Search results for: image denoising and restoration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3167

Search results for: image denoising and restoration

2507 A Fast Parallel and Distributed Type-2 Fuzzy Algorithm Based on Cooperative Mobile Agents Model for High Performance Image Processing

Authors: Fatéma Zahra Benchara, Mohamed Youssfi, Omar Bouattane, Hassan Ouajji, Mohamed Ouadi Bensalah

Abstract:

The aim of this paper is to present a distributed implementation of the Type-2 Fuzzy algorithm in a parallel and distributed computing environment based on mobile agents. The proposed algorithm is assigned to be implemented on a SPMD (Single Program Multiple Data) architecture which is based on cooperative mobile agents as AVPE (Agent Virtual Processing Element) model in order to improve the processing resources needed for performing the big data image segmentation. In this work we focused on the application of this algorithm in order to process the big data MRI (Magnetic Resonance Images) image of size (n x m). It is encapsulated on the Mobile agent team leader in order to be split into (m x n) pixels one per AVPE. Each AVPE perform and exchange the segmentation results and maintain asynchronous communication with their team leader until the convergence of this algorithm. Some interesting experimental results are obtained in terms of accuracy and efficiency analysis of the proposed implementation, thanks to the mobile agents several interesting skills introduced in this distributed computational model.

Keywords: distributed type-2 fuzzy algorithm, image processing, mobile agents, parallel and distributed computing

Procedia PDF Downloads 429
2506 Potassium-Phosphorus-Nitrogen Detection and Spectral Segmentation Analysis Using Polarized Hyperspectral Imagery and Machine Learning

Authors: Nicholas V. Scott, Jack McCarthy

Abstract:

Military, law enforcement, and counter terrorism organizations are often tasked with target detection and image characterization of scenes containing explosive materials in various types of environments where light scattering intensity is high. Mitigation of this photonic noise using classical digital filtration and signal processing can be difficult. This is partially due to the lack of robust image processing methods for photonic noise removal, which strongly influence high resolution target detection and machine learning-based pattern recognition. Such analysis is crucial to the delivery of reliable intelligence. Polarization filters are a possible method for ambient glare reduction by allowing only certain modes of the electromagnetic field to be captured, providing strong scene contrast. An experiment was carried out utilizing a polarization lens attached to a hyperspectral imagery camera for the purpose of exploring the degree to which an imaged polarized scene of potassium, phosphorus, and nitrogen mixture allows for improved target detection and image segmentation. Preliminary imagery results based on the application of machine learning algorithms, including competitive leaky learning and distance metric analysis, to polarized hyperspectral imagery, suggest that polarization filters provide a slight advantage in image segmentation. The results of this work have implications for understanding the presence of explosive material in dry, desert areas where reflective glare is a significant impediment to scene characterization.

Keywords: explosive material, hyperspectral imagery, image segmentation, machine learning, polarization

Procedia PDF Downloads 142
2505 Monitoring of Latent Tree Mortality after Forest Fires: A Biosensor Approach

Authors: Alessio Giovannelli, Claudia Cocozza, Enrico Marchi, Valerio Giorgio Muzzini, Eleftherios Touloupakis, Raffaella Margherita Zampieri

Abstract:

In Mediterranean countries, forest fires are recurrent events that need to be considered as a central component of regional and global forest management strategies and biodiversity restoration programmes. The response of tree function to fire damage can vary widely, also taking into account species, season, age of the tree, etc. Trees that survive fire may have different levels of physiological functionality, which may result in reduced growth or increased susceptibility to delayed mortality. An approach to assessing irreversible physiological injury in trees could help to inform management decisions at burned sites for biodiversity restoration, environmental safety and understanding of ecosystem functional adaptations. Physiological proxies for latent tree mortality, such as cambial cell death, reduced or absent starch and soluble sugar content in C sinks, and ethanol accumulation in the phloem, are considered proxies for cell death. However, their determination requires time-consuming laboratory protocols, making the approach unfeasible as a practical option in the field, but recent findings have shown that biosensors could be usefully applied to overcome these limitations. The study will focus on the development of amperometric biosensors capable of detecting a few target molecules in the phloem and xylem (such as ethanol and glucose) that have recently been identified as proxies for latent tree mortality. The results of a specific experiment on a stand of Pinus pinaster subjected to prescribed fire are reported.

Keywords: enzymes, glucose, ethanol, prescribed fires

Procedia PDF Downloads 18
2504 Evaluation of Robust Feature Descriptors for Texture Classification

Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo

Abstract:

Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.

Keywords: texture classification, texture descriptor, SIFT, SURF, ORB

Procedia PDF Downloads 369
2503 An Approach to Noise Variance Estimation in Very Low Signal-to-Noise Ratio Stochastic Signals

Authors: Miljan B. Petrović, Dušan B. Petrović, Goran S. Nikolić

Abstract:

This paper describes a method for AWGN (Additive White Gaussian Noise) variance estimation in noisy stochastic signals, referred to as Multiplicative-Noising Variance Estimation (MNVE). The aim was to develop an estimation algorithm with minimal number of assumptions on the original signal structure. The provided MATLAB simulation and results analysis of the method applied on speech signals showed more accuracy than standardized AR (autoregressive) modeling noise estimation technique. In addition, great performance was observed on very low signal-to-noise ratios, which in general represents the worst case scenario for signal denoising methods. High execution time appears to be the only disadvantage of MNVE. After close examination of all the observed features of the proposed algorithm, it was concluded it is worth of exploring and that with some further adjustments and improvements can be enviably powerful.

