Search results for: loss modulus
3454 Maryland Restoration of Anterior Tooth Loss as a Minimal Invasive Dentistry: An Alternative Treatment
Authors: B. Oral, C. Bal, M. S. Kar, A. Akgürbüz
Abstract:
Loss of maxillary central incisors occurs in many patients, and the treatment of young adults with this problem is a challenge for both prosthodontists and orthodontists. Common treatment alternatives are distalization of adjacent teeth and fabrication of a conventional 3-unit fixed partial denture, a single implant supported crown restoration or a resin-bonded fixed partial denture. This case report describes the indication of a resin-bonded fixed partial denture, preparation of the abutment teeth and the prosthetic procedures. The technique described here represents a conservative, esthetically pleasing and rapid solution for the missing maxillary central incisor when implant placement and/or guided bone regeneration techniques are not feasible because of financial, social or time restrictions. In this case a 16 year-old female patient who lost her maxillary left central incisor six years ago in a bicycle accident applied to our clinic with a major complaint of her unaesthetic appearance associated with the loss of her maxillary left central incisor. Although there was an indication for orthodontic treatment because of the limited space at the traumatized area, the patient did not accept to receive any orthodontic procedure. That is why an implant supported restoration could not be an option for the narrow area. Therefore maryland bridge as a minimal invasive dental therapy was preferred as a retention appliance so the patient's aesthetic appearance was restored.Keywords: Maryland bridge, single tooth restoration, aesthetics, maxillary central incisors
Procedia PDF Downloads 3593453 Assessing Social Vulnerability and Policy Adaption Application Responses Based on Landslide Risk Map
Authors: Z. A. Ahmad, R. C. Omar, I. Z. Baharuddin, R. Roslan
Abstract:
Assessments of social vulnerability, carried out holistically, can provide an important guide to the planning process and to decisions on resource allocation at various levels, and can help to raise public awareness of geo-hazard risks. The assessments can help to provide answers for basic questions such as the human vulnerability at the geo-hazard prone or disaster areas causing health damage, economic loss, loss of natural heritage and vulnerability impact of extreme natural hazard event. To overcome these issues, integrated framework for assessing the increasing human vulnerability to environmental changes caused by geo-hazards will be introduced using an indicator from landslide risk map that is related to agent based modeling platform. The indicators represent the underlying factors, which influence a community’s ability to deal with and recover from the damage associated with geo-hazards. Scope of this paper is particularly limited to landslides.Keywords: social, vulnerability, geo-hazard, methodology, indicators
Procedia PDF Downloads 2853452 Migration and Mobility of South African Teachers: A Case Study
Authors: Rian de Villiers
Abstract:
Human mobility is one of the most significant development, foreign policy and domestic issues in the world today. Teacher loss due to migration is a global phenomenon that is impacting both developed and developing nations the world over. The purpose of this study was to find out how many newly qualified South African teachers were planning to teach in a foreign country; what were the prospective migrant teachers’ motives for migration; what destination countries were the most popular and why; and what were the prospective migrant teachers’ information needs before leaving South Africa. A group of final-year Bachelor of Education student teachers from a single university responded to a questionnaire on intra-and intercontinental migration. The responses were analysed quantitatively and/or qualitatively. The findings showed that 79% of the students indicated that they would be teaching in South Africa, 9% were planning to teach in another country, while 8% were undecided. More than a third of the students (38%) said that they would like to teach in another country in five years time. Just more than a quarter of the students (27%) preferred Australia as a destination, followed by the United Kingdom (16%), Korea (16%) and the USA (14%). The student teachers’ most important motive to teach in a foreign country was the opportunity to travel (27%), followed by earning a higher salary (26%) and professional development (23%). The student teachers indicated that their most important migration needs before leaving South Africa were information about health care, accommodation and banking assistance. Huge loss of teachers to host countries has a serious, negative impact upon the education system of most developing and/or source countries, including South Africa. Several steps and strategies to resolve teacher loss in South Africa are discussed.Keywords: migration, academic mobility, teachers, teacher students, South Africa
Procedia PDF Downloads 4683451 Drying Kinetics of Okara (Soy Pulp) Using the Multi-Commodity Heat Pump Dryer (MCHPD)
Authors: Lorcelie B. Taclan, Jolly S. Balila, Maribel Balagtas, Eunice M. Aclan, Myrtle C. Orbon, Emson Y. Taclan, Irenea A. Centeno
Abstract:
Okara (soy pulp), a by-product and waste from the production of soymilk, tufo and tokwa and soybean-based vegan food products is readily available in the university thrice a week. The Food Factory owned and managed by AUP produces these food products weekly. Generally the study was conducted to determine the drying kinetics of soya pulp using the MCHPD. Specifically, it aimed to establish the time of drying; moisture loss per hour and percent moisture content of soya pulp and to establish the dried okara as an ingredient to other foods. The MCHPD is drying equipment that has an ideal drying condition of 50.00C and 10.0% relative humidity. Fresh and wet soya pulp were weighed at 1.0 kg per tray (21 drying trays), laid on the trays lined with cheese cloth. The MCHPD was set to desired drying conditions. Weight loss was monitored every hour and calculated using standard formulas. Research results indicated that the drying time for soya pulp was 19.0 hours; the % moisture content was reduced from 87.6.0% to 9.7.0% at an average moisture loss of 3.0 g/hr. The nutritional values of okara were favorably maintained with enhanced color. The dried okara was added as an ingredient to other healthy bakery products produced by the AUP Food Factory. Making use of okara would add nutritional values to other food products and would also help waste management concerns inside the university.Keywords: okara, MCHPD, drying kinetics, nutritional values, waste management
