporting goods store [purchase of supplies], and airline and hotels [travel itinerary]. The outcome of this research showed the benefits of cellphone analysis without more intrusive and time-consuming methodologies though it may be instrumental for potential surveillance, interviews, and developing probable cause for wiretaps. Furthermore, this research highlights the importance of building upon the skills of future intelligence analysts through phone record analysis via simulations; that hands-on learning in this case study emphasizes the development of the competencies necessary to improve investigations overall.Keywords: hands-on learning, intelligence analysis, intelligence education, phone record analysis, simulations
Procedia PDF Downloads 141335 AI and the Future of Misinformation: Opportunities and Challenges
Authors: Noor Azwa Azreen Binti Abd. Aziz, Muhamad Zaim Bin Mohd Rozi
Abstract:
Moving towards the 4th Industrial Revolution, artificial intelligence (AI) is now more popular than ever. This subject is gaining significance every day and is continually expanding, often merging with other fields. Instead of merely being passive observers, there are benefits to understanding modern technology by delving into its inner workings. However, in a world teeming with digital information, the impact of AI on the spread of disinformation has garnered significant attention. The dissemination of inaccurate or misleading information is referred to as misinformation, posing a serious threat to democratic society, public debate, and individual decision-making. This article delves deep into the connection between AI and the dissemination of false information, exploring its potential, risks, and ethical issues as AI technology advances. The rise of AI has ushered in a new era in the dissemination of misinformation as AI-driven technologies are increasingly responsible for curating, recommending, and amplifying information on online platforms. While AI holds the potential to enhance the detection and mitigation of misinformation through natural language processing and machine learning, it also raises concerns about the amplification and propagation of false information. AI-powered deepfake technology, for instance, can generate hyper-realistic videos and audio recordings, making it increasingly challenging to discern fact from fiction.Keywords: artificial intelligence, digital information, disinformation, ethical issues, misinformation
Procedia PDF Downloads 921334 Fundamental Theory of the Evolution Force: Gene Engineering utilizing Synthetic Evolution Artificial Intelligence
Authors: L. K. Davis
Abstract:
The effects of the evolution force are observable in nature at all structural levels ranging from small molecular systems to conversely enormous biospheric systems. However, the evolution force and work associated with formation of biological structures has yet to be described mathematically or theoretically. In addressing the conundrum, we consider evolution from a unique perspective and in doing so we introduce the “Fundamental Theory of the Evolution Force: FTEF”. We utilized synthetic evolution artificial intelligence (SYN-AI) to identify genomic building blocks and to engineer 14-3-3 ζ docking proteins by transforming gene sequences into time-based DNA codes derived from protein hierarchical structural levels. The aforementioned served as templates for random DNA hybridizations and genetic assembly. The application of hierarchical DNA codes allowed us to fast forward evolution, while dampening the effect of point mutations. Natural selection was performed at each hierarchical structural level and mutations screened using Blosum 80 mutation frequency-based algorithms. Notably, SYN-AI engineered a set of three architecturally conserved docking proteins that retained motion and vibrational dynamics of native Bos taurus 14-3-3 ζ.Keywords: 14-3-3 docking genes, synthetic protein design, time-based DNA codes, writing DNA code from scratch
Procedia PDF Downloads 1141333 Automating Self-Representation in the Caribbean: AI Autoethnography and Cultural Analysis
Authors: Steffon Campbell
Abstract:
This research explores the potential of using artificial intelligence (AI) autoethnographies to study, document, explore, and understand aspects of Caribbean culture. As a digital research methodology, AI autoethnography merges computer science and technology with ethnography, providing a fresh approach to collecting and analyzing data to generate novel insights. This research investigates how AI autoethnography can best be applied to understanding the various complexities and nuances of Caribbean culture, as well as examining how technology can be a valuable tool for enriching study of the region. By applying AI autoethnography to Caribbean studies, the research aims to produce new and innovative ways of discovering, understanding, and appreciating the Caribbean. The study found that AI autoethnographies can offer a valuable method for exploring Caribbean culture. Specifically, AI autoethnographies can facilitate experiences of self-reflection, facilitate reconciliation with the past, and provide a platform to explore and understand the cultural, social, political, and economic concerns of Caribbean people. Findings also reveal that these autoethnographies can create a space for people to reimagine and reframe the conversation around Caribbean culture by enabling them to actively participate in the process of knowledge creation. The study also finds that AI autoethnography offers the potential for cross-cultural dialogue, allowing participants to connect with one another over cultural considerations and engage in meaningful discourse.Keywords: artificial intelligence, autoethnography, caribbean, culture