Keywords: noise, signal-to-noise ratio, stochastic signals, variance estimation

Procedia PDF Downloads 386
2502 Evaluation of Longitudinal Relaxation Time (T1) of Bone Marrow in Lumbar Vertebrae of Leukaemia Patients Undergoing Magnetic Resonance Imaging

Authors: M. G. R. S. Perera, B. S. Weerakoon, L. P. G. Sherminie, M. L. Jayatilake, R. D. Jayasinghe, W. Huang

Abstract:

The aim of this study was to measure and evaluate the Longitudinal Relaxation Times (T1) in bone marrow of an Acute Myeloid Leukaemia (AML) patient in order to explore the potential for a prognostic biomarker using Magnetic Resonance Imaging (MRI) which will be a non-invasive prognostic approach to AML. MR image data were collected in the DICOM format and MATLAB Simulink software was used in the image processing and data analysis. For quantitative MRI data analysis, Region of Interests (ROI) on multiple image slices were drawn encompassing vertebral bodies of L3, L4, and L5. T1 was evaluated using the T1 maps obtained. The estimated bone marrow mean value of T1 was 790.1 (ms) at 3T. However, the reported T1 value of healthy subjects is significantly (946.0 ms) higher than the present finding. This suggests that the T1 for bone marrow can be considered as a potential prognostic biomarker for AML patients.

Keywords: acute myeloid leukaemia, longitudinal relaxation time, magnetic resonance imaging, prognostic biomarker.

Procedia PDF Downloads 531
2501 Unequal Error Protection of VQ Image Transmission System

Authors: Khelifi Mustapha, A. Moulay lakhdar, I. Elawady

Abstract:

We will study the unequal error protection for VQ image. We have used the Reed Solomon (RS) Codes as Channel coding because they offer better performance in terms of channel error correction over a binary output channel. One such channel (binary input and output) should be considered if it is the case of the application layer, because it includes all the features of the layers located below and on the what it is usually not feasible to make changes.

Keywords: vector quantization, channel error correction, Reed-Solomon channel coding, application

Procedia PDF Downloads 365
2500 Why and When to Teach Definitions: Necessary and Unnecessary Discontinuities Resulting from the Definition of Mathematical Concepts

Authors: Josephine Shamash, Stuart Smith

Abstract:

We examine reasons for introducing definitions in teaching mathematics in a number of different cases. We try to determine if, where, and when to provide a definition, and which definition to choose. We characterize different types of definitions and the different purposes we may have for formulating them, and detail examples of each type. Giving a definition at a certain stage can sometimes be detrimental to the development of the concept image. In such a case, it is advisable to delay the precise definition to a later stage. We describe two models, the 'successive approximation model', and the 'model of the extending definition' that fit such situations. Detailed examples that fit the different models are given based on material taken from a number of textbooks, and analysis of the way the concept is introduced, and where and how its definition is given. Our conclusions, based on this analysis, is that some of the definitions given may cause discontinuities in the learning sequence and constitute obstacles and unnecessary cognitive conflicts in the formation of the concept definition. However, in other cases, the discontinuity in passing from definition to definition actually serves a didactic purpose, is unavoidable for the mathematical evolution of the concept image, and is essential for students to deepen their understanding.

Keywords: concept image, mathematical definitions, mathematics education, mathematics teaching

Procedia PDF Downloads 129
2499 Using Computer Vision to Detect and Localize Fractures in Wrist X-ray Images

Authors: John Paul Q. Tomas, Mark Wilson L. de los Reyes, Kirsten Joyce P. Vasquez

Abstract:

The most frequent type of fracture is a wrist fracture, which often makes it difficult for medical professionals to find and locate. In this study, fractures in wrist x-ray pictures were located and identified using deep learning and computer vision. The researchers used image filtering, masking, morphological operations, and data augmentation for the image preprocessing and trained the RetinaNet and Faster R-CNN models with ResNet50 backbones and Adam optimizers separately for each image filtering technique and projection. The RetinaNet model with Anisotropic Diffusion Smoothing filter trained with 50 epochs has obtained the greatest accuracy of 99.14%, precision of 100%, sensitivity/recall of 98.41%, specificity of 100%, and an IoU score of 56.44% for the Posteroanterior projection utilizing augmented data. For the Lateral projection using augmented data, the RetinaNet model with an Anisotropic Diffusion filter trained with 50 epochs has produced the highest accuracy of 98.40%, precision of 98.36%, sensitivity/recall of 98.36%, specificity of 98.43%, and an IoU score of 58.69%. When comparing the test results of the different individual projections, models, and image filtering techniques, the Anisotropic Diffusion filter trained with 50 epochs has produced the best classification and regression scores for both projections.