Procedia PDF Downloads 3923450 Investigation of the Corrosion Inhibition Mechanism of Tagetes erecta Extract for Mild Steel in Nitric Acid: Gravimetric Studies
Authors: Selvam Noyel Victoria, Kavita Yadav, Manivannan Ramachandran
Abstract:
The extract of Tagetes erecta (marigold flower) was used as a green corrosion inhibitor for mild steel (MS) in nitric acid medium. The weight loss measurements were performed to understand the inhibition mechanism. The effect of temperature on the behaviour of mild steel corrosion without and with inhibitor was studied. The temperature studies revealed that the activation energy increased from 12 kJ/mol to 28.8 kJ/mol with the addition of 500 ppm inhibitor concentration. The thermodynamic analysis and the adsorption isotherm studies revealed that the molecules of inhibitor show physical adsorption on the surface of mild steel. Based on weight loss measurements, adsorption of the inhibitor on the surface of mild steel follows Langmuir isotherm.Keywords: Tagetes erecta, corrosion, adsorption, inhibitor
Procedia PDF Downloads 2463449 The Influence of Viscosifier Concentration on Rheological Properties of Invert Emulsion Mud
Authors: Suzan Ibrahim
Abstract:
Oil-based muds are the most regularly used rotary drilling methods in the oil and gas industry. However, they have a negative impact on the environment, which leads to restrictions of their application in many countries of the world. Consequently, looking for new eco-friendly alternative formulations of oil-based drilling fluids for the exploration of troublesome formations. As one of the developments of Novel formulation of environmentally friendly drilling fluids and investigation of the formulation for jatropha oil-based drilling fluid samples at different concentrations of viscosifiers such as low viscosity polyanionic cellulose (PAC- LV), high viscosity polyanionic cellulose (PAC-V) and local Egyptian bentonite. The oil-water ratio was taken as 70:30, which is beneficial in producing a low fluid loss. 15 drilling fluid samples were formulated different concentrations of bentonite, PAC- LV and PAC-V individually and their mud density, rheological properties, electrical stability and filtration loss properties were determined. The rheological performance showed at higher concentrations of viscosifier, the trend of viscosity increment of PAC performed in a similar way to bentonite. The best result of electrical stability by using the lowest concentration of viscosifier was achieved with PAC-V. The lowest fluid loss volumes were obtained by using the highest concentrations (4 g) of viscosifiers. Mud cake thickness of samples increased by using viscosifiers; however, a lower range was achieved compared to API specification. From the overall experiment, it can be concluded that as the concentrations of viscosifier increase, the viscosity trend increase in a similar way to both PAC-V and bentonite. But we must note that the PAC-V is a more environmentally friendly additive and a renewable resource, cheaper than bentonite and improves properties of eco-friendly OBMs well. It is a preferable choice for oil-based drilling fluids.Keywords: invert emulsion mud, oil-based mud, rheological properties, viscosifier
Procedia PDF Downloads 1683448 Mortar Positioning Effects on Uniaxial Compression Behavior in Hollow Concrete Block Masonry
Authors: José Álvarez Pérez, Ramón García Cedeño, Gerardo Fajardo-San Miguel, Jorge H. Chávez Gómez, Franco A. Carpio Santamaría, Milena Mesa Lavista
Abstract:
The uniaxial compressive strength and modulus of elasticity in hollow concrete block masonry (HCBM) represent key mechanical properties for structural design considerations. These properties are obtained through experimental tests conducted on prisms or wallettes and depend on various factors, with the HCB contributing significantly to overall strength. One influential factor in the compressive behaviour of masonry is the thickness and method of mortar placement. Mexican regulations stipulate mortar placement over the entire net area (full-shell) for strength computation based on the gross area. However, in professional practice, there's a growing trend to place mortar solely on the lateral faces. Conversely, the United States of America standard dictates mortar placement and computation over the net area of HCB. The Canadian standard specifies mortar placement solely on the lateral face (Face-Shell-Bedding), where computation necessitates the use of the effective load area, corresponding to the mortar's placement area. This research aims to evaluate the influence of different mortar placement methods on the axial compression behaviour of HCBM. To achieve this, an experimental campaign was conducted, including: (1) 10 HCB specimens with mortar on the entire net area, (2) 10 HCB specimens with mortar placed on the lateral faces, (3) 10 prisms of 2-course HCB under axial compression with mortar in full-shell, (4) 10 prisms of 2-course HCB under axial compression with mortar in face-shell-bedding, (5) 10 prisms of 3-course HCB under axial compression with mortar in full-shell, (6) 10 prisms of 3-course HCB under axial compression with mortar in face-shell-bedding, (7) 10 prisms of 4-course HCB under axial compression with mortar in full-shell, and, (8) 10 prisms of 4-course HCB under axial compression with mortar in face-shell-bedding. A combination of sulphur and fly ash in a 2:1 ratio was used for the capping material, meeting the average compressive strength requirement of over 35 MPa as per NMX-C-036 standards. Additionally, a mortar with a strength of over 17 MPa was utilized for the prisms. The results indicate that prisms with mortar placed over the full-shell exhibit higher strength compared to those with mortar over the face-shell-bedding. However, the elastic modulus was lower for prisms with mortar placement over the full-shell compared to face-shell bedding.Keywords: masonry, hollow concrete blocks, mortar placement, prisms tests
Procedia PDF Downloads 603447 A Case Study of Kick Control in Tough Potohar Region
Authors: Iftikhar Raza
Abstract:
