Search results for: lateral reinforcement
783 Optimal Design of Profiled Steel Sheet for Composite Slab
Authors: Adinew Gebremeskel Tizazu
Abstract:
Nowadays, in our world of technological development, there is an enhanced intention imposed on the building construction industry to improve the time, economy, and structural efficiency of structures. Modern profiled steel sheets are mostly designed as formwork and tensile reinforcement. This research is concerned with the optimal design of profiled steel sheets for composite slabs. Apart from satisfying the safety requirement, the design should be economical. For a given condition, there might be a large number of alternatives that satisfy the requirement set by the codes. But the designer must be in a position to choose the design, which is optimal against certain measures of optimality. Therefore, the designers have to do some optimization to arrive at such a design. In this research, the optimal cross-sectional dimensions of profiled steel sheets will be determined by considering different spans, loadings, and materials.Keywords: profiled sheeting, optimal cross-sectional dimensions, cold-formed profiled sheets, composite slab
Procedia PDF Downloads 21782 Synthesis, Characterization, and Glass Fiber Reinforcement of Furan-Maleimide Polyimides
Authors: Yogesh S. Patel
Abstract:
Novel polyimides were synthesized by Diels–Alder polymerization. Bisfuran was reacted with a couple of bismaleimides containing diglycidyl ether of bisphenol-A and F (epoxy) segment to obtain Diels–Alder polyadducts. Polyadducts were then aromatized and imidized (i.e. cyclized) through carboxylic and amide groups to afford polyimides. Synthesized polyadducts and polyimides were characterized by elemental analysis, spectral features, the number of average molecular weight (Mn) and thermal analysis. The ‘in situ’ glass fiber reinforced composites were prepared and characterized by mechanical, electrical, and chemical properties. These properties were compared with the other reported polyimides. All the composites showed good mechanical and electrical properties and good resistance to organic solvents and mineral acids.Keywords: Diels-Alder reaction, bisfuran, bismaleimides, polyimide
Procedia PDF Downloads 371781 Numerical Analysis of Reinforced Embankment on Algeria Sabkha Subgrade
Authors: N. Benmebarek, F. Berrabah, S. Benmebarek
Abstract:
This paper is interested by numerical analysis using PLAXIS code of geosynthetic reinforced embankment crossing a section about 11 km on sabkha soil of Chott El Hodna in Algeria. The site observations indicated that the surface soil of this sabkha is very sensitive to moisture and complicated by the presence of locally weak zones. Therefore, serious difficulties were encountered during building the first embankment layer. This paper focuses on the use of geosynthetic to mitigate the difficulty encountered. Due to the absence of an accepted design methods, parametric studies are carried out to assess the effect of basal embankment reinforcement on both the bearing capacity and compaction conditions. The results showed the contribution conditions of geosynthetics to improve the bearing capacity of sabkha soil.Keywords: reinforced embankment, numerical modelling, geosynthetics, weak bearing capacity
Procedia PDF Downloads 296780 Evolution of Microstructure through Phase Separation via Spinodal Decomposition in Spinel Ferrite Thin Films
Authors: Nipa Debnath, Harinarayan Das, Takahiko Kawaguchi, Naonori Sakamoto, Kazuo Shinozaki, Hisao Suzuki, Naoki Wakiya
Abstract:
Nowadays spinel ferrite magnetic thin films have drawn considerable attention due to their interesting magnetic and electrical properties with enhanced chemical and thermal stability. Spinel ferrite magnetic films can be implemented in magnetic data storage, sensors, and spin filters or microwave devices. It is well established that the structural, magnetic and transport properties of the magnetic thin films are dependent on microstructure. Spinodal decomposition (SD) is a phase separation process, whereby a material system is spontaneously separated into two phases with distinct compositions. The periodic microstructure is the characteristic feature of SD. Thus, SD can be exploited to control the microstructure at the nanoscale level. In bulk spinel ferrites having general formula, MₓFe₃₋ₓ O₄ (M= Co, Mn, Ni, Zn), phase separation via SD has been reported only for cobalt ferrite (CFO); however, long time post-annealing is required to occur the spinodal decomposition. We have found that SD occurs in CoF thin film without using any post-deposition annealing process if we apply magnetic field during thin film growth. Dynamic Aurora pulsed laser deposition (PLD) is a specially designed PLD system through which in-situ magnetic field (up to 2000 G) can be applied during thin film growth. The in-situ magnetic field suppresses the recombination of ions in the plume. In addition, the peak’s intensity of the ions in the spectra of the plume also increases when magnetic field is applied to the plume. As a result, ions with high kinetic energy strike into the substrate. Thus, ion-impingement occurred under magnetic field during thin film growth. The driving force of SD is the ion-impingement towards the substrates that is induced by in-situ magnetic field. In this study, we report about the occurrence of phase separation through SD and evolution of microstructure after phase separation in spinel ferrite thin films. The surface morphology of the phase separated films show checkerboard like domain structure. The cross-sectional microstructure of the phase separated films reveal columnar type phase separation. Herein, the decomposition wave propagates in lateral direction which has been confirmed from the lateral composition modulations in spinodally decomposed films. Large magnetic anisotropy has been found in spinodally decomposed nickel ferrite (NFO) thin films. This approach approves that magnetic field is also an important thermodynamic parameter to induce phase separation by the enhancement of up-hill diffusion in thin films. This thin film deposition technique could be a more efficient alternative for the fabrication of self-organized phase separated thin films and employed in controlling of the microstructure at nanoscale level.Keywords: Dynamic Aurora PLD, magnetic anisotropy, spinodal decomposition, spinel ferrite thin film