Keywords: Artificial Intelligence, Computer Vision, Wrist Fracture, Deep Learning

Procedia PDF Downloads 73
2498 Remote Sensing through Deep Neural Networks for Satellite Image Classification

Authors: Teja Sai Puligadda

Abstract:

Satellite images in detail can serve an important role in the geographic study. Quantitative and qualitative information provided by the satellite and remote sensing images minimizes the complexity of work and time. Data/images are captured at regular intervals by satellite remote sensing systems, and the amount of data collected is often enormous, and it expands rapidly as technology develops. Interpreting remote sensing images, geographic data mining, and researching distinct vegetation types such as agricultural and forests are all part of satellite image categorization. One of the biggest challenge data scientists faces while classifying satellite images is finding the best suitable classification algorithms based on the available that could able to classify images with utmost accuracy. In order to categorize satellite images, which is difficult due to the sheer volume of data, many academics are turning to deep learning machine algorithms. As, the CNN algorithm gives high accuracy in image recognition problems and automatically detects the important features without any human supervision and the ANN algorithm stores information on the entire network (Abhishek Gupta., 2020), these two deep learning algorithms have been used for satellite image classification. This project focuses on remote sensing through Deep Neural Networks i.e., ANN and CNN with Deep Sat (SAT-4) Airborne dataset for classifying images. Thus, in this project of classifying satellite images, the algorithms ANN and CNN are implemented, evaluated & compared and the performance is analyzed through evaluation metrics such as Accuracy and Loss. Additionally, the Neural Network algorithm which gives the lowest bias and lowest variance in solving multi-class satellite image classification is analyzed.

Keywords: artificial neural network, convolutional neural network, remote sensing, accuracy, loss

Procedia PDF Downloads 159
2497 Binarization and Recognition of Characters from Historical Degraded Documents

Authors: Bency Jacob, S.B. Waykar

Abstract:

Degradations in historical document images appear due to aging of the documents. It is very difficult to understand and retrieve text from badly degraded documents as there is variation between the document foreground and background. Thresholding of such document images either result in broken characters or detection of false texts. Numerous algorithms exist that can separate text and background efficiently in the textual regions of the document; but portions of background are mistaken as text in areas that hardly contain any text. This paper presents a way to overcome these problems by a robust binarization technique that recovers the text from a severely degraded document images and thereby increases the accuracy of optical character recognition systems. The proposed document recovery algorithm efficiently removes degradations from document images. Here we are using the ostus method ,local thresholding and global thresholding and after the binarization training and recognizing the characters in the degraded documents.

Keywords: binarization, denoising, global thresholding, local thresholding, thresholding

Procedia PDF Downloads 344
2496 Secret Sharing in Visual Cryptography Using NVSS and Data Hiding Techniques

Authors: Misha Alexander, S. B. Waykar

Abstract:

Visual Cryptography is a special unbreakable encryption technique that transforms the secret image into random noisy pixels. These shares are transmitted over the network and because of its noisy texture it attracts the hackers. To address this issue a Natural Visual Secret Sharing Scheme (NVSS) was introduced that uses natural shares either in digital or printed form to generate the noisy secret share. This scheme greatly reduces the transmission risk but causes distortion in the retrieved secret image through variation in settings and properties of digital devices used to capture the natural image during encryption / decryption phase. This paper proposes a new NVSS scheme that extracts the secret key from randomly selected unaltered multiple natural images. To further improve the security of the shares data hiding techniques such as Steganography and Alpha channel watermarking are proposed.

Keywords: decryption, encryption, natural visual secret sharing, natural images, noisy share, pixel swapping

Procedia PDF Downloads 404
2495 Numerical Implementation and Testing of Fractioning Estimator Method for the Box-Counting Dimension of Fractal Objects

Authors: Abraham Terán Salcedo, Didier Samayoa Ochoa

Abstract:

This work presents a numerical implementation of a method for estimating the box-counting dimension of self-avoiding curves on a planar space, fractal objects captured on digital images; this method is named fractioning estimator. Classical methods of digital image processing, such as noise filtering, contrast manipulation, and thresholding, among others, are used in order to obtain binary images that are suitable for performing the necessary computations of the fractioning estimator. A user interface is developed for performing the image processing operations and testing the fractioning estimator on different captured images of real-life fractal objects. To analyze the results, the estimations obtained through the fractioning estimator are compared to the results obtained through other methods that are already implemented on different available software for computing and estimating the box-counting dimension.