Well control is the management of the hazardous effects caused by the unexpected release of formation fluid, such as natural gas and/or crude oil, upon surface equipment of oil or gas drilling rigs and escaping into the atmosphere. Technically, oil well control involves preventing the formation fluid, usually referred to as kick, from entering into the wellbore during drilling. Oil well control is one of the most important aspects of drilling operations. Improper handling of kicks in oil well control can result in blowouts with very grave consequences, including the loss of valuable resources. Even though the cost of a blowout (as a result of improper/no oil well control) can easily reach several millions of US dollars, the monetary loss is not as serious as the other damages that can occur: irreparable damage to the environment, waste of valuable resources, ruined equipment, and most importantly, the safety and lives of personnel on the drilling rig. In this paper, case study of a well is discussed with field data showing the properties of the well. The whole procedure of controlling this well is illustrated in this which may be helpful for professional dealing with such kind of problems.Keywords: kick control, kill sheet, oil well, gas drilling
Procedia PDF Downloads 5053446 Evaluating the Durability and Safety of Lithium-Ion Batterie in High-Temperature Desert Climates
Authors: Kenza Maher, Yahya Zakaria, Noora S. Al-Jaidah
Abstract:
Temperature is a critical parameter for lithium-ion battery performance, life, and safety. In this study, four commercially available 18650 lithium-ion cells from four different manufacturers are subjected to accelerated cycle aging for up to 500 cycles at two different temperatures (25°C and 45°C). The cells are also calendar-aged at the same temperatures in both charged and discharged states for 6 months to investigate the effect of aging and temperature on capacity fade and state of health. The results showed that all battery cells demonstrated good cyclability and had a good state of health at both temperatures. However, the capacity loss and state of health of these cells are found to be dependent on the cell chemistry and aging conditions, including temperature. Specifically, the capacity loss is found to be higher at the higher aging temperature, indicating the significant impact of temperature on the aging of lithium-ion batteries.Keywords: lithium-ion battery, aging mechanisms, cycle aging, calendar aging.
Procedia PDF Downloads 963445 Effect of High Temperature on Residual Mechanical and Physical Properties of Brick Aggregate Concrete
Authors: Samia Hachemi, Abdelhafid Ounis, W. Heriheri
Abstract:
This paper presents an experimental investigation of high temperatures applied to normal and high performance concrete made with natural coarse aggregates. The experimental results of physical and mechanical properties were compared with those obtained with recycled brick aggregates produced by replacing 30% of natural coarse aggregates by recycled brick aggregates. The following parameters: compressive strength, concrete mass loss, apparent density and water porosity were examined in this experiment. The results show that concrete could be produced by using recycled brick aggregates and reveals that at high temperatures recycled aggregate concrete preformed similar or even better than natural aggregate concrete.Keywords: high temperature, compressive strength, mass loss, recycled brick aggregate
Procedia PDF Downloads 2433444 Experimental Damping Performance of Composite Materials with Different Fibre Orientations
Authors: Ferhat Kadioglu
Abstract:
A clamped-free vibrating beam technique was used to evaluate dynamic properties of glass fiber reinforced polymer matrix composite. In the experiment, an electromagnetic shaker and a non-contact laser head were used to vibrate and to take the response of the specimens, respectively. Test results showed that damping and elastic modulus of the material, as dynamic properties, could be obtained successfully using this technique. It was found that the balanced and symmetric specimens with 45 degrees are the best for damping performance. It is believed that such results could be used for the modal design of aerospace structures.Keywords: composite materials, damping values, dynamic properties, non-contact measurements
Procedia PDF Downloads 3463443 Quantification of Effect of Linear Anionic Polyacrylamide on Seepage in Irrigation Channels
Authors: Hamil Uribe, Cristian Arancibia
Abstract:
In Chile, the water for irrigation and hydropower generation is delivery essentially through unlined channels on earth, which have high seepage losses. Traditional seepage-abatement technologies are very expensive. The goals of this work were to quantify water loss in unlined channels and select reaches to evaluate the use of linear anionic polyacrylamide (LA-PAM) to reduce seepage losses. The study was carried out in Maule Region, central area of Chile. Water users indicated reaches with potential seepage losses, 45 km of channels in total, whose flow varied between 1.07 and 23.6 m³ s⁻¹. According to seepage measurements, 4 reaches of channels, 4.5 km in total, were selected for LA-PAM application. One to 4 LA-PAM applications were performed at rates of 11 kg ha⁻¹, considering wet perimeter area as basis of calculation. Large channels were used to allow motorboat moving against the current to carry-out LA-PAM application. For applications, a seeder machine was used to evenly distribute granulated polymer on water surface. Water flow was measured (StreamPro ADCP) upstream and downstream in selected reaches, to estimate seepage losses before and after LA-PAM application. Weekly measurements were made to quantify treatment effect and duration. In each case, water turbidity and temperature were measured. Channels showed variable losses up to 13.5%. Channels showing water gains were not treated with PAM. In all cases, LA-PAM effect was positive, achieving average loss reductions of 8% to 3.1%. Water loss was confirmed and it was possible to reduce seepage through LA-PAM applications provided that losses were known and correctly determined when applying the polymer. This could allow increasing irrigation security in critical periods, especially under drought conditions.Keywords: canal seepage, irrigation, polyacrylamide, water management
Procedia PDF Downloads 1733442 Corrosion Inhibition of Copper in 1M HNO3 Solution by Oleic Acid
Authors: S. Nigri, R. Oumeddour, F. Djazi
Abstract:
The inhibition of the corrosion of copper in 1 M HNO3 solution by oleic acid was investigated by weight loss measurement, potentiodynamic polarization and scanning electron microscope (SEM) studies. The experimental results have showed that this compound revealed a good corrosion inhibition and the inhibition efficiency is increased with the inhibitor concentration to reach 98%. The results obtained revealed that the adsorption of the inhibitor molecule onto metal surface is found to obey Langmuir adsorption isotherm. The temperature effect on the corrosion behavior of copper in 1 M HNO3 without and with inhibitor at different concentration was studied in the temperature range from 303 to 333 K and the kinetic parameters activation such as Ea, ∆Ha and ∆Sa were evaluated. Tafel plot analysis revealed that oleic acid acts as a mixed type inhibitor. SEM analysis substantiated the formation of protective layer over the copper surface.Keywords: oleic acid, weight loss, electrochemical measurement, SEM analysis
Procedia PDF Downloads 3933441 Detonalization of Punjabi: Towards a Loss of Linguistic Indigeneity
Authors: Sukhvinder Singh
Abstract:
Punjabi language is related to the languages of New Indo-Aryan group that, in turn, is related to the branch of Indo-European language family. Punjabi language covers the areas of Western part (that is in Pakistan) and Eastern part (the Punjab state, Haryana, Delhi Himachal and J&K) and abroad (particularly Canada, USA, U.K. and Arab Emirates), where it is spoken widely. Besides India and Pakistan, Punjabi is the third language spoken in Canada after English, French having more than one hundred millions speakers worldwide. It is the fourth language spoken in Canada after English, French, and Chinese. It is also being taught as second language in most of the community school of British Columbia. The total number of Punjabi speakers is more than one hundred millions including India, Pakistan and abroad. Punjabi has a long tradition of linguistic tradition. A large number of scholars have studied Punjabi at different linguistic levels. Various studies are devoted to its special phonological characteristics, especially the tone, which has now started disappearing in favour of aspiration, a rare example of a language change in progress in its reversal direction. This process of language change in progress in reversal is dealt with in this paper a change towards a loss of linguistic indigeneity. The tone being a distinctive linguistic feature of Punjabi language is getting lost due to the increasing influence of Hindi and English particularly in the speech Urban Punjabi and Punjabi settled abroad. In this paper, an attempt has been made to discuss the sociolinguistics and sociology of Punjabi language and Punjab to trace the initiation and progression of this change towards a loss of Linguistic Indigeneity.Keywords: language change in reversal, reaspiration, detonalization, new Indo-Aryan group
Procedia PDF Downloads 1713440 A Study of Evaporative Heat Loss from the Skin of Baby Elephants (Elephas maximus maximus) at Elephant Transit Home
Authors: G .D. B. N. Kulasaooriya, H. B. S. Ariyarathne, I. Abeygunawardene, A. A. J. Rafarathne, B. V. Perera
Abstract:
Elephant is the largest resident of the wild and has small surface to volume ratio as well as less number of sweat glands which cause challenges to the thermoregulation of this mammal. However, this megaherbivore has adopted specialised meachanisms to maintain its thermal balance through behavioral adaptations, ear flapping and well anastomosed arterioles and venules of the ear. Nevertheless, little is known on the involvement of the skin in the process of thermoregulation. The present study was undertaken to monitor the water evaporation rate from the skin of unrestrained wild elephant calves throughout the day and to understand its importance in the thermoregulation. Seven baby elephants housed in the elephant transit home, Udawalawe were used. Ambient temparature, relative humidity (RH) and radiation heat load was monitored throughout the day of the study period. Similarly, surface temparature of the skin was taken at six points including lateral ear pinna, lateral body and the rump during the same period. The skin water evaporation was also measured from the same sites using cobolt chloride method. The surface are of the skin was determined by assigning geometrical shapes to each body part. The results showed that the ambient temperature gradually increased with the day reaching maximum around 3.00 pm. The relative humidity was lowest early in the morning. The radiation heat load did not show any significant change in the study period. The skin temperature was different among lateral ear pinna, lateral body and the rump where the highest temperature was on the rump and the lowest on the lateral ear pinna. The skin temperature gradually increase with increasing ambient temperature but there was not a strong correlation (R2 =53.53) between these two. The skin temperature had strong correlation with RH (p<0.05 R2 =70.84% ) but a significant relationship was not considered since the radiation heat load was not varying in large scale. The skin evaporative water loss had a weak negative correlation with ambient temperature (correlation coefficient= -0.01) whereas strong positive correlation with RH (correlation coefficient= 25.275 ) and no corelation with radiation heat load. It also appeared that skin water loss increases as the skin temperature increased. In the present study, it was observed that on average, skin of the baby elephant looses 403 g/m2/h of water. Based on these observations it can be concluded that a large volume of water is evaporated from the skin of baby elephants and evaporative heat loss may be contributing significantly to the thermoregulation. However, further investigation on the influence of environmental factors on evaporative heat loss has to be conducted to understand the thermoregulatory mechanisms of the baby elephant.Keywords: thermoregulation, behavioral adaptations, evaporation, elephant
Procedia PDF Downloads 3773439 Implication of Soil and Seismic Ground Motion Variability on Dynamic Pile Group Impedance for Bridges
Authors: Muhammad Tariq Chaudhary
Abstract:
Bridges constitute a vital link in a transportation system and their functionality after an earthquake is critical in reducing disruption to social and economic activities of the society. Bridges supported on pile foundations are commonly used in many earthquake-prone regions. In order to properly design or investigate the performance of such structures, it is imperative that the effect of soil-foundation-structure interaction be properly taken into account. This study focused on the influence of soil and seismic ground motion variability on the dynamic impedance of pile-group foundations typically used for medium-span (about 30 m) urban viaduct bridges. Soil profiles corresponding to various AASHTO soil classes were selected from actual data of such bridges and / or from the literature. The selected soil profiles were subjected to 1-D wave propagation analysis to determine effective values of soil shear modulus and damping ratio for a suite of properly selected actual seismic ground motions varying in PGA from 0.01g to 0.64g, and having variable velocity and frequency content. The effective values of the soil parameters were then employed to determine the dynamic impedance of pile groups in horizontal, vertical and rocking modes in various soil profiles. Pile diameter was kept constant for bridges in various soil profiles while pile length and number of piles were changed based on AASHTO design requirements for various soil profiles and earthquake ground motions. Conclusions were drawn regarding variability in effective soil shear modulus, soil damping, shear wave velocity and pile group impedance for various soil profiles and ground motions and its implications for design and evaluation of pile-supported bridges. It was found that even though the effective soil parameters underwent drastic variation with increasing PGA, the pile group impedance was not affected much in properly designed pile foundations due to the corresponding increase in pile length or increase in a number of piles or both when subjected to increasing PGA or founded in weaker soil profiles.Keywords: bridge, pile foundation, dynamic foundation impedance, soil profile, shear wave velocity, seismic ground motion, seismic wave propagation
Procedia PDF Downloads 3233438 Density functional (DFT), Study of the Structural and Phase Transition of ThC and ThN: LDA vs GGA Computational
Authors: Hamza Rekab Djabri, Salah Daoud
Abstract:
The present paper deals with the computational of structural and electronic properties of ThC and ThN compounds using density functional theory within generalized-gradient (GGA) apraximation and local density approximation (LDA). We employ the full potential linear muffin-tin orbitals (FP-LMTO) as implemented in the Lmtart code. We have used to examine structure parameter in eight different structures such as in NaCl (B1), CsCl (B2), ZB (B3), NiAs (B8), PbO (B10), Wurtzite (B4) , HCP (A3) βSn (A5) structures . The equilibrium lattice parameter, bulk modulus, and its pressure derivative were presented for all calculated phases. The calculated ground state properties are in good agreement with available experimental and theoretical results.Keywords: DFT, GGA, LDA, properties structurales, ThC, ThN
Procedia PDF Downloads 973437 The Study of the Physical, Chemical and Mechanical Properties of Recycled Thermoplastic Polypropylene and Polyamide Materials Used in the Automotive Industry
Authors: Sevim Gecici, Erdinc Doganci
Abstract:
Thermoplastic materials are widely used in the automotive industry due to their lightweight nature, durability, recyclability and versatility in shaping. They serve various purposes in the automotive sector, including interior and exterior components, vehicle body parts and insulation. The recycling of thermoplastic polymer materials used in the automotive industry helps reduce waste and mitigate environmental impacts. The aim of this study is to facilitate the recycling of thermoplastic materials used in the automotive industry. Recycled materials, such as sprues and defective parts, are generated from thermoplastic polymer materials used in the automotive sector after the injection process. In this study, the physical, chemical and mechanical properties of the recycled parts obtained from the reprocessing of these materials were determined through various tests. Thermoplastic products (PP and PA) that were recycled after the injection process were processed through a grinding unit and then subjected to a second injection process with physical, chemical and mechanical tests applied to the resulting products. This is a result of the initial grinding process. The same procedures were applied to each thermoplastic material through a series of steps first injection, first grinding, second injection, second grinding, third injection, third grinding, fourth injection and fourth grinding, followed by product testing. Subsequently, the test results of the original raw material's Technical Data Sheet (TDS) were compared with the results obtained from the products after the injection process to determine the raw material based on physical, chemical and mechanical changes. The study included tests for Density, Melt Flow Rate, Tensile Modulus, Tensile Stress, Flexural Modulus (Injection Molded), Charpy Notched Impact Strength, Notched Izod Impact Strength, Shore Hardness, Heat Deflection Temperature, Vicat Softening Temperature and UV tests. Additionally, more specific tests such as Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Heat Aging, FTIR, SEM and TEM analyses were conducted to examine structural changes in thermoplastic materials subjected to multiple recycling processes. In the later stages of the study, injection molding process trials will be conducted with raw materials such as ABS, PC, PC-ABS and PE.Keywords: injection molding, recycling, automotive, polypropylene, thermoplastic
Procedia PDF Downloads 113436 Simulation of Heat Exchanger Behavior during LOCA Accident in THTL Test Loop
Authors: R. Mahmoodi, A. R. Zolfaghari
Abstract:
In nuclear power plants, loss of coolant from the primary system is the type of reduced removed capacity that is given most attention; such an accident is referred as Loss of Coolant Accident (LOCA). In the current study, investigation of shell and tube THTL heat exchanger behavior during LOCA is implemented by ANSYS CFX simulation software in both steady state and transient mode of turbulent fluid flow according to experimental conditions. Numerical results obtained from ANSYS CFX simulation show good agreement with experimental data of THTL heat exchanger. The results illustrate that in large break LOCA as short term accident, heat exchanger could not fast response to temperature variables but in the long term, the temperature of shell side of heat exchanger will be increase.Keywords: shell-and-tube heat exchanger, shell-side, CFD, flow and heat transfer, LOCA
Procedia PDF Downloads 4393435 The Impact of Behavioral Factors on the Decision Making of Real Estate Investor of Pakistan
Authors: Khalid Bashir, Hammad Zahid
Abstract:
Most of the investors consider that economic and financial information is the most important at the time of making investment decisions. But it is not true, as in the past two decades, the Behavioral aspects and the behavioral biases have gained an important place in the decision-making process of an investor. This study is basically conducted on this fact. The purpose of this study is to examine the impact of behavioral factors on the decision-making of the individual real estate investor in Pakistan. Some important behavioral factors like overconfidence, anchoring, gambler’s fallacy, home bias, loss aversion, regret aversion, mental accounting, herding and representativeness are used in this study to find their impact on the psychology of individual investors. The targeted population is the real estate investor of Pakistan, and a sample of 650 investors is selected on the basis of convenience sampling technique. The data is collected through the questionnaire with a response rate of 46.15 %. Descriptive statistical techniques and SEM are used to analyze the data by using statistical software. The results revealed the fact that some behavioral factors have a significant impact on the decision-making of investors. Among all the behavioral biases, overconfidence, anchoring, gambler’s fallacy, loss aversion and representativeness have a significant positive impact on the decision-making of the individual investor, while the rest of biases like home bias, regret aversion, mental accounting, herding have less impact on the decision-making process of an individual.Keywords: behavioral finance, anchoring, gambler’s fallacy, loss aversion
Procedia PDF Downloads 693434 Mechanical Characterization of Banana by Inverse Analysis Method Combined with Indentation Test
Authors: Juan F. P. Ramírez, Jésica A. L. Isaza, Benjamín A. Rojano
Abstract:
This study proposes a novel use of a method to determine the mechanical properties of fruits by the use of the indentation tests. The method combines experimental results with a numerical finite elements model. The results presented correspond to a simplified numerical modeling of banana. The banana was assumed as one-layer material with an isotropic linear elastic mechanical behavior, the Young’s modulus found is 0.3Mpa. The method will be extended to multilayer models in further studies.Keywords: finite element method, fruits, inverse analysis, mechanical properties
Procedia PDF Downloads 3563433 Study on the Morphology and Dynamic Mechanical and Thermal Properties of HIPS/Graphene Nanocomposites
Authors: Amirhosein Rostampour, Mehdi Sharif
Abstract:
In this article, a series of high impact polystyrene/graphene (HIPS/Gr) nanocomposites were prepared by solution mixing method and their morphology and dynamic mechanical properties were investigated as a function of graphene content. SEM images and X-Ray diffraction data confirm that the graphene platelets are well dispersed in HIPS matrix for the nanocomposites with Gr contents up to 5.0 wt%. Mechanical properties analysis demonstrates that yielding strength and initial modulus of HIPS/Gr nanocomposites are highly improved with the increment of Gr content compared to pure HIPS.Keywords: nanocomposite, graphene, dynamic mechanical properties, morphology
Procedia PDF Downloads 5353432 Food Foam Characterization: Rheology, Texture and Microstructure Studies
Authors: Rutuja Upadhyay, Anurag Mehra
Abstract:
Solid food foams/cellular foods are colloidal systems which impart structure, texture and mouthfeel to many food products such as bread, cakes, ice-cream, meringues, etc. Their heterogeneous morphology makes the quantification of structure/mechanical relationships complex. The porous structure of solid food foams is highly influenced by the processing conditions, ingredient composition, and their interactions. Sensory perceptions of food foams are dependent on bubble size, shape, orientation, quantity and distribution and determines the texture of foamed foods. The state and structure of the solid matrix control the deformation behavior of the food, such as elasticity/plasticity or fracture, which in turn has an effect on the force-deformation curves. The obvious step in obtaining the relationship between the mechanical properties and the porous structure is to quantify them simultaneously. Here, we attempt to research food foams such as bread dough, baked bread and steamed rice cakes to determine the link between ingredients and the corresponding effect of each of them on the rheology, microstructure, bubble size and texture of the final product. Dynamic rheometry (SAOS), confocal laser scanning microscopy, flatbed scanning, image analysis and texture profile analysis (TPA) has been used to characterize the foods studied. In all the above systems, there was a common observation that when the mean bubble diameter is smaller, the product becomes harder as evidenced by the increase in storage and loss modulus (G′, G″), whereas when the mean bubble diameter is large the product is softer with decrease in moduli values (G′, G″). Also, the bubble size distribution affects texture of foods. It was found that bread doughs with hydrocolloids (xanthan gum, alginate) aid a more uniform bubble size distribution. Bread baking experiments were done to study the rheological changes and mechanisms involved in the structural transition of dough to crumb. Steamed rice cakes with xanthan gum (XG) addition at 0.1% concentration resulted in lower hardness with a narrower pore size distribution and larger mean pore diameter. Thus, control of bubble size could be an important parameter defining final food texture.Keywords: food foams, rheology, microstructure, texture
Procedia PDF Downloads 3323431 Determination of Frequency Relay Setting during Distributed Generators Islanding
Authors: Tarek Kandil, Ameen Ali
Abstract:
Distributed generation (DG) has recently gained a lot of momentum in power industry due to market deregulation and environmental concerns. One of the most technical challenges facing DGs is islanding of distributed generators. The current industry practice is to disconnect all distributed generators immediately after the occurrence of islands within 200 to 350 ms after loss of main supply. To achieve such goal, each DG must be equipped with an islanding detection device. Frequency relays are one of the most commonly used loss of mains detection method. However, distribution utilities may be faced with concerns related to false operation of these frequency relays due to improper settings. The commercially available frequency relays are considering standard tight setting. This paper investigates some factors related to relays internal algorithm that contribute to their different operating responses. Further, the relay operation in the presence of multiple distributed at the same network is analyzed. Finally, the relay setting can be accurately determined based on these investigation and analysis.Keywords: frequency relay, distributed generation, islanding detection, relay setting