Procedia PDF Downloads 251332 Emotional Artificial Intelligence and the Right to Privacy
Authors: Emine Akar
Abstract:
The majority of privacy-related regulation has traditionally focused on concepts that are perceived to be well-understood or easily describable, such as certain categories of data and personal information or images. In the past century, such regulation appeared reasonably suitable for its purposes. However, technologies such as AI, combined with ever-increasing capabilities to collect, process, and store “big data”, not only require calibration of these traditional understandings but may require re-thinking of entire categories of privacy law. In the presentation, it will be explained, against the background of various emerging technologies under the umbrella term “emotional artificial intelligence”, why modern privacy law will need to embrace human emotions as potentially private subject matter. This argument can be made on a jurisprudential level, given that human emotions can plausibly be accommodated within the various concepts that are traditionally regarded as the underlying foundation of privacy protection, such as, for example, dignity, autonomy, and liberal values. However, the practical reasons for regarding human emotions as potentially private subject matter are perhaps more important (and very likely more convincing from the perspective of regulators). In that respect, it should be regarded as alarming that, according to most projections, the usefulness of emotional data to governments and, particularly, private companies will not only lead to radically increased processing and analysing of such data but, concerningly, to an exponential growth in the collection of such data. In light of this, it is also necessity to discuss options for how regulators could address this emerging threat.Keywords: AI, privacy law, data protection, big data
Procedia PDF Downloads 881331 Using Optical Character Recognition to Manage the Unstructured Disaster Data into Smart Disaster Management System
Authors: Dong Seop Lee, Byung Sik Kim
Abstract:
In the 4th Industrial Revolution, various intelligent technologies have been developed in many fields. These artificial intelligence technologies are applied in various services, including disaster management. Disaster information management does not just support disaster work, but it is also the foundation of smart disaster management. Furthermore, it gets historical disaster information using artificial intelligence technology. Disaster information is one of important elements of entire disaster cycle. Disaster information management refers to the act of managing and processing electronic data about disaster cycle from its’ occurrence to progress, response, and plan. However, information about status control, response, recovery from natural and social disaster events, etc. is mainly managed in the structured and unstructured form of reports. Those exist as handouts or hard-copies of reports. Such unstructured form of data is often lost or destroyed due to inefficient management. It is necessary to manage unstructured data for disaster information. In this paper, the Optical Character Recognition approach is used to convert handout, hard-copies, images or reports, which is printed or generated by scanners, etc. into electronic documents. Following that, the converted disaster data is organized into the disaster code system as disaster information. Those data are stored in the disaster database system. Gathering and creating disaster information based on Optical Character Recognition for unstructured data is important element as realm of the smart disaster management. In this paper, Korean characters were improved to over 90% character recognition rate by using upgraded OCR. In the case of character recognition, the recognition rate depends on the fonts, size, and special symbols of character. We improved it through the machine learning algorithm. These converted structured data is managed in a standardized disaster information form connected with the disaster code system. The disaster code system is covered that the structured information is stored and retrieve on entire disaster cycle such as historical disaster progress, damages, response, and recovery. The expected effect of this research will be able to apply it to smart disaster management and decision making by combining artificial intelligence technologies and historical big data.Keywords: disaster information management, unstructured data, optical character recognition, machine learning
Procedia PDF Downloads 1291330 A Method of Representing Knowledge of Toolkits in a Pervasive Toolroom Maintenance System
Authors: A. Mohamed Mydeen, Pallapa Venkataram
Abstract:
The learning process needs to be so pervasive to impart the quality in acquiring the knowledge about a subject by making use of the advancement in the field of information and communication systems. However, pervasive learning paradigms designed so far are system automation types and they lack in factual pervasive realm. Providing factual pervasive realm requires subtle ways of teaching and learning with system intelligence. Augmentation of intelligence with pervasive learning necessitates the most efficient way of representing knowledge for the system in order to give the right learning material to the learner. This paper presents a method of representing knowledge for Pervasive Toolroom Maintenance System (PTMS) in which a learner acquires sublime knowledge about the various kinds of tools kept in the toolroom and also helps for effective maintenance of the toolroom. First, we explicate the generic model of knowledge representation for PTMS. Second, we expound the knowledge representation for specific cases of toolkits in PTMS. We have also presented the conceptual view of knowledge representation using ontology for both generic and specific cases. Third, we have devised the relations for pervasive knowledge in PTMS. Finally, events are identified in PTMS which are then linked with pervasive data of toolkits based on relation formulated. The experimental environment and case studies show the accuracy and efficient knowledge representation of toolkits in PTMS.Keywords: knowledge representation, pervasive computing, agent technology, ECA rules
Procedia PDF Downloads 3381329 Performance Evaluation of Distributed Deep Learning Frameworks in Cloud Environment
Authors: Shuen-Tai Wang, Fang-An Kuo, Chau-Yi Chou, Yu-Bin Fang
Abstract:
2016 has become the year of the Artificial Intelligence explosion. AI technologies are getting more and more matured that most world well-known tech giants are making large investment to increase the capabilities in AI. Machine learning is the science of getting computers to act without being explicitly programmed, and deep learning is a subset of machine learning that uses deep neural network to train a machine to learn features directly from data. Deep learning realizes many machine learning applications which expand the field of AI. At the present time, deep learning frameworks have been widely deployed on servers for deep learning applications in both academia and industry. In training deep neural networks, there are many standard processes or algorithms, but the performance of different frameworks might be different. In this paper we evaluate the running performance of two state-of-the-art distributed deep learning frameworks that are running training calculation in parallel over multi GPU and multi nodes in our cloud environment. We evaluate the training performance of the frameworks with ResNet-50 convolutional neural network, and we analyze what factors that result in the performance among both distributed frameworks as well. Through the experimental analysis, we identify the overheads which could be further optimized. The main contribution is that the evaluation results provide further optimization directions in both performance tuning and algorithmic design.Keywords: artificial intelligence, machine learning, deep learning, convolutional neural networks
Procedia PDF Downloads 2111328 New Advanced Medical Software Technology Challenges and Evolution of the Regulatory Framework in Expert Software, Artificial Intelligence, and Machine Learning
Authors: Umamaheswari Shanmugam, Silvia Ronchi
Abstract:
Software, artificial intelligence, and machine learning can improve healthcare through innovative and advanced technologies that can use the large amount and variety of data generated during healthcare services every day; one of the significant advantages of these new technologies is the ability to get experience and knowledge from real-world use and to improve their performance continuously. Healthcare systems and institutions can significantly benefit because the use of advanced technologies improves the efficiency and efficacy of healthcare. Software-defined as a medical device, is stand-alone software that is intended to be used for patients for one or more of these specific medical intended uses: - diagnosis, prevention, monitoring, prediction, prognosis, treatment or alleviation of a disease, any other health conditions, replacing or modifying any part of a physiological or pathological process–manage the received information from in vitro specimens derived from the human samples (body) and without principal main action of its principal intended use by pharmacological, immunological or metabolic definition. Software qualified as medical devices must comply with the general safety and performance requirements applicable to medical devices. These requirements are necessary to ensure high performance and quality and protect patients' safety. The evolution and the continuous improvement of software used in healthcare must consider the increase in regulatory requirements, which are becoming more complex in each market. The gap between these advanced technologies and the new regulations is the biggest challenge for medical device manufacturers. Regulatory requirements can be considered a market barrier, as they can delay or obstacle the device's approval. Still, they are necessary to ensure performance, quality, and safety. At the same time, they can be a business opportunity if the manufacturer can define the appropriate regulatory strategy in advance. The abstract will provide an overview of the current regulatory framework, the evolution of the international requirements, and the standards applicable to medical device software in the potential market all over the world.Keywords: artificial intelligence, machine learning, SaMD, regulatory, clinical evaluation, classification, international requirements, MDR, 510k, PMA, IMDRF, cyber security, health care systems
Procedia PDF Downloads 881327 Adolescent-Parent Relationship as the Most Important Factor in Preventing Mood Disorders in Adolescents: An Application of Artificial Intelligence to Social Studies
Authors: Elżbieta Turska
Abstract:
Introduction: One of the most difficult times in a person’s life is adolescence. The experiences in this period may shape the future life of this person to a large extent. This is the reason why many young people experience sadness, dejection, hopelessness, sense of worthlessness, as well as losing interest in various activities and social relationships, all of which are often classified as mood disorders. As many as 15-40% adolescents experience depressed moods and for most of them they resolve and are not carried into adulthood. However, (5-6%) of those affected by mood disorders develop the depressive syndrome and as many as (1-3%) develop full-blown clinical depression. Materials: A large questionnaire was given to 2508 students, aged 13–16 years old, and one of its parts was the Burns checklist, i.e. the standard test for identifying depressed mood. The questionnaire asked about many aspects of the student’s life, it included a total of 53 questions, most of which had subquestions. It is important to note that the data suffered from many problems, the most important of which were missing data and collinearity. Aim: In order to identify the correlates of mood disorders we built predictive models which were then trained and validated. Our aim was not to be able to predict which students suffer from mood disorders but rather to explore the factors influencing mood disorders. Methods: The problems with data described above practically excluded using all classical statistical methods. For this reason, we attempted to use the following Artificial Intelligence (AI) methods: classification trees with surrogate variables, random forests and xgboost. All analyses were carried out with the use of the mlr package for the R programming language. Resuts: The predictive model built by classification trees algorithm outperformed the other algorithms by a large margin. As a result, we were able to rank the variables (questions and subquestions from the questionnaire) from the most to least influential as far as protection against mood disorder is concerned. Thirteen out of twenty most important variables reflect the relationships with parents. This seems to be a really significant result both from the cognitive point of view and also from the practical point of view, i.e. as far as interventions to correct mood disorders are concerned.Keywords: mood disorders, adolescents, family, artificial intelligence
Procedia PDF Downloads 1011326 Deep Routing Strategy: Deep Learning based Intelligent Routing in Software Defined Internet of Things.
Authors: Zabeehullah, Fahim Arif, Yawar Abbas
Abstract:
Software Defined Network (SDN) is a next genera-tion networking model which simplifies the traditional network complexities and improve the utilization of constrained resources. Currently, most of the SDN based Internet of Things(IoT) environments use traditional network routing strategies which work on the basis of max or min metric value. However, IoT network heterogeneity, dynamic traffic flow and complexity demands intelligent and self-adaptive routing algorithms because traditional routing algorithms lack the self-adaptions, intelligence and efficient utilization of resources. To some extent, SDN, due its flexibility, and centralized control has managed the IoT complexity and heterogeneity but still Software Defined IoT (SDIoT) lacks intelligence. To address this challenge, we proposed a model called Deep Routing Strategy (DRS) which uses Deep Learning algorithm to perform routing in SDIoT intelligently and efficiently. Our model uses real-time traffic for training and learning. Results demonstrate that proposed model has achieved high accuracy and low packet loss rate during path selection. Proposed model has also outperformed benchmark routing algorithm (OSPF). Moreover, proposed model provided encouraging results during high dynamic traffic flow.Keywords: SDN, IoT, DL, ML, DRS
Procedia PDF Downloads 1101325 Artificial Intelligence-Based Chest X-Ray Test of COVID-19 Patients
Authors: Dhurgham Al-Karawi, Nisreen Polus, Shakir Al-Zaidi, Sabah Jassim
Abstract:
The management of COVID-19 patients based on chest imaging is emerging as an essential tool for evaluating the spread of the pandemic which has gripped the global community. It has already been used to monitor the situation of COVID-19 patients who have issues in respiratory status. There has been increase to use chest imaging for medical triage of patients who are showing moderate-severe clinical COVID-19 features, this is due to the fast dispersal of the pandemic to all continents and communities. This article demonstrates the development of machine learning techniques for the test of COVID-19 patients using Chest X-Ray (CXR) images in nearly real-time, to distinguish the COVID-19 infection with a significantly high level of accuracy. The testing performance has covered a combination of different datasets of CXR images of positive COVID-19 patients, patients with viral and bacterial infections, also, people with a clear chest. The proposed AI scheme successfully distinguishes CXR scans of COVID-19 infected patients from CXR scans of viral and bacterial based pneumonia as well as normal cases with an average accuracy of 94.43%, sensitivity 95%, and specificity 93.86%. Predicted decisions would be supported by visual evidence to help clinicians speed up the initial assessment process of new suspected cases, especially in a resource-constrained environment.Keywords: COVID-19, chest x-ray scan, artificial intelligence, texture analysis, local binary pattern transform, Gabor filter
Procedia PDF Downloads 1451324 Employee Well-being in the Age of AI: Perceptions, Concerns, Behaviors, and Outcomes
Authors: Soheila Sadeghi
Abstract:
— The growing integration of Artificial Intelligence (AI) into Human Resources (HR) processes has transformed the way organizations manage recruitment, performance evaluation, and employee engagement. While AI offers numerous advantages—such as improved efficiency, reduced bias, and hyper-personalization—it raises significant concerns about employee well-being, job security, fairness, and transparency. The study examines how AI shapes employee perceptions, job satisfaction, mental health, and retention. Key findings reveal that: (a) while AI can enhance efficiency and reduce bias, it also raises concerns about job security, fairness, and privacy; (b) transparency in AI systems emerges as a critical factor in fostering trust and positive employee attitudes; and (c) AI systems can both support and undermine employee well-being, depending on how they are implemented and perceived. The research introduces an AI-employee well-being Interaction Framework, illustrating how AI influences employee perceptions, behaviors, and outcomes. Organizational strategies, such as (a) clear communication, (b) upskilling programs, and (c) employee involvement in AI implementation, are identified as crucial for mitigating negative impacts and enhancing positive outcomes. The study concludes that the successful integration of AI in HR requires a balanced approach that (a) prioritizes employee well-being, (b) facilitates human-AI collaboration, and (c) ensures ethical and transparent AI practices alongside technological advancement.Keywords: artificial intelligence, human resources, employee well-being, job satisfaction, organizational support, transparency in AI
Procedia PDF Downloads 291323 General Mood and Emotional Regulation as Predictors of Bullying Behaviors among Adolescent Males: Basis for a Proposed Bullying Intervention Program
Authors: Angelyn Del Mundo
Abstract:
Bullying cases are a proliferating issue that schools need to address. This calls for a challenge in providing effective measures to reduce bullying. The study aimed to determine which among the socio-emotional aspects of adolescent males could predict bullying. The respondents of the study were the grades 10 and 11 level and the selection of the respondents was based on the names listed by the teachers and guidance counselors through the Student Nomination Questionnaire. The Bullying Survey Questionnaire Checklist was answered by the respondents to be able to identify their most observed bullying behavior. On the other hand, the level of their mental ability was measured through the use of Otis-Lennon School Ability Test, while their socio-emotional aspects was is classified into 2 contexts: emotional intelligence and personality traits which were determined with the use of Bar-On Emotional Quotient Inventory: Youth Version (BarOn EQ-i:YV) and the Five-Factor Personality Inventory-Children (FFPI-C). Results indicated that majority of the respondents have average level of mental ability and socio-emotional aspects. However, many students have low to markedly low level interpersonal scale. Furthermore, general mood and emotional regulation were found as predictors of bullying behaviors. These findings became the basis for a proposed bullying intervention program.Keywords: bullying, emotional intelligence, mental ability, personality traits
Procedia PDF Downloads 2821322 The Role of Artificial Intelligence in Patent Claim Interpretation: Legal Challenges and Opportunities
Authors: Mandeep Saini
Abstract:
The rapid advancement of Artificial Intelligence (AI) is transforming various fields, including intellectual property law. This paper explores the emerging role of AI in interpreting patent claims, a critical and highly specialized area within intellectual property rights. Patent claims define the scope of legal protection granted to an invention, and their precise interpretation is crucial in determining the boundaries of the patent holder's rights. Traditionally, this interpretation has relied heavily on the expertise of patent examiners, legal professionals, and judges. However, the increasing complexity of modern inventions, especially in fields like biotechnology, software, and electronics, poses significant challenges to human interpretation. Introducing AI into patent claim interpretation raises several legal and ethical concerns. This paper addresses critical issues such as the reliability of AI-driven interpretations, the potential for algorithmic bias, and the lack of transparency in AI decision-making processes. It considers the legal implications of relying on AI, particularly regarding accountability for errors and the potential challenges to AI interpretations in court. The paper includes a comparative study of AI-driven patent claim interpretations versus human interpretations across different jurisdictions to provide a comprehensive analysis. This comparison highlights the variations in legal standards and practices, offering insights into how AI could impact the harmonization of international patent laws. The paper proposes policy recommendations for the responsible use of AI in patent law. It suggests legal frameworks that ensure AI tools complement, rather than replace, human expertise in patent claim interpretation. These recommendations aim to balance the benefits of AI with the need for maintaining trust, transparency, and fairness in the legal process. By addressing these critical issues, this research contributes to the ongoing discourse on integrating AI into the legal field, specifically within intellectual property rights. It provides a forward-looking perspective on how AI could reshape patent law, offering both opportunities for innovation and challenges that must be carefully managed to protect the integrity of the legal system.Keywords: artificial intelligence (ai), patent claim interpretation, intellectual property rights, algorithmic bias, natural language processing, patent law harmonization, legal ethics