Procedia PDF Downloads 365779 Effect of Two Types of Shoe Insole on the Dynamics of Lower Extremities Joints in Individuals with Leg Length Discrepancy during Stance Phase of Walking
Authors: Mansour Eslami, Fereshte Habibi
Abstract:
Limb length discrepancy (LLD), or anisomeric, is defined as a condition in which paired limbs are noticeably unequal. Individuals with LLD during walking use compensatory mechanisms to dynamically lengthen the short limb and shorten the long limb to minimize the displacement of the body center of mass and consequently reduce body energy expenditure. Due to the compensatory movements created, LLD greater than 1 cm increases the odds of creating lumbar problems and hip and knee osteoarthritis. Insoles are non-surgical therapies that are recommended to improve the walking pattern, pain and create greater symmetry between the two lower limbs. However, it is not yet clear what effect insoles have on the variables related to injuries during walking. The aim of the present study was to evaluate the effect of internal and external heel lift insoles on pelvic kinematic in sagittal and frontal planes and lower extremity joint moments in individuals with mild leg length discrepancy during the stance phase of walking. Biomechanical data of twenty-eight men with structural leg length discrepancy of 10-25 mm were collected while they walked under three conditions: shoes without insole (SH), with internal heel lift insoles (IHLI) in shoes, and with external heal lift insole (EHLI). The tests were performed for both short and long legs. The pelvic kinematic and joint moment were measured with a motion capture system and force plate. Five walking trials were performed for each condition. The average value of five successful trials was used for further statistical analysis. Repeated measures ANCOVA with Bonferroni post hoc test were used for between-group comparisons (p ≤ 0.05). In both internal and external heel lift insoles (IHLI, EHLI), there was a significant decrease in the peak values of lateral and anterior pelvic tilts of the long leg, hip, and knee moments of a long leg and ankle moment of short leg (p ≤ 0.05). Furthermore, significant increases in peak values of lateral and anterior pelvic tilt of short leg in IHLI and EHLI were observed as compared to Shoe (SH) condition (p ≤ 0.01). In addition, a significant difference was observed between the IHLI and EHLI conditions in peak anterior pelvic tilt of long leg and plantar flexor moment of short leg (p=0.04; p= 0.04 respectively). Our findings indicate that both IHLI and EHLI can play an important role in controlling excessive pelvic movements in the sagittal and frontal planes in individuals with mild LLD during walking. Furthermore, the EHLI may have a better effect in preventing musculoskeletal injuries compared to the IHLI.Keywords: kinematic, leg length discrepancy, shoe insole, walking
Procedia PDF Downloads 116778 Assessment of Breast, Lung and Liver Effective Doses in Heart Imaging by CT-Scan 128 Dual Sources with Use of TLD-100 in RANDO Phantom
Authors: Seyedeh Sepideh Amini, Navideh Aghaei Amirkhizi, Seyedeh Paniz Amini, Seyed Soheil Sayyahi, Mohammad Reza Davar Panah
Abstract:
CT-Scan is one of the lateral and sectional imaging methods that produce 3D-images with use of rotational x-ray tube around central axis. This study is about evaluation and calculation of effective doses around heart organs such as breast, lung and liver with CT-Scan 128 dual sources with TLD_100 and RANDO Phantom by spiral, flash and conventional protocols. In results, it is showed that in spiral protocol organs have maximum effective dose and minimum in flash protocol. Thus flash protocol advised for children and risk persons.Keywords: X-ray computed tomography, dosimetry, TLD-100, RANDO, phantom
Procedia PDF Downloads 473777 Design of a Sliding Controller for Optical Disk Drives
Authors: Yu-Sheng Lu, Chung-Hsin Cheng, Shuen-Shing Jan
Abstract:
This paper presents the design and implementation of a sliding-mod controller for tracking servo of optical disk drives. The tracking servo is majorly subject to two disturbance sources: radial run-out and shock. The lateral run-out disturbance is mostly repeatable, and a model of such disturbance is incorporated into the controller design to effectively compensate for it. Meanwhile, as a shock disturbance is usually non-repeatable and unpredictable, the sliding-mode controller is employed for its robustness to abrupt perturbations. As a result, a sliding-mode controller design based on the internal model principle is tailored for tracking servo of optical disk drives in order to deal with these two major disturbances. Experimental comparative studies are conducted to investigate the effectiveness of the specially designed controller.Keywords: mechatronics, optical disk drive, sliding-mode control, servo systems
Procedia PDF Downloads 379776 Evaluation of River Meander Geometry Using Uniform Excess Energy Theory and Effects of Climate Change on River Meandering
Authors: Youssef I. Hafez
Abstract:
Since ancient history rivers have been the fostering and favorite place for people and civilizations to live and exist along river banks. However, due to floods and droughts, especially sever conditions due to global warming and climate change, river channels are completely evolving and moving in the lateral direction changing their plan form either through straightening of curved reaches (meander cut-off) or increasing meandering curvature. The lateral shift or shrink of a river channel affects severely the river banks and the flood plain with tremendous impact on the surrounding environment. Therefore, understanding the formation and the continual processes of river channel meandering is of paramount importance. So far, in spite of the huge number of publications about river-meandering, there has not been a satisfactory theory or approach that provides a clear explanation of the formation of river meanders and the mechanics of their associated geometries. In particular two parameters are often needed to describe meander geometry. The first one is a scale parameter such as the meander arc length. The second is a shape parameter such as the maximum angle a meander path makes with the channel mean down path direction. These two parameters, if known, can determine the meander path and geometry as for example when they are incorporated in the well known sine-generated curve. In this study, a uniform excess energy theory is used to illustrate the origin and mechanics of formation of river meandering. This theory advocates that the longitudinal imbalance between the valley and channel slopes (with the former is greater than the second) leads to formation of curved meander channel in order to reduce the excess energy through its expenditure as transverse energy loss. Two relations are developed based on this theory; one for the determination of river channel radius of curvature at the bend apex (shape parameter) and the other for the determination of river channel sinuosity. The sinuosity equation tested very well when applied to existing available field data. In addition, existing model data were used to develop a relation between the meander arc length and the Darcy-Weisback friction factor. Then, the meander wave length was determined from the equations of the arc length and the sinuosity. The developed equation compared well with available field data. Effects of the transverse bed slope and grain size on river channel sinuosity are addressed. In addition, the concept of maximum channel sinuosity is introduced in order to explain the changes of river channel plan form due to changes in flow discharges and sediment loads induced by global warming and climate changes.Keywords: river channel meandering, sinuosity, radius of curvature, meander arc length, uniform excess energy theory, transverse energy loss, transverse bed slope, flow discharges, sediment loads, grain size, climate change, global warming
Procedia PDF Downloads 223775 Efficient Moment Frame Structure
Authors: Mircea I. Pastrav, Cornelia Baera, Florea Dinu
Abstract:
A different concept for designing and detailing of reinforced concrete precast frame structures is analyzed in this paper. The new detailing of the joints derives from the special hybrid moment frame joints. The special reinforcements of this alternative detailing, named modified special hybrid joint, are bondless with respect to both column and beams. Full scale tests were performed on a plan model, which represents a part of 5 story structure, cropped in the middle of the beams and columns spans. Theoretical approach was developed, based on testing results on twice repaired model, subjected to lateral seismic type loading. Discussion regarding the modified special hybrid joint behavior and further on widening research needed concludes the presentation.Keywords: modified hybrid joint, repair, seismic loading type, acceptance criteria
Procedia PDF Downloads 521774 Simulation Model of Biosensor Based on Gold Nanoparticles
Authors: Kholod Hajo
Abstract:
In this study COMSOL Multiphysics was used to design lateral flow biosensors (LFBs) which provide advantages in low cost, simplicity, rapidity, stability and portability thus making LFBs popular in biomedical, agriculture, food and environmental sciences. This study was focused on simulation model of biosensor based on gold nanoparticles (GNPs) designed using software package (COMSOL Multiphysics), the magnitude of the laminar velocity field in the flow cell, concentration distribution in the analyte stream and surface coverage of adsorbed species and average fractional surface coverage of adsorbed analyte were discussed from the model and couples of suggestion was given in order to functionalize GNPs and to increase the accuracy of the biosensor design, all above were obtained acceptable results.Keywords: model, gold nanoparticles, biosensor, COMSOL Multiphysics
Procedia PDF Downloads 255773 Bending Moment of Flexible Batter Pile in Sands under Horizontal Loads
Authors: Fabian J. Manoppo, Dody M. J. Sumayouw
Abstract:
The bending moment of a single free head model flexible batter piles in sand under horizontal loads is investigated. The theoretical estimate of the magnitude maximum bending moment for the piles was considering a vertical rigid pile under an inclined load and using semi-empirical relations. The length of the equivalent rigid pile was based on the relative stiffness factor of the pile. Model tests were carried out using instrumented piles of wide-ranging flexibilities. The piles were buried in loose sand at batter angles of β=±150, β=±300 and were applied to incrementally increasing lateral loads. The pile capacities and the variation of bending moment along the pile shaft were measured. The new coefficient of 0.5 was proposed to estimate the bending moment of a flexible batter pile in the sand under horizontal.Keywords: batter pile, bending moment, sand, horizontal loads