Procedia PDF Downloads 5323430 Rare Diagnosis in Emergency Room: Moyamoya Disease
Authors: Ecem Deniz Kırkpantur, Ozge Ecmel Onur, Tuba Cimilli Ozturk, Ebru Unal Akoglu
Abstract:
Moyamoya disease is a unique chronic progressive cerebrovascular disease characterized by bilateral stenosis or occlusion of the arteries around the circle of Willis with prominent arterial collateral circulation. The occurrence of Moyamoya disease is related to immune, genetic and other factors. There is no curative treatment for Moyamoya disease. Secondary prevention for patients with symptomatic Moyamoya disease is largely centered on surgical revascularization techniques. We present here a 62-year old male presented with headache and vision loss for 2 days. He was previously diagnosed with hypertension and glaucoma. On physical examination, left eye movements were restricted medially, both eyes were hyperemic and their movements were painful. Other neurological and physical examination were normal. His vital signs and laboratory results were within normal limits. Computed tomography (CT) showed dilated vascular structures around both lateral ventricles and atherosclerotic changes inside the walls of internal carotid artery (ICA). Magnetic resonance imaging (MRI) and angiography (MRA) revealed dilated venous vascular structures around lateral ventricles and hyper-intense gliosis in periventricular white matter. Ischemic gliosis around the lateral ventricles were present in the Digital Subtracted Angiography (DSA). After the neurology, ophthalmology and neurosurgery consultation, the patient was diagnosed with Moyamoya disease, pulse steroid therapy was started for vision loss, and super-selective DSA was planned for further investigation. Moyamoya disease is a rare condition, but it can be an important cause of stroke in both children and adults. It generally affects anterior circulation, but posterior cerebral circulation may also be affected, as well. In the differential diagnosis of acute vision loss, occipital stroke related to Moyamoya disease should be considered. Direct and indirect surgical revascularization surgeries may be used to effectively revascularize affected brain areas, and have been shown to reduce risk of stroke.Keywords: headache, Moyamoya disease, stroke, visual loss
Procedia PDF Downloads 2663429 Effect of Welding Parameters on Penetration and Bead Width for Variable Plate Thickness in Submerged Arc Welding
Authors: Harish K. Arya, Kulwant Singh, R. K. Saxena
Abstract:
The heat flow in weldment changes its nature from 2D to 3D with the increase in plate thickness. For welding of thicker plates the heat loss in thickness direction increases the cooling rate of plate. Since the cooling rate changes, the various bead parameters like bead penetration, bead height and bead width also got affected by it. The present study incorporates the effect of variable plate thickness on penetration and bead width. The penetration reduces with increase in plate thickness due to heat loss in thickness direction for same heat input, while bead width increases for thicker plate due to faster cooling.Keywords: submerged arc welding, plate thickness, bead geometry, cooling rate
Procedia PDF Downloads 3303428 Interaction between the Main Crack and Dislocation in the Glass Material
Authors: A. Mezzidi, H. Hamli Benzahar
Abstract:
The present study evaluates the stress and stress intensity factor during the propagation of a crack at presence of a dislocation near of crack tip. The problem is formulated using a glass material having an equivalent elasticity modulus and a Poisson ratio. In this research work, the proposed material is a plate form with a main crack in one of these ends and a dislocation near this crack, subjected to tensile stresses according to the mode 1 opening. For each distance between the two cracks, we can determine these stresses. This study is treated by finite elements method by using the software (ABAQUS) rate. It is shown here in that obtained results agreed with those determined by other researchersKeywords: crack, dislocation, finite element, glass
Procedia PDF Downloads 3723427 Flexural Properties of Carbon/Polypropylene Composites: Influence of Matrix Forming Polypropylene in Fiber, Powder, and Film States
Authors: Vijay Goud, Ramasamy Alagirusamy, Apurba Das, Dinesh Kalyanasundaram
Abstract:
Thermoplastic composites render new opportunities as effective processing technology while crafting newer complications into processing. One of the notable challenges is in achieving thorough wettability that is significantly deterred by the high viscosity of the long molecular chains of the thermoplastics. As a result of high viscosity, it is very difficult to impregnate the resin into a tightly interlaced textile structure to fill the voids present in the structure. One potential solution to the above problem, is to pre-deposit resin on the fiber, prior to consolidation. The current study compares DREF spinning, powder coating and film stacking methods of predeposition of resin onto fibers. An investigation into the flexural properties of unidirectional composites (UDC) produced from blending of carbon fiber and polypropylene (PP) matrix in varying forms of fiber, powder and film are reported. Dr. Ernst Fehrer (DREF) yarns or friction spun hybrid yarns were manufactured from PP fibers and carbon tows. The DREF yarns were consolidated to yield unidirectional composites (UDCs) referred to as UDC-D. PP in the form of powder was coated on carbon tows by electrostatic spray coating. The powder-coated towpregs were consolidated to form UDC-P. For the sake of comparison, a third UDC referred as UDC-F was manufactured by the consolidation of PP films stacked between carbon tows. The experiments were designed to yield a matching fiber volume fraction of about 50 % in all the three UDCs. A comparison of mechanical properties of the three composites was studied to understand the efficiency of matrix wetting and impregnation. Approximately 19% and 68% higher flexural strength were obtained for UDC-P than UDC-D and UDC-F respectively. Similarly, 25% and 81% higher modulus were observed in UDC-P than UDC-D and UDC-F respectively. Results from micro-computed tomography, scanning electron microscopy, and short beam tests indicate better impregnation of PP matrix in UDC-P obtained through electrostatic spray coating process and thereby higher flexural strength and modulus.Keywords: DREF spinning, film stacking, flexural strength, powder coating, thermoplastic composite