Procedia PDF Downloads 211321 Concept for Determining the Focus of Technology Monitoring Activities
Authors: Guenther Schuh, Christina Koenig, Nico Schoen, Markus Wellensiek
Abstract:
Identification and selection of appropriate product and manufacturing technologies are key factors for competitiveness and market success of technology-based companies. Therefore many companies perform technology intelligence (TI) activities to ensure the identification of evolving technologies at the right time. Technology monitoring is one of the three base activities of TI, besides scanning and scouting. As the technological progress is accelerating, more and more technologies are being developed. Against the background of limited resources it is therefore necessary to focus TI activities. In this paper, we propose a concept for defining appropriate search fields for technology monitoring. This limitation of search space leads to more concentrated monitoring activities. The concept will be introduced and demonstrated through an anonymized case study conducted within an industry project at the Fraunhofer Institute for Production Technology. The described concept provides a customized monitoring approach, which is suitable for use in technology-oriented companies especially those that have not yet defined an explicit technology strategy. It is shown in this paper that the definition of search fields and search tasks are suitable methods to define topics of interest and thus to direct monitoring activities. Current as well as planned product, production and material technologies as well as existing skills, capabilities and resources form the basis of the described derivation of relevant search areas. To further improve the concept of technology monitoring the proposed concept should be extended during future research e.g. by the definition of relevant monitoring parameters.Keywords: monitoring radar, search field, technology intelligence, technology monitoring
Procedia PDF Downloads 4741320 An Ecological Grandeur: Environmental Ethics in Buddhist Perspective
Authors: Merina Islam
Abstract:
There are many environmental problems. Various counter measures have been taken for environmental problems. Philosophy is an important contributor to environmental studies as it takes deep interest in meaning analysis of the concept environment and other related concepts. The Buddhist frame, which is virtue ethical, remains a better alternative to the traditional environmental outlook. Granting the unique role of man in immoral deliberations, the Buddhist approach, however, maintains a holistic concept of ecological harmony. Buddhist environmental ethics is more concerned about the complete moral community, the total ecosystem, than any particular species within the community. The moral reorientation proposed here has resemblance to the concept of 'deep ecology. Given the present day prominence of virtue ethics, we need to explore further into the Buddhist virtue theory, so that a better framework to treat the natural world would be ensured. Environment has turned out to be one of the most widely discussed issues in the recent times. Buddhist concepts such as Pratityasamutpadavada, Samvrit Satya, Paramartha Satya, Shunyata, Sanghatvada, Bodhisattva, Santanvada and others deal with interdependence in terms of both internal as well external ecology. The internal ecology aims at mental well-being whereas external ecology deals with physical well-being. The fundamental Buddhist concepts for dealing with environmental Problems are where the environment has the same value as humans as from the two Buddhist doctrines of the Non-duality of Life and its Environment and the Origination in Dependence; and the inevitability of overcoming environmental problems through the practice of the way of the Bodhisattva, because environmental problems are evil for people and nature. Buddhism establishes that there is a relationship among all the constituents of the world. There is nothing in the world which is independent from any other thing. Everything is dependent on others. The realization that everything in the universe is mutually interdependent also shows that the man cannot keep itself unaffected from ecology. This paper would like to focus how the Buddhist’s identification of nature and the Dhamma can contribute toward transforming our understanding, attitudes, and actions regarding the care of the earth. Environmental Ethics in Buddhism presents a logical and thorough examination of the metaphysical and ethical dimensions of early Buddhist literature. From the Buddhist viewpoint, humans are not in a category that is distinct and separate from other sentient beings, nor are they intrinsically superior. All sentient beings are considered to have the Buddha-nature, that is, the potential to become fully enlightened. Buddhists do not believe in treating of non-human sentient beings as objects for human consumption. The significance of Buddhist theory of interdependence can be understood from the fact that it shows that one’s happiness or suffering originates from ones realization or non-realization respectively of the dependent nature of everything. It is obvious, even without emphasis, which in the context of deep ecological crisis of today there is a need to infuse the consciousness of interdependence.Keywords: Buddhism, deep ecology, environmental problems, Pratityasamutpadavada
Procedia PDF Downloads 315