Procedia PDF Downloads 21772 Analytical Model for Columns in Existing Reinforced Concrete Buildings
Authors: Chang Seok Lee, Sang Whan Han, Girbo Ko, Debbie Kim
Abstract:
Existing reinforced concrete structures are designed and built without considering seismic loads. The columns in such buildings generally exhibit widely spaced transverse reinforcements without using seismic hooks. Due to the insufficient reinforcement details in columns, brittle shear failure is expected in columns that may cause pre-mature building collapse mechanism during earthquakes. In order to retrofit those columns, the accurate seismic behavior of the columns needs to be predicted with proper analytical models. In this study, an analytical model is proposed for accurately simulating the cyclic behavior of shear critical columns. The parameters for pinching and cyclic deterioration in strength and stiffness are calibrated using test data of column specimens failed by shear.Keywords: analytical model, cyclic deterioration, existing reinforced concrete columns, shear failure
Procedia PDF Downloads 263771 Glass and Polypropylene Combinations for Thermoplastic Preforms
Authors: Hireni Mankodi
Abstract:
The textile preforms for thermoplastic composite play a key role in providing the mechanical properties and gives the idea about preparing combination of yarn from Glass, Basalt, Carbon as reinforcement and PP, PET, Nylon as thermoplastic matrix at yarn stage for preforms to improve the quality and performance of laminates. The main objectives of this work are to develop the hybrid yarn using different yarn manufacturing process and prepare different performs using hybrid yarns. It has been observed that the glass/pp combination give homogeneous distribution in yarn. The proportion varied to optimize the glass/pp composition. The different preform has been prepared with combination of hybrid yarn, PP, glass combination. Further studies will investigate the effect of glass content in fabric, effect of weave, warps and filling density, number of layer plays significant role in deciding mechanical properties of thermoplastic laminates.Keywords: thermoplastic, preform, laminates, hybrid yarn, glass
Procedia PDF Downloads 578770 Investigation of Building Pounding during Earthquake and Calculation of Impact Force between Two Adjacent Structures
Authors: H. Naderpour, R. C. Barros, S. M. Khatami
Abstract:
Seismic excitation is naturally caused large horizontal relative displacements, which is able to provide collisions between two adjacent buildings due to insufficient separation distance and severe damages are occurred due to impact especially in tall buildings. In this paper, an impact is numerically simulated and two needed parameters are calculated, including impact force and energy absorption. In order to calculate mentioned parameters, mathematical study needs to model an unreal link element, which is logically assumed to be spring and dashpot to determine lateral displacement and damping ratio of impact. For the determination of dynamic response of impact, a new equation of motion is theoretically suggested to evaluate impact force and energy dissipation. In order to confirm the rendered equation, a series of parametric study are performed and the accuracy of formula is confirmed.Keywords: pounding, impact, dissipated energy, coefficient of restitution
Procedia PDF Downloads 356769 Investigation on the Behavior of Conventional Reinforced Coupling Beams
Authors: Akash K. Walunj, Dipendu Bhunia, Samarth Gupta, Prabhat Gupta
Abstract:
Coupled shear walls consist of two shear walls connected intermittently by beams along the height. The behavior of coupled shear walls is mainly governed by the coupling beams. The coupling beams are designed for ductile inelastic behavior in order to dissipate energy. The base of the shear walls may be designed for elastic or ductile inelastic behavior. The amount of energy dissipation depends on the yield moment capacity and plastic rotation capacity of the coupling beams. In this paper, an analytical model of coupling beam was developed to calculate the rotations and moment capacities of coupling beam with conventional reinforcement.Keywords: design studies, computational model(s), case study/studies, modelling, coupling beam
Procedia PDF Downloads 474768 Numerical Investigation on the Effects of Deep Excavation on Adjacent Pile Groups Subjected to Inclined Loading
Authors: Ashkan Shafee, Ahmad Fahimifar
Abstract:
There is a growing demand for construction of high-rise buildings and infrastructures in large cities, which sometimes require deep excavations in the vicinity of pile foundations. In this study, a two-dimensional finite element analysis is used to gain insight into the response of pile groups adjacent to deep excavations in sand. The numerical code was verified by available experimental works, and a parametric study was performed on different working load combinations, excavation depth and supporting system. The results show that the simple two-dimensional plane strain model can accurately simulate the excavation induced changes on adjacent pile groups. It was found that further excavation than pile toe level and also inclined loading on adjacent pile group can severely affect the serviceability of the foundation.Keywords: deep excavation, inclined loading, lateral deformation, pile group
Procedia PDF Downloads 272767 Design of Nano-Reinforced Carbon Fiber Reinforced Plastic Wheel for Lightweight Vehicles with Integrated Electrical Hub Motor
Authors: Davide Cocchi, Andrea Zucchelli, Luca Raimondi, Maria Brugo Tommaso
Abstract:
The increasing attention is given to the issues of environmental pollution and climate change is exponentially stimulating the development of electrically propelled vehicles powered by renewable energy, in particular, the solar one. Given the small amount of solar energy that can be stored and subsequently transformed into propulsive energy, it is necessary to develop vehicles with high mechanical, electrical and aerodynamic efficiencies along with reduced masses. The reduction of the masses is of fundamental relevance especially for the unsprung masses, that is the assembly of those elements that do not undergo a variation of their distance from the ground (wheel, suspension system, hub, upright, braking system). Therefore, the reduction of unsprung masses is fundamental in decreasing the rolling inertia and improving the drivability, comfort, and performance of the vehicle. This principle applies even more in solar propelled vehicles, equipped with an electric motor that is connected directly to the wheel hub. In this solution, the electric motor is integrated inside the wheel. Since the electric motor is part of the unsprung masses, the development of compact and lightweight solutions is of fundamental importance. The purpose of this research is the design development and optimization of a CFRP 16 wheel hub motor for solar propulsion vehicles that can carry up to four people. In addition to trying to maximize aspects of primary importance such as mass, strength, and stiffness, other innovative constructive aspects were explored. One of the main objectives has been to achieve a high geometric packing in order to ensure a reduced lateral dimension, without reducing the power exerted by the electric motor. In the final solution, it was possible to realize a wheel hub motor assembly completely comprised inside the rim width, for a total lateral overall dimension of less than 100 mm. This result was achieved by developing an innovative connection system between the wheel and the rotor with a double purpose: centering and transmission of the driving torque. This solution with appropriate interlocking noses allows the transfer of high torques and at the same time guarantees both the centering and the necessary stiffness of the transmission system. Moreover, to avoid delamination in critical areas, evaluated by means of FEM analysis using 3D Hashin damage criteria, electrospun nanofibrous mats have been interleaved between CFRP critical layers. In order to reduce rolling resistance, the rim has been designed to withstand high inflation pressure. Laboratory tests have been performed on the rim using the Digital Image Correlation technique (DIC). The wheel has been tested for fatigue bending according to E/ECE/324 R124e.Keywords: composite laminate, delamination, DIC, lightweight vehicle, motor hub wheel, nanofiber
Procedia PDF Downloads 212766 Evolution of Cord Absorbed Dose during Larynx Cancer Radiotherapy, with 3D Treatment Planning and Tissue Equivalent Phantom
Authors: Mohammad Hassan Heidari, Amir Hossein Goodarzi, Majid Azarniush
Abstract:
Radiation doses to tissues and organs were measured using the anthropomorphic phantom as an equivalent to the human body. When high-energy X-rays are externally applied to treat laryngeal cancer, the absorbed dose at the laryngeal lumen is lower than given dose because of air space which it should pass through before reaching the lesion. Specially in case of high-energy X-rays, the loss of dose is considerable. Three-dimensional absorbed dose distributions have been computed for high-energy photon radiation therapy of laryngeal and hypo pharyngeal cancers, using a coaxial pair of opposing lateral beams in fixed positions. Treatment plans obtained under various conditions of irradiation.Keywords: 3D treatment planning, anthropomorphic phantom, larynx cancer, radiotherapy
Procedia PDF Downloads 546765 Outputs from the Implementation of 'PHILOS' Programme: Emergency Health Response to Refugee Crisis, Greece, 2017
Authors: K. Mellou, G. Anastopoulos, T. Zakinthinos, C. Botsi, A. Terzidis
Abstract:
‘PHILOS – Emergency health response to refugee crisis’ is a programme of the Greek Ministry of Health, implemented by the Hellenic Center for Disease Control and Prevention (HCDCP). The programme is funded by the Asylum, Migration and Integration Fund (AMIF) of EU’s DG Migration and Home Affairs. With the EU Member States accepting, the last period, accelerating migration flows, Greece inevitably occupies a prominent position in the migratory map due to this geographical location. The main objectives of the programme are a) reinforcement of the capacity of the public health system and enhancement of the epidemiological surveillance in order to cover refugees/migrant population, b) provision of on-site primary health care and psychological support services, and c) strengthening of national health care system task-force. The basic methods for achieving the aforementioned goals are: a) implementation of syndromic surveillance system at camps and enhancement of public health response with the use of mobile medical units (Sub-action A), b) enhancement of health care services inside the camps via increasing human resources and implementing standard operating procedures (Sub-action B), and c) reinforcement of the national health care system (primary healthcare units, hospitals, and emergency care spots) of affected regions with personnel (Sub-action C). As a result, 58 health professionals were recruited under sub-action 2 and 10 mobile unit teams (one or two at each health region) were formed. The main actions taken so far by the mobile units are the evaluation, of syndromic surveillance, of living conditions at camps and medical services. Also, vaccination coverage of children population was assessed, and more than 600 catch-up vaccinations were performed by the end of June 2017. Mobile units supported transportation of refugees/migrants from camps to medical services reducing the load of the National Center for Emergency Care (more than 350 transportations performed). The total number of health professionals (MD, nurses, etc.) placed at camps was 104. Common practices were implemented in the recording and collection of psychological and medical history forms at the camps. Protocols regarding maternity care, gender based violence and handling of violent incidents were produced and distributed at personnel working at camps. Finally, 290 health care professionals were placed at primary healthcare units, public hospitals and the National Center for Emergency Care at affected regions. The program has, also, supported training activities inside the camps and resulted to better coordination of offered services on site.Keywords: migrants, refugees, public health, syndromic surveillance, national health care system, primary care, emergency health response