Procedia PDF Downloads 2213426 One-Stage Conversion of Adjustable Gastric Band to One-Anastomosis Gastric Bypass Versus Sleeve Gastrectomy : A Single-Center Experience With a Short and Mid-term Follow-up
Authors: Basma Hussein Abdelaziz Hassan, Kareem Kamel, Philobater Bahgat Adly Awad, Karim Fahmy
Abstract:
Background: Laparoscopic adjustable gastric band was one of the most applied and common bariatric procedures in the last 8 years. However; the failure rate was very high, reaching approximately 60% of the patients not achieving the desired weight loss. Most patients sought another revisional surgery. In which, we compared two of the most common weight loss surgeries performed nowadays: the laparoscopic sleeve gastrectomy and laparoscopic one- anastomosis gastric bypass. Objective: To compare the weight loss and postoperative outcomes among patients undergoing conversion laparoscopic one-anastomosis gastric bypass (cOAGB) and laparoscopic sleeve gastrectomy (cSG) after a failed laparoscopic adjustable gastric band (LAGB). Patients and Methods: A prospective cohort study was conducted from June 2020 to June 2022 at a single medical center, which included 77 patients undergoing single-stage conversion to (cOAGB) vs (cSG). Patients were reassessed for weight loss, comorbidities remission, and post-operative complications at 6, 12, and 18 months. Results: There were 77 patients with failed LAGB in our study. Group (I) was 43 patients who underwent cOAGB and Group (II) was 34 patients who underwent cSG. The mean age of the cOAGB group was 38.58. While in the cSG group, the mean age was 39.47 (p=0.389). Of the 77 patients, 10 (12.99%) were males and 67 (87.01%) were females. Regarding Body mass index (BMI), in the cOAGB group the mean BMI was 41.06 and in the cSG group the mean BMI was 40.5 (p=0.042). The two groups were compared postoperative in relation to EBWL%, BMI, and the co-morbidities remission within 18 months follow-up. The BMI was calculated post-operative at three visits. After 6 months of follow-up, the mean BMI in the cOAGB group was 34.34, and the cSG group was 35.47 (p=0.229). In 12-month follow-up, the mean BMI in the cOAGB group was 32.69 and the cSG group was 33.79 (p=0.2). Finally, the mean BMI after 18 months of follow-up in the cOAGB group was 30.02, and in the cSG group was 31.79 (p=0.001). Both groups had no statistically significant values at 6 and 12 months follow-up with p-values of 0.229, and 0.2 respectively. However, patients who underwent cOAGB after 18 months of follow-up achieved lower BMI than those who underwent cSG with a statistically significant p-value of 0.005. Regarding EBWL% there was a statistically significant difference between the two groups. After 6 months of follow-up, the mean EBWL% in the cOAGB group was 35.9% and the cSG group was 33.14%. In the 12-month follow-up, the EBWL % mean in the cOAGB group was 52.35 and the cSG group was 48.76 (p=0.045). Finally, the mean EBWL % after 18 months of follow-up in the cOAGB group was 62.06 ±8.68 and in the cSG group was 55.58 ±10.87 (p=0.005). Regarding comorbidities remission; Diabetes mellitus remission was found in 22 (88%) patients in the cOAGB group and 10 (71.4%) patients in the cSG group with (p= 0.225). Hypertension remission was found in 20 (80%) patients in the cOAGB group and 14 (82.4%) patients in the cSG group with (p=1). In addition, dyslipidemia remission was found in 27(87%) patients in cOAGB group and 17(70%) patients in the cSG group with (p=0.18). Finally, GERD remission was found in about 15 (88.2%) patients in the cOAGB group and 6 (60%) patients in the cSG group with (p=0.47). There are no statistically significant differences between the two groups in the post-operative data outcomes. Conclusion: This study suggests that the conversion of LAGB to either cOAGB or cSG could be feasibly performed in a single-stage operation. cOAGB had a significant difference as regards the weight loss results than cSG among the mid-term follow-up. However, there is no significant difference in the postoperative complications and the resolution of the co-morbidities. Therefore, cOAGB could provide a reliable alternative but needs to be substantiated in future long-term studies.Keywords: laparoscopic, gastric banding, one-anastomosis gastric bypass, Sleeve gastrectomy, revisional surgery, weight loss
Procedia PDF Downloads 583425 Effects of Adding Gypsum in Agricultural Land on Mitigating Splash Erosion on Sandy Loam and Loam Soil Textures, Afghanistan
Authors: Abdul Malik Dawlatzai, Shafiqullah Rahmani
Abstract:
Splash erosion in field has affected by factors; slope, rain intensity, soil properties, and plant cover. And also, soil erosion affects not only farmland productivity but also water quality downstream. There are a number of potential soil conservation practices, but many of these are complicated and relatively expensive, such as buffer strips, agro-forestry, counter banking, catchment canal, terracing, surface mulching, reduced tillage, etc. However, mitigation soil and water loss in agricultural land, particularly in arid and semi-arid climatic conditions, is indispensable for environmental protection and agricultural production. The objective of this study is to evaluate the effects of adding gypsum mineral on mitigating splash erosion caused by rain drop. The research was conducted in soil laboratory Badam Bagh Agricultural Researching Farm, Kabul, Afghanistan. The stainless steel cores were used, and constant water pressure was controlled by a Mariotte’s bottle with kinetic energy of raindrops 2.36 x 10⁻⁵J. Gypsum mineral was applied at a rate of 5 and 10 t ha⁻¹ and using a sandy loam and loam soil textures. The result was showed an average soil loss from sandy loam soil texture; control was 8.22%, 4.31% and 4.06% similar from loam soil texture, control was 7.26%, 2.89%, and 2.72% respectively. The application of gypsum mineral significantly (P < 0.05) reduced dispersion of soil particles caused by the impact of raindrops compared to control. Therefore, it was concluded that the addition of gypsum was effective as a measure for mitigating splash erosion.Keywords: gypsum, soil loss, splash erosion, Afghanistan
Procedia PDF Downloads 129