Keywords: box-counting, digital image processing, fractal dimension, numerical method

Procedia PDF Downloads 83
2494 Spatial Distribution of Land Use in the North Canal of Beijing Subsidiary Center and Its Impact on the Water Quality

Authors: Alisa Salimova, Jiane Zuo, Christopher Homer

Abstract:

The objective of this study is to analyse the North Canal riparian zone land use with the help of remote sensing analysis in ArcGis using 30 cloudless Landsat8 open-source satellite images from May to August of 2013 and 2017. Land cover, urban construction, heat island effect, vegetation cover, and water system change were chosen as the main parameters and further analysed to evaluate its impact on the North Canal water quality. The methodology involved the following steps: firstly, 30 cloudless satellite images were collected from the Landsat TM image open-source database. The visual interpretation method was used to determine different land types in a catchment area. After primary and secondary classification, 28 land cover types in total were classified. Visual interpretation method was used with the help ArcGIS for the grassland monitoring, US Landsat TM remote sensing image processing with a resolution of 30 meters was used to analyse the vegetation cover. The water system was analysed using the visual interpretation method on the GIS software platform to decode the target area, water use and coverage. Monthly measurements of water temperature, pH, BOD, COD, ammonia nitrogen, total nitrogen and total phosphorus in 2013 and 2017 were taken from three locations of the North Canal in Tongzhou district. These parameters were used for water quality index calculation and compared to land-use changes. The results of this research were promising. The vegetation coverage of North Canal riparian zone in 2017 was higher than the vegetation coverage in 2013. The surface brightness temperature value was positively correlated with the vegetation coverage density and the distance from the surface of the water bodies. This indicates that the vegetation coverage and water system have a great effect on temperature regulation and urban heat island effect. Surface temperature in 2017 was higher than in 2013, indicating a global warming effect. The water volume in the river area has been partially reduced, indicating the potential water scarcity risk in North Canal watershed. Between 2013 and 2017, urban residential, industrial and mining storage land areas significantly increased compared to other land use types; however, water quality has significantly improved in 2017 compared to 2013. This observation indicates that the Tongzhou Water Restoration Plan showed positive results and water management of Tongzhou district had been improved.

Keywords: North Canal, land use, riparian vegetation, river ecology, remote sensing

Procedia PDF Downloads 113
2493 Assessment of Growth Variation and Phytoextraction Potential of Four Salix Varieties Grown in Zn Contaminated Soil Amended with Lime and Wood Ash

Authors: Mir Md Abdus Salam, Muhammad Mohsin, Pertti Pulkkinen, Paavo Pelkonen, Ari Pappinen

Abstract:

Soils contaminated with metals, e.g., copper (Cu), zinc (Zn) and nickel (Ni) are one of the main global environmental problems. Zn is an important element for plant growth, but excess levels may become a threat to plant survival. Soils polluted with metals may also pose risks and hazards to human health. Afforestation based on short rotation Salix crops may be a good solution for the reduction of metals toxicity levels in the soil and in ecosystem restoration of severely polluted sites. In a greenhouse experiment, plant growth and zinc (Zn) uptake by four Salix cultivars grown in Zn contaminated soils collected from a mining area in Finland were tested to assess their suitability for phytoextraction. The sequential extraction technique and inductively coupled plasma‒mass spectrometry (ICP–MS) were used to determine the extractable metals and evaluate the fraction of metals in the soil that could be potentially available for plant uptake. The cultivars displayed resistance to heavily polluted soils throughout the whole experiment. After uptake, the total mean Zn concentrations ranged from 776 to 1823 mg kg⁻¹. The average uptake percentage of Zn across all cultivars and treatments ranged from 97 to 223%. Lime and wood ash addition showed a significant effect on plant dry biomass growth and metal uptake percentage of Zn in most of the cultivars. The results revealed that Salix cultivars have the potential to accumulate and take up significant amounts of Zn. Ecological restoration of polluted soils could be environmentally favorable in conjunction with economically profitable practices, such as forestry and bioenergy production. As such, the utilization of Salix for phytoextraction and bioenergy purposes is of considerable interest.

Keywords: lime, phytoextraction, Salix, wood ash, zinc

Procedia PDF Downloads 156
2492 Post-Anesthetic Recovery: The Best Moment to Apply Positive Pressure in Airway in Postoperative Bariatric Surgery

Authors: Eli Maria Pazzianotto-Forti, Patrícia Brigatto, Letícia Baltieri, Carolina Moraes Da Costa, Maura Rigoldi Simoes Da Rocha, Irineu Rasera Jr

Abstract:

The application of positive pressure in airway can contribute to the restoration of lung volumes, capacities and prevent respiratory complications. The aim was to investigate the use of Bilevel Positive Airway Pressure (BIPAP) in morbidly obese in two moments in postoperative bariatric surgery: In the post-anesthetic recovery (PAR) and on the 1st postoperative day (1stPO). Twenty morbidly obese, aged between 25 and 55 years, underwent pulmonary function test and chest X-ray preoperatively and on the day of discharge (2nd day after surgery). They were randomly allocated in groups. GPAR: received BIPAP treatment in PAR, for an hour and G1stPO: received BIPAP for one hour, on the 1stPO. There were significant reductions in slow vital capacity (SVC) (p=0.0007), inspiratory reserve volume (IRV) (p=0.0016) and forced vital capacity (FVC) (p=0.0013) in the postoperative in GPAR and the expiratory reserve volume (ERV) remained (p=0.4446). In the G1stPO, there were significant reductions for: SVC p=<0.0001, ERV p=0.0191, IRV p= 0.0026 and FVC p=<0.0001. Comparing between groups, the SVC (p=0.0027) and FVC (p=0.0028) showed significant difference between the treatments. However, the GPAR showed fewer declines of these capacities. To the ERV (p= 0.1646) and IRV (p=0.3973) there was no significant difference between groups. The atelectasis prevalence was 10% for the GPAR and 30% for G1stPO, with significant difference between the proportions (p = 0.0027). The lowest reduction in SVC and FVC happens when positive pressure is applied in PAR. Thus, the use of BIPAP in the PAR can promote a restoration of ERV and contribute to the reduction of atelectasis. FAPESP 2013/06334-8.