Procedia PDF Downloads 206764 Behavior of a Vertical Pile under the Effect of an Inclined Load
Authors: Fathi Mohamed Abdrabbo, Khaled Elsayed Gaaver, Musab Musa Eldooma
Abstract:
This paper presents an attempt made to investigate the behavior of a single vertical steel hollow pile embedded in sand subjected to compressive inclined load at various inclination angles α through FEM package MIDAS GTS/NX 2019. The effect of the inclination angle and slenderness ratio on the performance of the pile was investigated. Inclined load caring capacity and pile stiffness, as well as lateral deformation profiles along with the pile, were presented. The global, vertical, and horizontal load displacements, as well as the deformation profiles along with the pile and the pile stiffness, are significantly affected by α. Whereas P-Y curves of the pile are independent of α., also the slenderness ratios are markedly affecting the behavior of the pile. In addition, there was a noticeable effect of the horizontal component on the vertical behavior of the pile, whereas there was no influence of the presence of vertical load on the horizontal behavior of the pile.Keywords: deep foundations, piles, inclined load, pile deformations
Procedia PDF Downloads 170763 Behaviour of Reinforced Concrete Infilled Frames under Seismic Loads
Authors: W. Badla
Abstract:
A significant portion of the buildings constructed in Algeria is structural frames with infill panels which are usually considered as non structural components and are neglected in the analysis. However, these masonry panels tend to influence the structural response. Thus, these structures can be regarded as seismic risk buildings, although in the Algerian seismic code there is little guidance on the seismic evaluation of infilled frame buildings. In this study, three RC frames with 2, 4, and 8 story and subjected to three recorded Algerian accelerograms are studied. The diagonal strut approach is adopted for modeling the infill panels and a fiber model is used to model RC members. This paper reports on the seismic evaluation of RC frames with brick infill panels. The results obtained show that the masonry panels enhance the load lateral capacity of the buildings and the infill panel configuration influences the response of the structures.Keywords: seismic design, RC frames, infill panels, non linear dynamic analysis
Procedia PDF Downloads 545762 Electrode Engineering for On-Chip Liquid Driving by Using Electrokinetic Effect
Authors: Reza Hadjiaghaie Vafaie, Aysan Madanpasandi, Behrooz Zare Desari, Seyedmohammad Mousavi
Abstract:
High lamination in microchannel is one of the main challenges in on-chip components like micro total analyzer systems and lab-on-a-chips. Electro-osmotic force is highly effective in chip-scale. This research proposes a microfluidic-based micropump for low ionic strength solutions. Narrow microchannels are designed to generate an efficient electroosmotic flow near the walls. Microelectrodes are embedded in the lateral sides and actuated by low electric potential to generate pumping effect inside the channel. Based on the simulation study, the fluid velocity increases by increasing the electric potential amplitude. We achieve a net flow velocity of 100 µm/s, by applying +/- 2 V to the electrode structures. Our proposed low voltage design is of interest in conventional lab-on-a-chip applications.Keywords: integration, electrokinetic, on-chip, fluid pumping, microfluidic
Procedia PDF Downloads 293761 Anticipation of Bending Reinforcement Based on Iranian Concrete Code Using Meta-Heuristic Tools
Authors: Seyed Sadegh Naseralavi, Najmeh Bemani
Abstract:
In this paper, different concrete codes including America, New Zealand, Mexico, Italy, India, Canada, Hong Kong, Euro Code and Britain are compared with the Iranian concrete design code. First, by using Adaptive Neuro Fuzzy Inference System (ANFIS), the codes having the most correlation with the Iranian ninth issue of the national regulation are determined. Consequently, two anticipated methods are used for comparing the codes: Artificial Neural Network (ANN) and Multi-variable regression. The results show that ANN performs better. Predicting is done by using only tensile steel ratio and with ignoring the compression steel ratio.Keywords: adaptive neuro fuzzy inference system, anticipate method, artificial neural network, concrete design code, multi-variable regression
Procedia PDF Downloads 283760 Effect of Waste Bottle Chips on Strength Parameters of Silty Soil
Authors: Seyed Abolhasan Naeini, Hamidreza Rahmani
Abstract:
Laboratory consolidated undrained triaxial (CU) tests were carried out to study the strength behavior of silty soil reinforced with randomly plastic waste bottle chips. Specimens mixed with plastic waste chips in triaxial compression tests with 0.25, 0.50, 0.75, 1.0, and 1.25% by dry weight of soil and tree different length including 4, 8, and 12 mm. In all of the samples, the width and thickness of plastic chips were kept constant. According to the results, the amount and size of plastic waste bottle chips played an important role in the increasing of the strength parameters of reinforced silt compared to the pure soil. Because of good results, the suggested method of soil improvement can be used in many engineering problems such as increasing the bearing capacity and settlement reduction in foundations.Keywords: reinforcement, silt, soil improvement, triaxial test, waste bottle chips
Procedia PDF Downloads 283759 Study of Pottery And Glazed Canopic Vessels
Authors: Abdelrahman Mohamed
Abstract:
The ancient Egyptians used canopic vessels in embalming operations in order to preserve the guts of the mummified corpse. Canopic vessels were made of many materials, including pottery and glazed pottery. In this research, we study a pottery canopic vessel and a glazed pottery vessel. An analysis to find out the compounds and elements of the materials from which the container is made and the colors, and also to make some analysis for the organic materials present inside it, such as the Fourier Transform Infrared Spectroscopy analysis and the Gas chromatograph mass spectrometers analysis of the organic residue. Through the study and analysis, it was proved that some of the materials present in the pot were coniferous oil and animal fats. In the other pot, the analysis showed the presence of some plant resins (mastic) inside rolls of linen. Restoration operations were carried out, such as mechanical cleaning, strengthening, and completing the reinforcement of the pots.Keywords: canopic jar, embalming, FTIR, GCMS, linen.
Procedia PDF Downloads 81758 A Combination of Independent Component Analysis, Relative Wavelet Energy and Support Vector Machine for Mental State Classification
Authors: Nguyen The Hoang Anh, Tran Huy Hoang, Vu Tat Thang, T. T. Quyen Bui
Abstract:
Mental state classification is an important step for realizing a control system based on electroencephalography (EEG) signals which could benefit a lot of paralyzed people including the locked-in or Amyotrophic Lateral Sclerosis. Considering that EEG signals are nonstationary and often contaminated by various types of artifacts, classifying thoughts into correct mental states is not a trivial problem. In this work, our contribution is that we present and realize a novel model which integrates different techniques: Independent component analysis (ICA), relative wavelet energy, and support vector machine (SVM) for the same task. We applied our model to classify thoughts in two types of experiment whether with two or three mental states. The experimental results show that the presented model outperforms other models using Artificial Neural Network, K-Nearest Neighbors, etc.Keywords: EEG, ICA, SVM, wavelet
Procedia PDF Downloads 382757 Reliability Based Optimal Design of Laterally Loaded Pile with Limited Residual Strain Energy Capacity
Authors: M. Movahedi Rad
Abstract:
In this study, a general approach to the reliability based limit analysis of laterally loaded piles is presented. In engineering practice, the uncertainties play a very important role. The aim of this study is to evaluate the lateral load capacity of free head and fixed-head long pile when the plastic limit analysis is considered. In addition to the plastic limit analysis to control the plastic behaviour of the structure, uncertain bound on the complementary strain energy of the residual forces is also applied. This bound has a significant effect for the load parameter. The solution to reliability-based problems is obtained by a computer program which is governed by the reliability index calculation.Keywords: reliability, laterally loaded pile, residual strain energy, probability, limit analysis
Procedia PDF Downloads 348756 Atypical Clinical Presentation of Wallenberg Syndrome from Acute Right Lateral Medullary Infarct in a-37-year-old Female
Authors: Sweta Das
Abstract:
This case report highlights the atypical clinical manifestation of ipsilateral head, neck, shoulder, and eye pain with erythema and edema of right eyelid and conjunctiva, along with typical presentation of right sided Horner’s syndrome in a 37-year-old female, who was correctly diagnosed with Wallenberg syndrome due to collaborative effort from optometry, primary care, emergency, and neurology specialties in medicine. Horner’s syndrome is present in 75% of patients with Wallenberg syndrome. Given that patients with Wallenberg syndrome often first present to the Emergency Department with a vast variety of non-specific symptoms, and a normal MRI, a delayed diagnosis is common. Therefore, a collaborative effort between emergency department, optometry, primary care, and neurology is essential in correctly diagnosing Wallenberg’s syndrome in a timely manner.Keywords: horner's syndrome, stroke, wallenberg syndrome, lateropulsion of eyes
Procedia PDF Downloads 58755 Re-Evaluation of Field X Located in Northern Lake Albert Basin to Refine the Structural Interpretation
Authors: Calorine Twebaze, Jesca Balinga
Abstract:
Field X is located on the Eastern shores of L. Albert, Uganda, on the rift flank where the gross sedimentary fill is typically less than 2,000m. The field was discovered in 2006 and encountered about 20.4m of net pay across three (3) stratigraphic intervals within the discovery well. The field covers an area of 3 km2, with the structural configuration comprising a 3-way dip-closed hanging wall anticline that seals against the basement to the southeast along the bounding fault. Field X had been mapped on reprocessed 3D seismic data, which was originally acquired in 2007 and reprocessed in 2013. The seismic data quality is good across the field, and reprocessing work reduced the uncertainty in the location of the bounding fault and enhanced the lateral continuity of reservoir reflectors. The current study was a re-evaluation of Field X to refine fault interpretation and understand the structural uncertainties associated with the field. The seismic data, and three (3) wells datasets were used during the study. The evaluation followed standard workflows using Petrel software and structural attribute analysis. The process spanned from seismic- -well tie, structural interpretation, and structural uncertainty analysis. Analysis of three (3) well ties generated for the 3 wells provided a geophysical interpretation that was consistent with geological picks. The generated time-depth curves showed a general increase in velocity with burial depth. However, separation in curve trends observed below 1100m was mainly attributed to minimal lateral variation in velocity between the wells. In addition to Attribute analysis, three velocity modeling approaches were evaluated, including the Time-Depth Curve, Vo+ kZ, and Average Velocity Method. The generated models were calibrated at well locations using well tops to obtain the best velocity model for Field X. The Time-depth method resulted in more reliable depth surfaces with good structural coherence between the TWT and depth maps with minimal error at well locations of 2 to 5m. Both the NNE-SSW rift border fault and minor faults in the existing interpretation were reevaluated. However, the new interpretation delineated an E-W trending fault in the northern part of the field that had not been interpreted before. The fault was interpreted at all stratigraphic levels and thus propagates from the basement to the surface and is an active fault today. It was also noted that the entire field is less faulted with more faults in the deeper part of the field. The major structural uncertainties defined included 1) The time horizons due to reduced data quality, especially in the deeper parts of the structure, an error equal to one-third of the reflection time thickness was assumed, 2) Check shot analysis showed varying velocities within the wells thus varying depth values for each well, and 3) Very few average velocity points due to limited wells produced a pessimistic average Velocity model.Keywords: 3D seismic data interpretation, structural uncertainties, attribute analysis, velocity modelling approaches
Procedia PDF Downloads 56754 Biophysical Analysis of the Interaction of Polymeric Nanoparticles with Biomimetic Models of the Lung Surfactant
Authors: Weiam Daear, Patrick Lai, Elmar Prenner
Abstract:
The human body offers many avenues that could be used for drug delivery. The pulmonary route, which is delivered through the lungs, presents many advantages that have sparked interested in the field. These advantages include; 1) direct access to the lungs and the large surface area it provides, and 2) close proximity to the blood circulation. The air-blood barrier of the alveoli is about 500 nm thick. The air-blood barrier consist of a monolayer of lipids and few proteins called the lung surfactant and cells. This monolayer consists of ~90% lipids and ~10% proteins that are produced by the alveolar epithelial cells. The two major lipid classes constitutes of various saturation and chain length of phosphatidylcholine (PC) and phosphatidylglycerol (PG) representing 80% of total lipid component. The major role of the lung surfactant monolayer is to reduce surface tension experienced during breathing cycles in order to prevent lung collapse. In terms of the pulmonary drug delivery route, drugs pass through various parts of the respiratory system before reaching the alveoli. It is at this location that the lung surfactant functions as the air-blood barrier for drugs. As the field of nanomedicine advances, the use of nanoparticles (NPs) as drug delivery vehicles is becoming very important. This is due to the advantages NPs provide with their large surface area and potential specific targeting. Therefore, studying the interaction of NPs with lung surfactant and whether they affect its stability becomes very essential. The aim of this research is to develop a biomimetic model of the human lung surfactant followed by a biophysical analysis of the interaction of polymeric NPs. This biomimetic model will function as a fast initial mode of testing for whether NPs affect the stability of the human lung surfactant. The model developed thus far is an 8-component lipid system that contains major PC and PG lipids. Recently, a custom made 16:0/16:1 PC and PG lipids were added to the model system. In the human lung surfactant, these lipids constitute 16% of the total lipid component. According to the author’s knowledge, there is not much monolayer data on the biophysical analysis of the 16:0/16:1 lipids, therefore more analysis will be discussed here. Biophysical techniques such as the Langmuir Trough is used for stability measurements which monitors changes to a monolayer's surface pressure upon NP interaction. Furthermore, Brewster Angle Microscopy (BAM) employed to visualize changes to the lateral domain organization. Results show preferential interactions of NPs with different lipid groups that is also dependent on the monolayer fluidity. Furthermore, results show that the film stability upon compression is unaffected, but there are significant changes in the lateral domain organization of the lung surfactant upon NP addition. This research is significant in the field of pulmonary drug delivery. It is shown that NPs within a certain size range are safe for the pulmonary route, but little is known about the mode of interaction of those polymeric NPs. Moreover, this work will provide additional information about the nanotoxicology of NPs tested.Keywords: Brewster angle microscopy, lipids, lung surfactant, nanoparticles
Procedia PDF Downloads 177