Keywords: atelectasis, bariatric surgery, physiotherapy, pulmonary function, positive pressure

Procedia PDF Downloads 404
2491 A Combination of Anisotropic Diffusion and Sobel Operator to Enhance the Performance of the Morphological Component Analysis for Automatic Crack Detection

Authors: Ankur Dixit, Hiroaki Wagatsuma

Abstract:

The crack detection on a concrete bridge is an important and constant task in civil engineering. Chronically, humans are checking the bridge for inspection of cracks to maintain the quality and reliability of bridge. But this process is very long and costly. To overcome such limitations, we have used a drone with a digital camera, which took some images of bridge deck and these images are processed by morphological component analysis (MCA). MCA technique is a very strong application of sparse coding and it explores the possibility of separation of images. In this paper, MCA has been used to decompose the image into coarse and fine components with the effectiveness of two dictionaries namely anisotropic diffusion and wavelet transform. An anisotropic diffusion is an adaptive smoothing process used to adjust diffusion coefficient by finding gray level and gradient as features. These cracks in image are enhanced by subtracting the diffused coarse image into the original image and the results are treated by Sobel edge detector and binary filtering to exhibit the cracks in a fine way. Our results demonstrated that proposed MCA framework using anisotropic diffusion followed by Sobel operator and binary filtering may contribute to an automation of crack detection even in open field sever conditions such as bridge decks.

Keywords: anisotropic diffusion, coarse component, fine component, MCA, Sobel edge detector and wavelet transform

Procedia PDF Downloads 173
2490 A Primary Care Diagnosis of Middle-Aged Men with Oral Cancer Who Underwent Extensive Resection and Flap Repair: A Case Report

Authors: Ching-Yi Huang, Pi-Fen Cheng, Hui-Zhu Chen, Shi Ting Huang, Heng-Hua Wang

Abstract:

This is a case of oral cancer after extensive resection and modified right lateral neck lymph node dissection followed by reconstruction with a skin flap. The nursing period lasted From September 25 to October 3, 2017, through observation, interview, physical assessment, and medical record review, the author identified the following nursing problems: acute pain, impaired oral mucous membrane, and body image change. During the nursing period, the author provided individual and overall nursing care and established mutual trust through the use of empathy. Author listened and eased the patient's physical indisposition, such as wound pain, we use medications and acupuncture massage to relieve pain. However, for oral mucosa change caused by surgery, provide continuous and complete oral care and oral exercise training to improve oral mucosal healing and restore swallowing function. In the body-image changes, guided him to express his feeling after the body-image change, and enhanced support and from the family, and encouraged him to attend head and neck cancer survivor alliance which allowed the patient to accept the altered body image and reaffirm self-worth. Hopefully, through sharing this nursing experience will help to the nursing care quality of nursing care for oral cancer patients after extensive resection and modified right lateral neck lymph node dissection followed by reconstruction with a skin flap.

Keywords: oral cancer, acute pain, impaired oral mucous membrane, body image change

Procedia PDF Downloads 188
2489 Improved Processing Speed for Text Watermarking Algorithm in Color Images

Authors: Hamza A. Al-Sewadi, Akram N. A. Aldakari

Abstract:

Copyright protection and ownership proof of digital multimedia are achieved nowadays by digital watermarking techniques. A text watermarking algorithm for protecting the property rights and ownership judgment of color images is proposed in this paper. Embedding is achieved by inserting texts elements randomly into the color image as noise. The YIQ image processing model is found to be faster than other image processing methods, and hence, it is adopted for the embedding process. An optional choice of encrypting the text watermark before embedding is also suggested (in case required by some applications), where, the text can is encrypted using any enciphering technique adding more difficulty to hackers. Experiments resulted in embedding speed improvement of more than double the speed of other considered systems (such as least significant bit method, and separate color code methods), and a fairly acceptable level of peak signal to noise ratio (PSNR) with low mean square error values for watermarking purposes.

Keywords: steganography, watermarking, time complexity measurements, private keys

Procedia PDF Downloads 143
2488 Automatic Early Breast Cancer Segmentation Enhancement by Image Analysis and Hough Transform

Authors: David Jurado, Carlos Ávila

Abstract:

Detection of early signs of breast cancer development is crucial to quickly diagnose the disease and to define adequate treatment to increase the survival probability of the patient. Computer Aided Detection systems (CADs), along with modern data techniques such as Machine Learning (ML) and Neural Networks (NN), have shown an overall improvement in digital mammography cancer diagnosis, reducing the false positive and false negative rates becoming important tools for the diagnostic evaluations performed by specialized radiologists. However, ML and NN-based algorithms rely on datasets that might bring issues to the segmentation tasks. In the present work, an automatic segmentation and detection algorithm is described. This algorithm uses image processing techniques along with the Hough transform to automatically identify microcalcifications that are highly correlated with breast cancer development in the early stages. Along with image processing, automatic segmentation of high-contrast objects is done using edge extraction and circle Hough transform. This provides the geometrical features needed for an automatic mask design which extracts statistical features of the regions of interest. The results shown in this study prove the potential of this tool for further diagnostics and classification of mammographic images due to the low sensitivity to noisy images and low contrast mammographies.

Keywords: breast cancer, segmentation, X-ray imaging, hough transform, image analysis

Procedia PDF Downloads 83
2487 Impact of Green Marketing Mix Strategy and CSR on Organizational Performance: An Empirical Study of Manufacturing Sector of Pakistan

Authors: Syeda Shawana Mahasan, Muhammad Farooq Akhtar

Abstract:

The objective of this study is to analyze the influence of the green marketing mix strategy and corporate social responsibility (CSR) on the performance of an organization, taking into account the mediating effect of corporate image. The impact of frugal innovation and corporate activism is being examined. The data was gathered from executives at various levels of management, including top, middle, and lower-level managers, from a total of 550 manufacturing enterprises of different sizes, ranging from small to medium to large. The collected replies are processed and analyzed using SMART PLS version 4.0.0.0. The application of PLS-SEM demonstrates that the green marketing mix strategy and corporate social responsibility have a significant impact on organizational performance. Therefore, it is imperative for organizations to effectively adopt environmentally sustainable and socially conscious methods within their operations. The results indicate that the corporate image has a key role in mediating the relationship between the green marketing mix strategy, corporate social responsibility, and organizational performance. This demonstrates the imperative for organizations to actively enhance their favorable reputation among stakeholders. The combination of frugal innovation and corporate activism enhances the connection between corporate image and organizational performance. The current study assists managers in recognizing the significance of these particular constructs in maintaining the long-term performance of the organization.

Keywords: green marketing mix strategy, CSR, corporate image, organizational performance, frugal innovation, corporate activism

Procedia PDF Downloads 40
2486 MRI Quality Control Using Texture Analysis and Spatial Metrics

Authors: Kumar Kanudkuri, A. Sandhya

Abstract:

Typically, in a MRI clinical setting, there are several protocols run, each indicated for a specific anatomy and disease condition. However, these protocols or parameters within them can change over time due to changes to the recommendations by the physician groups or updates in the software or by the availability of new technologies. Most of the time, the changes are performed by the MRI technologist to account for either time, coverage, physiological, or Specific Absorbtion Rate (SAR ) reasons. However, giving properly guidelines to MRI technologist is important so that they do not change the parameters that negatively impact the image quality. Typically a standard American College of Radiology (ACR) MRI phantom is used for Quality Control (QC) in order to guarantee that the primary objectives of MRI are met. The visual evaluation of quality depends on the operator/reviewer and might change amongst operators as well as for the same operator at various times. Therefore, overcoming these constraints is essential for a more impartial evaluation of quality. This makes quantitative estimation of image quality (IQ) metrics for MRI quality control is very important. So in order to solve this problem, we proposed that there is a need for a robust, open-source, and automated MRI image control tool. The Designed and developed an automatic analysis tool for measuring MRI image quality (IQ) metrics like Signal to Noise Ratio (SNR), Signal to Noise Ratio Uniformity (SNRU), Visual Information Fidelity (VIF), Feature Similarity (FSIM), Gray level co-occurrence matrix (GLCM), slice thickness accuracy, slice position accuracy, High contrast spatial resolution) provided good accuracy assessment. A standardized quality report has generated that incorporates metrics that impact diagnostic quality.

Keywords: ACR MRI phantom, MRI image quality metrics, SNRU, VIF, FSIM, GLCM, slice thickness accuracy, slice position accuracy

Procedia PDF Downloads 170
2485 A Comprehensive Study and Evaluation on Image Fashion Features Extraction

Authors: Yuanchao Sang, Zhihao Gong, Longsheng Chen, Long Chen

Abstract:

Clothing fashion represents a human’s aesthetic appreciation towards everyday outfits and appetite for fashion, and it reflects the development of status in society, humanity, and economics. However, modelling fashion by machine is extremely challenging because fashion is too abstract to be efficiently described by machines. Even human beings can hardly reach a consensus about fashion. In this paper, we are dedicated to answering a fundamental fashion-related problem: what image feature best describes clothing fashion? To address this issue, we have designed and evaluated various image features, ranging from traditional low-level hand-crafted features to mid-level style awareness features to various current popular deep neural network-based features, which have shown state-of-the-art performance in various vision tasks. In summary, we tested the following 9 feature representations: color, texture, shape, style, convolutional neural networks (CNNs), CNNs with distance metric learning (CNNs&DML), AutoEncoder, CNNs with multiple layer combination (CNNs&MLC) and CNNs with dynamic feature clustering (CNNs&DFC). Finally, we validated the performance of these features on two publicly available datasets. Quantitative and qualitative experimental results on both intra-domain and inter-domain fashion clothing image retrieval showed that deep learning based feature representations far outweigh traditional hand-crafted feature representation. Additionally, among all deep learning based methods, CNNs with explicit feature clustering performs best, which shows feature clustering is essential for discriminative fashion feature representation.

Keywords: convolutional neural network, feature representation, image processing, machine modelling

Procedia PDF Downloads 139
2484 Comprehensive Evaluation of COVID-19 Through Chest Images

Authors: Parisa Mansour

Abstract:

The coronavirus disease 2019 (COVID-19) was discovered and rapidly spread to various countries around the world since the end of 2019. Computed tomography (CT) images have been used as an important alternative to the time-consuming RT. PCR test. However, manual segmentation of CT images alone is a major challenge as the number of suspected cases increases. Thus, accurate and automatic segmentation of COVID-19 infections is urgently needed. Because the imaging features of the COVID-19 infection are different and similar to the background, existing medical image segmentation methods cannot achieve satisfactory performance. In this work, we try to build a deep convolutional neural network adapted for the segmentation of chest CT images with COVID-19 infections. First, we maintain a large and novel chest CT image database containing 165,667 annotated chest CT images from 861 patients with confirmed COVID-19. Inspired by the observation that the boundary of an infected lung can be improved by global intensity adjustment, we introduce a feature variable block into the proposed deep CNN, which adjusts the global features of features to segment the COVID-19 infection. The proposed PV array can effectively and adaptively improve the performance of functions in different cases. We combine features of different scales by proposing a progressive atrocious space pyramid fusion scheme to deal with advanced infection regions with various aspects and shapes. We conducted experiments on data collected in China and Germany and showed that the proposed deep CNN can effectively produce impressive performance.

Keywords: chest, COVID-19, chest Image, coronavirus, CT image, chest CT

Procedia PDF Downloads 57
2483 Swedish Police Officers' Experiences of Meeting with Women Who Were Raped

Authors: Lisa Rudolfsson

Abstract:

Socio-cognitive factors, such as social support and attribution of blame, influence the victim’s psychological adjustment after the abuse. Furthermore, the response from the person that the victim first confides to effect adjustment following the abuse. In Sweden, although police are investigating most of the reported cases of rape, very few rape-cases leads to trial and sentence. For many women who have been raped, contact with the police officer when reporting the crime will, therefore, be the most notable experience of how representatives for the Swedish society regard and handle what has happened. Hence, it seems urgent to gather information about these initial meetings. This study is part of a three-year research project, titled 'Female rape victims: Quality of initial police and medical care contact', funded by the Swedish Crime Victim and Support Authority. The focus of this study was on police officers in Sweden: their thoughts and experiences of meeting with raped women. Forthcoming are interviews with raped women about their experiences of meeting with police. Sixteen police officers participated in three focus groups and one interview. The participants consisted of five men and eleven women. Focus groups and interview were audio recorded and transcribed verbatim. The material was analyzed using thematic analysis. Participants described how violence against women was not a priority in Swedish society or within the Police Authority. They talked about rape cases as a Sisyphean work-task that put high demands on them, while they also lacked training and support. They expressed a wish to offer the woman some kind of restoration, and they talked about their work as potentially making a difference for the woman – even if she did not get juridical justice. However, participants also described that they did not feel validated in their hard work. They talked about working rape cases as causing them a great deal of frustration - directed towards the Police Authority, the juridical system, colleagues, and sometimes towards the woman. Participants also described how meeting with raped women was a work that affected them in a personal manner. Listening to stories about sexual violence made the participants sad, and they described it as a struggle to understand. They described wondering how the woman’s life turned out and how they sometimes questioned if they had done enough. Some of the conclusions concern the lack of prerequisites needed for police officers to be able to offer a good-enough treatment of raped women, as well as the lack of tools needed for police officers to care for themselves. In lack of training, validation, and support, the knowledge of how to offer a good- enough treatment of raped women becomes a task learned by doing. Attempts to offer, if not legal justice, then at least some kind of restoration becomes a personal task, dependent on individual police officers. It seems urgent that we address the risk of police officers’ frustration building up to be detrimental for both the crime victim and the officer her/himself.

Keywords: focus groups, police, raped women, restoration

Procedia PDF Downloads 121
2482 Classification of Digital Chest Radiographs Using Image Processing Techniques to Aid in Diagnosis of Pulmonary Tuberculosis

Authors: A. J. S. P. Nileema, S. Kulatunga , S. H. Palihawadana

Abstract:

Computer aided detection (CAD) system was developed for the diagnosis of pulmonary tuberculosis using digital chest X-rays with MATLAB image processing techniques using a statistical approach. The study comprised of 200 digital chest radiographs collected from the National Hospital for Respiratory Diseases - Welisara, Sri Lanka. Pre-processing was done to remove identification details. Lung fields were segmented and then divided into four quadrants; right upper quadrant, left upper quadrant, right lower quadrant, and left lower quadrant using the image processing techniques in MATLAB. Contrast, correlation, homogeneity, energy, entropy, and maximum probability texture features were extracted using the gray level co-occurrence matrix method. Descriptive statistics and normal distribution analysis were performed using SPSS. Depending on the radiologists’ interpretation, chest radiographs were classified manually into PTB - positive (PTBP) and PTB - negative (PTBN) classes. Features with standard normal distribution were analyzed using an independent sample T-test for PTBP and PTBN chest radiographs. Among the six features tested, contrast, correlation, energy, entropy, and maximum probability features showed a statistically significant difference between the two classes at 95% confidence interval; therefore, could be used in the classification of chest radiograph for PTB diagnosis. With the resulting value ranges of the five texture features with normal distribution, a classification algorithm was then defined to recognize and classify the quadrant images; if the texture feature values of the quadrant image being tested falls within the defined region, it will be identified as a PTBP – abnormal quadrant and will be labeled as ‘Abnormal’ in red color with its border being highlighted in red color whereas if the texture feature values of the quadrant image being tested falls outside of the defined value range, it will be identified as PTBN–normal and labeled as ‘Normal’ in blue color but there will be no changes to the image outline. The developed classification algorithm has shown a high sensitivity of 92% which makes it an efficient CAD system and with a modest specificity of 70%.

Keywords: chest radiographs, computer aided detection, image processing, pulmonary tuberculosis

Procedia PDF Downloads 126
2481 Toward Subtle Change Detection and Quantification in Magnetic Resonance Neuroimaging

Authors: Mohammad Esmaeilpour

Abstract:

One of the important open problems in the field of medical image processing is detection and quantification of small changes. In this poster, we try to investigate that, how the algebraic decomposition techniques can be used for semiautomatically detecting and quantifying subtle changes in Magnetic Resonance (MR) neuroimaging volumes. We mostly focus on the low-rank values of the matrices achieved from decomposing MR image pairs during a period of time. Besides, a skillful neuroradiologist will help the algorithm to distinguish between noises and small changes.

Keywords: magnetic resonance neuroimaging, subtle change detection and quantification, algebraic decomposition, basis functions

Procedia PDF Downloads 474
2480 Scar Removal Stretegy for Fingerprint Using Diffusion

Authors: Mohammad A. U. Khan, Tariq M. Khan, Yinan Kong

Abstract:

Fingerprint image enhancement is one of the most important step in an automatic fingerprint identification recognition (AFIS) system which directly affects the overall efficiency of AFIS. The conventional fingerprint enhancement like Gabor and Anisotropic filters do fill the gaps in ridge lines but they fail to tackle scar lines. To deal with this problem we are proposing a method for enhancing the ridges and valleys with scar so that true minutia points can be extracted with accuracy. Our results have shown an improved performance in terms of enhancement.

Keywords: fingerprint image enhancement, removing noise, coherence, enhanced diffusion

Procedia PDF Downloads 516
2479 Small Text Extraction from Documents and Chart Images

Authors: Rominkumar Busa, Shahira K. C., Lijiya A.

Abstract:

Text recognition is an important area in computer vision which deals with detecting and recognising text from an image. The Optical Character Recognition (OCR) is a saturated area these days and with very good text recognition accuracy. However the same OCR methods when applied on text with small font sizes like the text data of chart images, the recognition rate is less than 30%. In this work, aims to extract small text in images using the deep learning model, CRNN with CTC loss. The text recognition accuracy is found to improve by applying image enhancement by super resolution prior to CRNN model. We also observe the text recognition rate further increases by 18% by applying the proposed method, which involves super resolution and character segmentation followed by CRNN with CTC loss. The efficiency of the proposed method shows that further pre-processing on chart image text and other small text images will improve the accuracy further, thereby helping text extraction from chart images.

Keywords: small text extraction, OCR, scene text recognition, CRNN

Procedia PDF Downloads 126
2478 Advances of Image Processing in Precision Agriculture: Using Deep Learning Convolution Neural Network for Soil Nutrient Classification

Authors: Halimatu S. Abdullahi, Ray E. Sheriff, Fatima Mahieddine

Abstract:

Agriculture is essential to the continuous existence of human life as they directly depend on it for the production of food. The exponential rise in population calls for a rapid increase in food with the application of technology to reduce the laborious work and maximize production. Technology can aid/improve agriculture in several ways through pre-planning and post-harvest by the use of computer vision technology through image processing to determine the soil nutrient composition, right amount, right time, right place application of farm input resources like fertilizers, herbicides, water, weed detection, early detection of pest and diseases etc. This is precision agriculture which is thought to be solution required to achieve our goals. There has been significant improvement in the area of image processing and data processing which has being a major challenge. A database of images is collected through remote sensing, analyzed and a model is developed to determine the right treatment plans for different crop types and different regions. Features of images from vegetations need to be extracted, classified, segmented and finally fed into the model. Different techniques have been applied to the processes from the use of neural network, support vector machine, fuzzy logic approach and recently, the most effective approach generating excellent results using the deep learning approach of convolution neural network for image classifications. Deep Convolution neural network is used to determine soil nutrients required in a plantation for maximum production. The experimental results on the developed model yielded results with an average accuracy of 99.58%.

Keywords: convolution, feature extraction, image analysis, validation, precision agriculture

Procedia PDF Downloads 316